福建省厦门市2018届高中毕业班第二次质量检查数学(理)试题(解析版)

合集下载

福建省厦门市2018届高中毕业班第二次质量检查文数试卷

福建省厦门市2018届高中毕业班第二次质量检查文数试卷

2019年03月01日xx 学校高中数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知集合{}1,3,9,27A =,3{|log ,}B y y x x A ==?,则A B ⋂= ( )A. {}1,3B. {}1,3,9C. {}3,9,27D. {}1,3,9,272.若复数满足(1)12i z i +?+,则z 等于( )A.12B. 2C. 32D. 2 3.已知1a =,2b =,且()a a b ⊥-,则向量a 与b 的夹角为( )A.4π B. 3π C. 23π D. 34π 4.已知角α的顶点与原点重合,始边与 x 轴的正半轴重合,终边在直线2y x =-上,则cos 2α= ( )A. 45-B. 35-C. 35D. 45 5.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,则 C 的渐近线方程为( )A. 3y x =±B. 3y x =±C. 2y x =±D. 5y x =±6.已知 m ,n 是空间中两条不同的直线, α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A.若m α⊂,则m β⊥B.若m α⊂,n β⊂,则m n ⊥C.若m α⊄,m β⊥,则//m αD.若m αβ⋂=,n m ⊥,则n α⊥7.已知函数1()1x f x x +=-的图像在点(2,(2))f 处的切线与直线10ax y ++=平行,则实数a = ( )A. 2B.12C. 12- D. 2- 8.下列说法正确的是( )A.命题p ,q 都是假命题,则命题“p q ⌝∧”为真命题B. R ϕ∀∈,函数()sin(2)f x x ϕ=+都不是奇函数C.函数()sin 23f x x π⎛⎫=-⎪⎝⎭的图像关于512x π=对称 D.将函数sin 2y x =的图像上所有点的横坐标伸长到原来的2倍后得到sin 4y x =9.执行下面的程序框图,如果输入的48m =,36n =,则输出的k , m 的值分别为( )。

厦门市2018届高中毕业班第二次质量检查理科数学参考答案_

厦门市2018届高中毕业班第二次质量检查理科数学参考答案_

3 3 D(0, 2,0) , M (0, , ) , B (1, 1,0) , 2 2 3 3 3 1 (8 分) C (2,0,0) , N ( , ,0) MN ( , 1, ) , 2 2 2 2 n PB 0 x 2 y 3z 0 设 平 面 PBC 的 法 向 量 为 n ( x, y , z ) , 取 x 1 , x y 0 n BC 0 (10 分) y 1, z 3 ,即 n (1, 1, 3) ,
18.本题考查立体几何中的线面关系,空间角,空间向量在立体几何中的应用等基础知识, 考查运算求解能力、空间想象能力、等价转化能力,考查数形结合思想、化归与转化、或然 与必然等数学思想.满分 12 分. (1) 【解析】取 AD 的中点 O ,连接 MO , NO , M 为 PD 的中点
OM // PA OM 平面 PAB , PA 平面 PAB OM //平面 PAB (2 分) 同理 பைடு நூலகம்N //平面 PAB , (3 分) 又 OM ON O , 平面 MNO //平面 PAB ,(4 分) MN 平面 OMN MN 平面 PAB (5 分) (2) (法一) AC 平面 PAD , AC AD , 以 A 为坐标 原点,以 AC , AD 分别为 x, y 轴,过 A 垂直于平面 ACD 的 直线为 z 轴,如图建立空间直角坐标系, (6 分) 在 Rt ACD 中, AC 2 , CD 2 2 AD 2 (7 分) P (0,1, 3) ,
2
即彼此横坐标相差半个周期,纵坐标相差 2 ,且 PMN 为等腰三角形. (1)由于 PMN 为直角三角形,且斜边上高为 2 ,则斜边长为 2 2 T 解得:

最新-福建省厦门市2018学年高二下学期质量检测(数学理) 精品

最新-福建省厦门市2018学年高二下学期质量检测(数学理) 精品

厦门市2018~2018学年(下)高二质量检测数学(理科)参考答案A 卷(共100分)一、选择题BDCAB CAADB 二、填空题11.i 12.30 13.(1)(3) 14.12三、解答题 15.(本小题满分10分)解:(Ⅰ)依题意得32:8:3n n C C =, ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅3分即2833n -=,得10n =。

┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅5分(Ⅱ)通项公式为10511010((2)rrr r r rr T C C x --+=⋅=-,┅┅┅┅┅┅┅┅┅7分令53r -=,解得2r =, ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅9分∴所求展开式中3x 项的系数为2210(2)180C -= ┅┅┅┅┅┅┅┅┅┅10分16.(本小题满分12分) 解:(Ⅰ)22⨯的列联表为┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅5分(Ⅱ)假设0H :休闲方式与性别无关。

┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅6分计算2K 的观测值为2120(40302030)24 3.428705060607k ⨯-⨯==≈⨯⨯⨯, ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅9分而2.706 3.428 3.841<<,因为2( 2.706)0.10P K >≈,2( 3.841)0.05P K >≈, ┅┅┅┅┅┅┅┅┅┅┅10分 所以,在犯错误的概率不超过0.10的前提下,认为0H 不成立,即在犯错误的概率不超过0.10的前提下,认为休闲方式与性别有关。

┅┅┅┅┅┅┅┅┅┅┅┅12分(或:所以我们有90%以上的把握,认为0H 不成立,即我们有90%以上的把握,认为休闲方式与性别有关。

) 17.(本小题满分12分)解:(Ⅰ)32()44f x x ax x a =--+,∴2()324f x x ax '=--。

┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅4分 (Ⅱ)由(1)0f '-=得3240a +-=,∴12a =。

福建省厦门市2018届高中毕业班第二次质量检查数学(文)试题(含答案)

福建省厦门市2018届高中毕业班第二次质量检查数学(文)试题(含答案)

