异分母分式加减法讲义
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 mn
引入
对于 2000 2000 , 1 1 a 3a m n
如何计算呢?
这就需要我们进一步学习:
类比
1、计算
(1) 1 1 3 2 5 2 3666
(2) 1
1
3
2
1
23 666
2、异分母分数加减法的法则是什么?
异分母分数相加(减),先通分,把异分母分数 化为同分母分数,然后再按同分母分数的加减法进 行加(减).
确定最简公分母的方法:
(1)系数:取分母中各系数的最小公倍数; (2)因式:凡各分母中出现的不同因式都要取到; (3)因式的指数:相同因式取指数最高的.
若分式的分子、分母是多项式,能分解因 式的要先分解因式,再确定最简公分母.
闯关练习一
3ax x 1 2
2
(1) 3x2 ,
的最简公分母是————
∴最简公分母是: 2x(x 1)(x 1)
x x x(x 1) x2(x 1) 2(x 1) 2(x 1) x(x 1) 2x(x 1)(x 1)
1 x2
x
1 2(x 1) x(x 1) 2(x 1)
2(x 1) 2x(x 1)(x 1)
闯关练习二
把下列各组分式通分:
(1)
y 2x
,
闯关练习三
计算下列各式
(1)
72 6x2 y 3xy2
7y 4x 6x2 y2
(2) x x x3 x2
x ( x 3 )( x 2 )
(3) x 2 x2 x2
4 x2
回顾
对于 2000 2000 , 1 1
a 3a
mn
如何计算呢?
2000 2000 6000 2000 4000
比较 对于 3 1 你对以下两种做法有何评判? a 4a
小 明
3 1 3 4a 1 a a 4a a 4a 4a a
12a 4a2
a 4a2
13a 4a2
13 4a
3 1 34 1
小
a 4a a 4 4a
亮
12 1 13
4a 4a 4a
发现
几个分式的公分母不止一个,为了计算 方便,通分时,一般选取最简公分母.
ax
(2)x ,y ab
ab 的最简公分母是————————
6abc (3) a b , b c 的最简公分母是———————— 3ab 2bc
(4) 3x , x x2 x2
(x-2)(x+2)
的最简公分母是————————
通分:
4a 5b2c
,
3c 10a2b
,
5b 2ac2
解:∵最简公分母是: 10a2b2c2
为较简单的方法计算下列式子:
1 1- x
1 1
x
1
2 x
2
4 1 x4
8 1 x8
结果为:16 1- x16
课堂小结 谈谈你的收获?
1、异分母分式的加减法法则:
a c ad bc ad bc b d bd bd ad
2、最简公分母的确定方法:
(1)系数:取分母中各系数的最小公倍数; (2)因式:凡各分母中出现的不同因式都要取到; (3)因式的指数:相同因式取指数最高的.
∴
4a 5b2c
4a 2a2c 5b2 2a2c
8a3c 10a2b2c2
3c 10a2b
3c bc2 10a2b bc
2
3bc3 10a2b2c2
5b 2ac2
5b 5ab2 2ac2 5ab2
25ab3 10a2b2c2
通分:
x, 2(x 1)
1 x2 x
解: ∵
1 1 x2 x x(x 1)
类比
3、你认为异分母的分式应该如何加减?
如:3 1 ? a 4a
【异分母的分式加减法法则】
异分母分式相加(减),先 通分 ,化为同 分母的分式,然后再按同分母分式的加减法进 行加(减).
异分母分式加减运算的方法思路
转化 异分母的分式 通分 同分母的分式
把几个异分母分式分别化为与它们相等的 同分母分式, 叫做分式的通分.这个相同的分母 叫做这几个分式的公分母.
作业
课本121页 第1. 2. 3.题 课本123页 第 1.2.题
结束寄语
功夫不负努 力的人! 再见
x 3y
2
,
1 4xy
;
(2)
x1 3,1 x3;(3)
a2
1
4
,
1 a2
;
(4)
x
5
y
,
3 (x y)2
.