福建省厦门市2018届高中毕业班第二次质量检查试题数学(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,0,1,2,2,A B x x n n Z =-==∈,则A B ⋂=( ) A .{}2 B .{}0,2 C .{}1,0,2- D .∅2.复数z 满足()234i z i +=-,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知()33f x x x =+,0.3222,0.3,log 0.3a b c ===,则( ) A .()()()f a f b f c << B .()()()f b f c f a << C .()()()f c f b f a << D .()()()f b f a f c <<4.如图所示的风车图案中,黑色部分和白色部分分别由全等的等腰直角三角形构成.在图案内随机取一点,则此点取自黑色部分的概率是( )A .14 B .13C .23D .34 5.等差数列{}n a 的公差为1,125,,a a a 成等比数列,则{}n a 的前10项和为( ) A .50 B .50- C .45 D .45-6.已知拋物线2:4C y x =的焦点为F ,过F 的直线与曲线C 交于,A B 两点,6AB =,则AB 中点到y 轴的距离是( ) A .1 B .2 C .3 D .47.如图,在正方体1111ABCD A B C D -中,,,M N P 分别是1111,,C D BC A D 的中点,则下列命题正确的是( )A .//MN APB .1//MN BDC .//MN 平面11BBD D D .//MN 平面BDP 8.如图是为了计算11111234561920S =++++⨯⨯⨯⨯的值,则在判断框中应填入( )A .19?n >B .19?n ≥C .19?n <D .19?n ≤ 9.函数()()()sin 0f x x ωϕω=+>的周期为π,()12f π=,()f x 在0,3π⎛⎫⎪⎝⎭上单调递减,则ϕ的一个可能值为( ) A .6π B .3π C .23π D .56π10.设函数()()21,1,ln ,1,x a x f x x x ⎧--≤⎪=⎨>⎪⎩若()()1f x f ≥恒成立,则实数a 的取值范围为( )A .[]1,2B .[]0,2C .[)1,+∞D .[)2,+∞ 11.已知某正三棱锥的侧棱长大于底边长,其外接球体积为1256π,三视图如图所示,则其侧视图的面积为( )A .32B .2C .4D .6 12.设函数()x f x x e -=-,直线y mx n =+是曲线()y f x =的切线,则m n +的最小值是( )A .1e- B .1 C .11e - D .311e +第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量a 与b 的夹角为90︒,1,2a b ==,则a b -= . 14.已知,x y 满足约束条件1,3,1,x y x y x -≤⎧⎪+≤⎨⎪≥⎩则2z x y =+的最小值为 .15.若双曲线22220,1()0:x y C a b a b -=>>的渐近线与圆()2221x y -+=无交点,则C 的离心率的取值范围为 .16.已知数列{}n a 满足121,3a a ==,()1,3n n a a n n N n --=∈≥,{}21n a -是递增数列,{}2n a 是递减数列,则2018a = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,()()cos 2cos b A a c B π=--. (1)求B ;(2)若1,sin sin 2a b A C >=,ABC ∆的周长为33+,求ABC ∆的面积. 18.在如图所示的四棱锥P ABCD -中,底面ABCD 为菱形,60DAB ∠=︒,PAB ∆为正三角形.(1)证明:AB PD ⊥; (2)若62PD AB =,四棱锥的体积为16,求PC 的长. 19.为提高玉米产量,某种植基地对单位面积播种数x 与每棵作物的产量y 之间的关系进行研究,收集了 11块实验田的数据,得到下表:技术人员选择模型21y a bx =+作为y 与x 的回归方程类型,令21,i i ii u x y υ==,相关统计量的值如下表:由表中数据得到回归方程后进行残差分析,残差图如图所示:(1)根据残差图发现一个可疑数据,请写出可疑数据的编号(给出判断即可,不必说明理由);(2)剔除可疑数据后,由最小二乘法得到υ关于u 的线性回归方程u υβα=+中的0.03β=,求y 关于x 的回归方程; (3)利用(2)得出的结果,计算当单位面积播种数x 为何值时,单位面积的总产量w xy =的预报值最大?(计算结果精确到0.01)附:对于一组数据()()()1122,,,,,,n n u u u υυυ,其回归直线u υαβ=+的斜率和截距的最小二乘法估计分别为121ni ii n ii u nu unuυυβ==-⋅=-∑∑,u αυβ=-,30 5.48≈.20.过椭圆2222:1()0x E b b y a a +>>=的右焦点F 作两条互相垂直的直线12,l l ,直线1l 与E 交于,A B 两点,直线2l 与E 交于,C D 两点.当直线1l 的斜率为0时,42,22AB CD ==. (1)求椭圆E 的方程;(2)求四边形ABCD 面积的取值范围.21.已知函数()2ln 1f x x ax x =++-,()()11,x g x x e a R -=-∈. (1)讨论函数()f x 的单调性;(2)当1x ≥时,()()2a f x ax g x ⎡⎤-≤⎣⎦恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线221:14x C y +=,曲线222cos :2sin x C y ϕϕ=+⎧⎨=⎩(ϕ为参数).以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系. (1)求12,C C 的极坐标方程;(2)射线l 的极坐标方程为()0θαρ=≥,若l 分别与12,C C 交于异于极点的,A B 两点,求OB OA的最大值.23.选修4-5:不等式选讲已知函数()2f x x x a =--+,其中0a >. (1)求函数()f x 的值域;(2)对于满足221b c bc ++=的任意实数,b c ,关于x 的不等式()()3f x b c ≥+恒有解,求a 的取值范围.试卷答案一、选择题1-5: BDCBA 6-10: BCADA 11、12:DC二、填空题13. 5 14. 2 15.23,3⎛⎫+∞ ⎪ ⎪⎝⎭16.1005- 三、解答题17. 解:(1)因为()()cos 2cos b A a c B π=--, 由正弦定理得()()sin cos sin 2sin cos B A A C B =-- 所以()sin 2sin cos A B C B +=所以1cos 2B =,且()0,B π∈所以3B π=.(2)因为23A C π+=,所以2311sin sin sin cos sin 3222A A A A A π⎛⎫⎛⎫-=⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以23sin cos cos A A A ⋅=,()cos 3sin cos 0A A A -=,cos 0A =或3tan 3A =解得:6A π=或2π 因为a b >,所以2A π=所以,6C π=所以3,22a cb a ==因为33a b c ++=+,所以2,1,3a c b === 所以13sin 22ABC S bc A ∆==.18.(1)证明:取AB 中点为O ,连接,,PO DO BD ∵底面ABCD 为菱形,60DAB ∠=︒, ∴ABD ∆为正三角形,DA DB = ∴DO AB ⊥又∵PAB ∆为正三角形, ∴PO AB ⊥又∵,DO PO O PO ⋂=⊂平面POD ,DO ⊂平面POD , ∴AB ⊥平面POD , ∵PD ⊂平面POD , ∴AB PD ⊥.(2)法一:设2AB x =,则6PD x =,在正三角形PAB ∆中,3PO x =,同理3DO x =, ∴222PO OD PD +=,∴PO OD ⊥,又∵,PO AB DO AB O ⊥⋂=,DO ⊂平面ABCD ,AB ⊂平面ABCD , ∴PO ⊥平面ABCD ,∴21233163P ABCD V x x -=⨯⨯=,∴2x =,∵//,AB CD AB PD ⊥ ∴CD PD ⊥ ∴()2222264210PC PD CD=+=+=.法二:设2AB x =,则6PD x =,在正三角形PAB ∆中,3PO x =,同理3DO x =, ∴222PO OD PD +=, ∴PO OD ⊥,又∵,PO AB DO AB O ⊥⋂=,DO ⊂平面ABCD ,AB ⊂平面ABCD , ∴PO ⊥平面ABCD ,∴21233163P ABCD V x x -=⨯⨯=,∴2x =,连接OC ,∵在OBC ∆中,2,4,120OB BC OBC ==∠=︒,∴由余弦定理得222cos12027OC OB BC OB BC =+-⋅⋅︒=, ∴在RT POC ∆中,()()22222327210PC PO OC =+=+=.19.解:(1)可疑数据为第10组(2)剔除数据()10,0.25后,在剩余的10组数据中11101600100501010ii uu u =--===∑,1110144441010i i v v v =--===∑所以0.034500.03 2.5v u α=-⋅=-⨯= 所以v 关于u 的线性回归方程为0.03 2.5v u =+ 则y 关于x 的回归方程为212.50.03y x=+ (3)根据(2)的结果并结合条件,单位面积的总产量w 的预报值22.50.03xw x =+12.50.03x x=+1301.8332 2.50.03≤=≈⨯ 当且仅当2.50.03x x=时,等号成立,此时 2.55309.130.033x ==≈, 即当9.13x =时,单位面积的总产量w 的预报值最大,最大值是1.83. 20.解:(1)由已知得:222ABa ==将x c =代入22221x y a b +=得2b y a =±,所以22222222b b CD a ===,所以24b =所以椭圆22:184x y E +=(2)①当直线12,l l —条的斜率为0,另一条的斜率不存在时,114222822ACBD S AB CD =⋅=⨯⨯=. ②当两条直线的斜率均存在时,设直线AB 的方程为2x my =+, 则直线CD 的方程为12x y m=-+.设 ()()1122,,,A x y B x y 由222280x my x y =+⎧⎨+-=⎩,得()222440m y my ++-= ()()22216162321m m m ∆=++=+,2122242122m y y m m ∆+-==++ ()2212242112m AB m y y m +=+-=+(或:12122244,22m y y y y m m --+==++,()()()22212122421142m AB m y y y y m +⎡⎤=++-=⎣⎦+)用1m -取代m 得()222214214211212m m CD m m ⎛⎫+ ⎪+⎝⎭==++ ∴()()22224214*********ACBDm m S AB CD m m ++=⋅=⨯⨯++ ()()42422424221252168252252m m m m m m m m m ++++-=⨯=⨯++++2288225m m=-++又22224m m +≥,当且仅当1m =±取等号 所以[)22224,m m +∈+∞ 所以228648,82925ACBD S m m⎡⎫=-∈⎪⎢⎣⎭++ 综上:四边形ACBD 面积的取值范围是64,89⎡⎤⎢⎥⎣⎦.21.