解:
1
6y3 12xy2 ,
4x2 12xy2
,
3y 12xy2
;
2
(x
x 3)(
3 x
3)
,
x3
x 3x 3
;
3
a
1
2a
2
,
a2
a 2a 2
;
“通分”的 目的是什么?
4
5x y x y2
解 : 原式
2a
a2
(a 2)(a 2) (a 2)(a 2)
2a (a 2) (a 2)(a 2)
注意加括号!
2a a 2
(a 2)(a 2)
a2
1
(a 2)(a 2) a 2
仪一仪
异分母的分式相加减的步骤
1.找各分母的最简公分母; 2.通分:运用分式的基本性质把异分母的 化为同分母; 3.根据同分母的分式相加减的法则进行计 算.
在数学的天地里,重要的不是 我们知道什么,而是我们怎么知 道什么。
——毕达哥拉斯
分式的加减法(二)
引入
问题一
某人用电脑录入汉字文稿的效率相当于手 抄的3倍,设他手抄的速度为a字/时,那么他录 入2000字文稿比手抄少用多少时间?
2000 2000 a 3a
引入
问题二
某项工程,甲队去做需要m天完成,乙队 去做需要n天完成,甲乙两队合作一天可以完 成该工程的几分之几?
a 3a
3a 3a
3a
1 1 n m nm m n mn mn mn
拓展提高
已知
x
2
3
3
2
x
2x x2
18 9
为整数,且x为整数,
则所有符合条件的x的值为多少?
计算结果:2 x3
x 3可取1, 2
x的值为1,2,4,5
拓展提高
先计算 1 1 ,通过计算,请你用一种你认
1- x 1 x
,
3
x y2
.
例3
计算 2 3x2
3 4y
5 6xy
分析:分母不相同,根据法则,要先通
分,经观察,我们知道最简公分母为:12x2 y
解:原式
24y 12x2 y
33x2 12x2 y
52x 12x2 y
8 y 9x2 10x
12x2 y
2a 1 例(24) a2 4 a 2
分母是多项式的, 先对其分解因式。
引入
对于 2000 2000 , 1 1 a 3a m n
如何计算呢?
这就需要我们进一步学习:
类比
1、计算
(1) 1 1 3 2 5 2 3666
(2) 1
1
3
2
1
23 666
2、异分母分数加减法的法则是什么?
异分母分数相加(减),先通分,把异分母分数 化为同分母分数,然后再按同分母分数的加减法进 行加(减).
确定最简公分母的方法:
(1)系数:取分母中各系数的最小公倍数; (2)因式:凡各分母中出现的不同因式都要取到; (3)因式的指数:相同因式取指数最高的.
若分式的分子、分母是多项式,能分解因 式的要先分解因式,再确定最简公分母.
闯关练习一
3ax x 1 2
2
(1) 3x2 ,
的最简公分母是————
∴最简公分母是: 2x(x 1)(x 1)
x x x(x 1) x2(x 1) 2(x 1) 2(x 1) x(x 1) 2x(x 1)(x 1)
1 x2
x
1 2(x 1) x(x 1) 2(x 1)
2(x 1) 2x(x 1)(x 1)
闯关练习二
把下列各组分式通分:
(1)
y 2x
,
闯关练习三
计算下列各式
(1)
72 6x2 y 3xy2
7y 4x 6x2 y2
(2) x x x3 x2
x ( x 3 )( x 2 )
(3) x 2 x2 x2
4 x2
回顾
对于 2000 2000 , 1 1
a 3a
mn
如何计算呢?
2000 2000 6000 2000 4000
比较 对于 3 1 你对以下两种做法有何评判? a 4a
小 明
3 1 3 4a 1 a a 4a a 4a 4a a
12a 4a2
a 4a2
13a 4a2
13 4a
3 1 34 1
小
a 4a a 4 4a
亮
12 1 13
4a 4a 4a
发现
几个分式的公分母不止一个,为了计算 方便,通分时,一般选取最简公分母.
ax
(2)x ,y ab
ab 的最简公分母是————————
6abc (3) a b , b c 的最简公分母是———————— 3ab 2bc
(4) 3x , x x2 x2
(x-2)(x+2)
的最简公分母是————————
通分:
4a 5b2c
,
3c 10a2b
,
5b 2ac2
解:∵最简公分母是: 10a2b2c2
为较简单的方法计算下列式子:
1 1- x
1 1
x
1
2 x
2
4 1 x4
8 1 x8
结果为:16 1- x16
课堂小结 谈谈你的收获?