解:(1)依题意,()()2121210ax x f x ax x x x++'=++=>①当0a ≥时,()1210f x ax x '=++>,所以()f x 在()0,+∞上单调递增;②当0a <时,180a ∆=->,12118118,44a ax x a a----+-==,且120x x >>, 令()()()1220a x x x x f x x--'=>得21x x x <<,令()0f x '<得20x x <<或1x x >,此时()f x 在()21,x x 上单调递增;在()()210,,,x x +∞上单调递减 综上可得,①0a ≥时,()f x 在()0,+∞上单调递增;②当0a <时,()f x 在118118,44a a a a ⎛⎫-+---- ⎪ ⎪⎝⎭上单调递增; 在1181180,,,44a a a a ⎛⎫⎛⎫-+----+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭上单调递减 (2)法一:原不等式可化为()()20a f x ax g x ⎡⎤--≤⎣⎦,即()()1ln 110x a x x x e -+---≤ 记()()()1ln 11,1x h x a x x x e x -=+---≥,只需()0h x ≤即可. ①当0a ≤时,由1x ≥可知ln 10x x +-≥,()110x x e --≥, 所以()0h x ≤,命题成立. ②当102a <≤时,显然()111x h x a xe x -⎛⎫'=+- ⎪⎝⎭在[)1,+∞上单调递减, 所以()()1210h x h a ''≤=-≤所以()h x 在[)1,+∞上单调递减,从而()()10h x h ≤=,命题成立.③当12a >时, 显然()111x h x a xe x -⎛⎫'=+- ⎪⎝⎭在[)1,+∞上单调递减,因为()1210h a '=->,()2212221112222420222a h a a ae a a a -'=+-≤+-=-< 所以在()1,2a 内,存在唯一的()01,2x a ,使得()00h x '=,且当01x x <<时,()0h x '> 即当01x x <<时,()()10h x h >=,不符合题目要求,舍去. 综上所述,实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.法二:原不等式可化为()()20a f x ax g x ⎡⎤--≤⎣⎦,即()()1ln 110x a x x x e -+---≤记()()()1ln 11,1x h x a x x x e x -=+---≥,只需()0h x ≤即可. 可得()21111111x x x e h x a xe a x x x --⎛⎫⎛⎫⎛⎫'=+-=+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,令()21,11x x e m x a x x -=-≥+,则()()()2122201x x x x e m x x -++'=-<+ 所以()m x 在[)1,+∞上单调递减,所以()()112m x m a ≤=-. 12a ≤时,()10m ≤,从而()0m x ≤,所以()()110h x m x x ⎛⎫'=+≤ ⎪⎝⎭, 所以()h x 在[)1,+∞上单调递减,所以()()10h x h ≤=,原不等式成立 ②当12a >时,()10m >, ()()22121244m 20212121a a a a e a a a a a a a --=-<-=<+++, 所以存在唯一()01,2x a ∈,使得()00m x =,且当01x x <<时,()0m x >,此时()()110h x m x x ⎛⎫'=+> ⎪⎝⎭,()h x 在()01,x 上单调递增, 从而有()()10h x h >=,不符合题目要求,舍去.综上所述,实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. 22.解:(1)221:44C x y +=,∵cos ,sin x y ρθρθ==, 故1C 的极坐标方程:()223sin 14ρθ+=.2C 的直角坐标方程:()2224x y -+=, ∵cos ,sin x y ρθρθ==,故2C 的极坐标方程:4cos ρθ=.(2)直线l 分别与曲线12,C C 联立,得到()223sin 14ρθθα⎧+=⎪⎨=⎪⎩,则2243sin 1OA α=+, 4cos ρθθα=⎧⎨=⎩,则2216cos OB α=, ∴()22224cos 3sin 1OBOA αα=+()()2244sin 3sin 1αα=-+令2sin t α=,则()()22244311284OBt t t t OA =-+=-++ 所以13t =,即3sin 3α=±时,OB OA 有最大值433. 23.解:(1)∵0a >,∴2a -<∴()2,22,22,2a x a f x x a a x a a +≤-⎧⎪=--+-<<⎨⎪--≥⎩故()[]2,2f x a a ∈--+.(2)∵()221024b c bc b c +⎛⎫-=-≥ ⎪⎝⎭,∴22b c bc +⎛⎫≤ ⎪⎝⎭, ∵()21b c bc +=+,∴()2212b c b c +⎛⎫+≤+ ⎪⎝⎭,∴223333b c -≤+≤. 当且仅当33b c ==时,()max 233b c +=,∴()max 323b c +=⎡⎤⎣⎦ 关于x 的不等式()()3f x b c +恒有解()()max max 3f x b c ⇔≥+⎡⎤⎡⎤⎣⎦⎣⎦ 即223a +≥,故232a ≥-,又0a >,所以232a ≥-.。

2018届福建省Xx市普通高中毕业班第二次质量检查试卷(理)含答案

2018届福建省Xx市普通高中毕业班第二次质量检查试卷(理)含答案

2018届普通高中毕业班第二次质量检查试卷理 科 数 学本试卷分第I 卷和第II 卷两部分.第I 卷1至2页,第II 卷3至5页,满分150分. 考生注意:1.答题前,考生务必将自己的姓名、准考号填写在答题卡上.考生要认真核对答题卡上粘贴的“姓名、准考证号、考试科目”与考生本人准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷和答题卡一并交回 .第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数i1iz =+的共轭复数z 在复平面内对应的点位于 A .第一象限 B .第二象限 345C .第三象限 D .第四象限2.已知集合}{1A x x =≥-,1,2x B y y x A ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎭⎩,则A B =IA .}{12x x -≤≤B .}{2x x ≥C .}{02x x <≤ D .∅3.某几何体的三视图如图所示,若该几何体的体积为2,则图中x 的值为 A .1 BCD4.设,x y 满足约束条件12324x y x ≤-≤⎧⎨≤≤⎩,,则目标函数2z x y =-的最大值为A .72 B .92 C .132D .152 5.将函数1sin()24y x π=+图象上各点的横坐标缩小为原来的12(纵坐标不变),得到函数俯视图正视图()y f x =的图象,则函数()4y f x 3π=+的一个单调递增区间是 A .(,0)2π-B .(0,)2πC .(,)2ππD .3(,2)2ππ6.在如图所示的正方形中随机投掷10000个点,则落入由曲线C(曲线C 为正态分布(2,1)N 的密度曲线)与直线0,x =1x = 及0y =围成的封闭区域内点的个数的估计值为(附:若X2(,)N μσ,则()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=,(33)0.9974P X μσμσ-<<+=)A .2718B .1359C .430D .2157. 已知F 是抛物线2:2(0)C y px p =>的焦点,P 是C 上的一点,Q 是C 的准线上一点.若ΔPQF 是边长为2的等边三角形,则该抛物线的方程为A .28y x =B .26y x =C .24y x =D .22y x = 8.已知锐角,αβ满足sin 2cos αα=,1cos()7αβ+=,则cos β的值为 A .1314 B .1114CD9.已知O 是坐标原点,12,F F 分别是双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,过左焦点1F 作斜率为12的直线,与其中一条渐近线相交于点A .若2||||OA OF =,则双曲线C的离心率e 等于 A .54B .53CD .210.世界著名的百鸡问题是由南北朝时期数学家张丘建撰写的《张丘建算经》中的一个问题:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁母雏各几何?张丘建是数学史上解决不定方程解的第一人.用现代方程思想,可设,,x y z 分别为鸡翁、鸡母、鸡雏的数量,则不定方程为53100,3100.z x y x y z ⎧++=⎪⎨⎪++=⎩如图是体现张丘建求解该问题思想的框图,则方框中①,②应填入的是 A .3?t <,257y t =- B .3?t ≤,257y t =-C .5?t <,255y t =-D .5?t ≤,255y t =- 11.底面边长为6的正三棱锥的内切球半径为1,则其外接球的表面积为A .49πB .36πC .25πD .16π12.设函数()ln()f x x k =+,()e 1x g x =-.若12()()f x g x =,且12x x -有极小值1-,则实数k的值是 A .1- B .2-C .0D .22018届普通高中毕业班第二次质量检查试卷理 科 数 学第II 卷注意事项:用0.5毫米黑色签字笔在答题卡上书写作答. 在试题卷上作答,答案无效. 本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.边长为2的正三角形ABC 中,12AD DC =,则BD AC ⋅=___________. 14.()22344(1)x x x -++的展开式中,3x 的系数是___________.(用数字填写答案)15.B 村庄在A 村庄正西10km ,C 村庄在B 村庄正北3km .现在要修一条从A 村庄到C 村庄的公路,沿从A 村庄到B 村庄的方向线路报价是800万元/km ,沿其他线路报价是1000万元/km ,那么修建公路最省的费用是___________万元. 16.在ABC ∆中,D 为边BC 上的点,且满足2DAC π∠=,1sin 3BAD ∠=.若13ABD ADC S S ∆∆=, 则C ∠的余弦值为___________.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(12分)已知数列{}n a 的前n 项和为n S ,12a =,132n n S a +=-. (1)求数列{}n a 的通项公式; (2)设2log n n b a =,若4(1)n n n c b b =+,求证:123n c c c +++<.18.(12分)为响应绿色出行,某市在推出“共享单车”后,又推出“新能源分时租赁汽车”.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按 1元/公里计费;②行驶时间不超过40分时,按0.12元/分计费;超过40分时,超出部分按0.20元/分计费.