1、异分母分式的加减法法则:
a c ad bc ad bc b d bd bd ad
2、最简公分母的确定方法:
(1)系数:取分母中各系数的最小公倍数; (2)因式:凡各分母中出现的不同因式都要取到; (3)因式的指数:相同因式取指数最高的.
∴
4a 5b2c
4a 2a2c 5b2 2a2c
8a3c 10a2b2c2
3c 10a2b
3c bc2 10a2b bc
2
3bc3 10a2b2c2
5b 2ac2
5b 5ab2 2ac2 5ab2
25ab3 10a2b2c2
通分:
x, 2(x 1)
1 x2 x
解: ∵
1 1 x2 x x(x 1)
类比
3、你认为异分母的分式应该如何加减?
如:3 1 ? a 4a
【异分母的分式加减法法则】
异分母分式相加(减),先 通分 ,化为同 分母的分式,然后再按同分母分式的加减法进 行加(减).
异分母分式加减运算的方法思路
转化 异分母的分式 通分 同分母的分式
把几个异分母分式分别化为与它们相等的 同分母分式, 叫做分式的通分.这个相同的分母 叫做这几个分式的公分母.
作业
课本121页 第1. 2. 3.题 课本123页 第 1.2.题
结束寄语
功夫不负努 力的人! 再见
x 3y
2
,
1 4xy
;
(2)
x1 3,1 x3;(3)
a2
1
4
,
1 a2
;
(4)
x
5
y
,
3 (x y)2
.
解:
1
6y3 12xy2 ,
4x2 12xy2
,
3y 12xy2
;
2
(x
x 3)(
3 x
3)
,
x3
x 3x 3
;
3
a
1
2a
2
,
a2
a 2a 2
;
“通分”的 目的是什么?
4
5x y x y2
解 : 原式
2a
a2
(a 2)(a 2) (a 2)(a 2)
2a (a 2) (a 2)(a 2)
注意加括号!
2a a 2
(a 2)(a 2)
a2
1
(a 2)(a 2) a 2
仪一仪
异分母的分式相加减的步骤
1.找各分母的最简公分母; 2.通分:运用分式的基本性质把异分母的 化为同分母; 3.根据同分母的分式相加减的法则进行计 算.
在数学的天地里,重要的不是 我们知道什么,而是我们怎么知 道什么。
——毕达哥拉斯
分式的加减法(二)
引入
问题一
某人用电脑录入汉字文稿的效率相当于手 抄的3倍,设他手抄的速度为a字/时,那么他录 入2000字文稿比手抄少用多少时间?
2000 2000 a 3a
引入
问题二
某项工程,甲队去做需要m天完成,乙队 去做需要n天完成,甲乙两队合作一天可以完 成该工程的几分之几?
a 3a
3a 3a
3a
1 1 n m nm m n mn mn mn
拓展提高
已知
x
2
3
3
2
x
2x x2
18 9
为整数,且x为整数,
则所有符合条件的x的值为多少?
计算结果:2 x3
x 3可取1, 2
x的值为1,2,4,5
拓展提高
先计算 1 1 ,通过计算,请你用一种你认
1- x 1 x
,
3
x y2
.
例3
计算 2 3x2
3 4y
5 6xy
分析:分母不相同,根据法则,要先通
分,经观察,我们知道最简公分母为:12x2 y
解:原式
24y 12x2 y
33x2 12x2 y
52x 12x2 y
8 y 9x2 10x
12x2 y
2a 1 例(24) a2 4 a 2
分母是多项式的, 先对其分解因式。