已知张先生家离上班地点15公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间t (分)是一个随机变量.现统计了50次路上开车花费时间,在各时间段内的频数分布情况如下表所示:将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为(]20,60分.(1)写出张先生一次租车费用y (元)与用车时间t (分)的函数关系式;(2)若张先生一次开车时间不超过40分为“路段畅通”,设ξ表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求ξ的分布列和期望;(3)若公司每月给1000元的车补,请估计张先生每月(按22天计算)的车补是否足够上、下班租用新能源分时租赁汽车?并说明理由.(同一时段,用该区间的中点值作代表)19.(12分)如图,四棱锥P ABCD -中,底面ABCD 为梯形,//AB DC ,112BC DC AB ===. O 是AB 的中点,PO ⊥底面ABCD .O 在平面PAD上的正投影为点H ,延长PH 交AD 于点E . (1)求证: E 为AD 中点;(2)若90ABC ∠=,PA =BC 上确定一点G ,使得HG //平面PAB ,并求出OG 与面PCD 所成角的正弦值.20.(12分)已知椭圆2222:1(0)x y M a b a b+=>>的左、右顶点分别为,A B ,上、下顶点分别为,C D .若四边形ADBC 的面积为4,且恰与圆224:5O x y +=相切.(1)求椭圆M 的方程;(2) 已知直线l 与圆O 相切,交椭圆M 于点,P Q ,且点,A B 在直线l 的两侧.设APQ∆的面积为1S ,BPQ ∆的面积为2S ,求12S S -的取值范围.21.(12分)已知函数221()()ln ()2f x x x x ax a =++∈R ,曲线()y f x =在1x =处的切线与直线210x y +-=垂直.(1)求a 的值,并求()f x 的单调区间;(2)若λ是整数,当0x >时,总有2211()(3)ln 24f x x x x x λλ-+->+,求λ的最大值. 请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.做答时请写清题号.22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2(4cos )4r ρρθ-=-,曲线2C的参数方程为4cos ,sin x y θθ⎧=+⎪⎨=⎪⎩(θ为参数).(1)求曲线1C 的直角坐标方程和曲线2C 的极坐标方程;(2)当r 变化时,设1,C 2C 的交点M 的轨迹为3C .若过原点O ,倾斜角为3π的直线l 与OHEDCBAP曲线3C 交于点,A B ,求OA OB -的值.23.[选修4—5:不等式选讲](10分)已知实数x , y 满足1x y +=.(1)解关于x 的不等式225x x y -++≤;(2)若,0x y >,证明:2211119x y ⎛⎫⎛⎫--≥ ⎪ ⎪ ⎪⎝⎭⎝⎭参考答案及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解法不同,可根据试题的主要考查内容比照评分标准指定相应的评分细则.二、对计算题,当考生的解答在某一部分解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.一、选择题:本题考查基础知识和基本运算,每小题5分,满分60分. 1.D 2.C 3.A 4.D 5.C 6.B 7.D 8.C 9.B 10.B 11.A 12.D二、填空题:本题考查基础知识和基本运算,每小题5分,满分20分.13.23- 14.8 15.9800 16三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤. 17.本小题主要考查数列及数列求和等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,满分12分. 解:(1)由题设132n n S a +=-, 当2n ≥时,132n n S a -=-,两式相减得13n n n a a a +=-,即14n n a a += . …………………2分又1a =2,1232a a =-,可得28a =, ∴214a a =. ………………………………3分 ∴数列{}n a 构成首项为2,公比为4的等比数列,∴121242n n n a --=⨯=. ………………………………5分 (没有验证214a a =扣一分)(2)∵212log 221n n b n -==-,………………………………6分442(1)(21)2(21)n n n c b b n n n n===+-⋅-⋅(*n ∈N ), ………………7分 ∴2n ≥时,22111(21)(22)(1)1n c n n n n n n n n=<==--⋅-⋅-⋅- , ………9分∴1231111112()()()12231n c c c c n n ++++≤+-+-++-- …………10分13n=- ………………………………11分3<. ………………………………12分解法二:(1)同解法一;(2)∵212log 221n n b n -==-,………………………………6分442(1)(21)2(21)n n n c b b n n n n===+-⋅-⋅(*n ∈N ), ………………7分∵2n ≥时,211n n -≥+,∴22112()(21)(1)1n c n n n n n n =≤=--⋅+⋅+ , ………9分 ∴123111122()()23+1n c c c c n n ⎡⎤++++≤+-++-⎢⎥⎣⎦…………10分 112221n ⎛⎫=+- ⎪+⎝⎭ (11)分3<. ………………………………12分解法三:(1)同解法一;(2)∵212log 221n n b n -==-,………………………………6分442(1)(21)2(21)n n n c b b n n n n===+-⋅-⋅(*n ∈N ), ………………7分∴2n ≥时,22112()(21)(1)1n c n n n n n n=≤=--⋅-⋅- , ………8分∴1231234511112()()561n c c c c c c c c c n n ⎡⎤++++≤+++++-++-⎢⎥-⎣⎦…………10分 1212112231514455n ⎛⎫=+++++- ⎪⎝⎭…………………………11分619223630n<+-<. ………………………………12分18.本小题主要考查频率分布表、平均数、随机变量的分布列及数学期望等基础知识,考查运算求解能力、数据处理能力、应用意识,考查分类与整合思想、必然与或然思想、化归与转化思想.满分12分. 解法一:(1)当2040t <≤时,0.1215y t =+ ………………………………1分 当4060t <≤时,.y t t=⨯+-+. ………………………………2分 得:0.1215,2040,0.211.8,4060t t y t t +<≤⎧=⎨+<≤⎩………………………………3分(2)张先生租用一次新能源分时租赁汽车,为“路段畅通”的概率2182505P +==……4分 ξ可取0,1,2,3.03032327(0)55125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,2132354(1)55125P C ξ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ 2232336(2)55125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,3033238(3)55125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ξ的分布列为……………7分27543680123 1.2125125125125E ξ=⨯+⨯+⨯+⨯= ……………………………8分 或依题意2(3,)5B ξ,23 1.25E ξ=⨯= ……………………………8分(3)张先生租用一次新能源分时租赁汽车上下班,平均用车时间21820102535455542.650505050t =⨯+⨯+⨯+⨯=(分钟),……………10分 每次上下班租车的费用约为0.242.611.820.32⨯+=(元). ……………11分 一个月上下班租车费用约为20.32222894.081000⨯⨯=<,估计张先生每月的车补够上下班租用新能源分时租赁汽车用. ………………12分解法二:(1)(2)同解法一; (3)张先生租用一次新能源分时租赁汽车上下班,平均租车价格为2182010(150.1225)(150.1235)(11.80.245)(11.80.255)20.51250505050+⨯⨯++⨯⨯++⨯⨯++⨯⨯=(元)……………10分一个月上下班租车费用约为20.512222902.5281000⨯⨯=<……………11分估计张先生每月的车补够上下班租用新能源分时租赁汽车用. ………………12分19.本小题主要考查空间直线与直线、直线与平面的位置关系及直线与平面所成的角等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.满分12分. 解法一:(1)连结OE . 2,AB O =是AB 的中点,1CD =,OB CD ∴=,//AB CD ,∴ 四边形BCDO 是平行四边形, 1OD ∴=.………………1分PO ⊥平面ABCD ,AD ⊂平面ABCD , PO AD ∴⊥,………………2分 O 在平面PAD 的正投影为H , OH ∴⊥平面PAD ,OH AD ∴⊥.………………3分又OH PO O =,AD ∴⊥平面POE ,AD OE ∴⊥,………………4分 又1AO OD ==,E ∴是AD 的中点. ………………5分 (2)90ABC ∠=,//OD BC ,OD AB ∴⊥,OP ⊥平面ABCD ,∴以O 为原点,,,OD OB OP 分别为,,x y z 轴的正方向建立空间直角坐标系O xyz -,………………6分(0,0,0)O ∴,(0,0,1)P ,(1,1,0)C ,(1,0,0)D ,2PA =,OP AB ⊥,1PO ∴OA OD OP ∴==,∴H ∴是ADP ∆的的外心,AD PD AP ==H ∴是ADP ∆的的重心,OH OP PH ∴=+23OP PE =+111(,,)333=-.………………8分设BG BC λ=,(,1,0)OG BC OB λλ∴=+=,141(,,)333GH OH OG λ∴=-=--,又(1,0,0)OD =是平面PAB 的一个法向量,且//HG 平面PAB , 0GH OD ∴⋅=,103λ∴-=,解得13λ=,1(,1,0)3OG ∴=,………………9分OHECBAP设(,,)n x y z =是平面PCD 的法向量,(1,0,1)PD =-,(0,1,0)CD =-,0,0,n PD n CD ⎧⋅=⎪∴⎨⋅=⎪⎩ 即0,0,x z y -=⎧⎨=⎩ 取1,x =则1,0z y ==,(1,0,1)n ∴=.………………11分cos ,||||n PGn PG n PG ⋅∴<>=⋅13==, ∴直线OG 与平面PCD 所成角的正弦值为………………12分 解法二:(1)同解法一;(2)过H 作HM EO ⊥,交EO 于点M ,过点M 作//GM AB ,分别交,OD BC 于,Q G ,则//HG 平面PAB ,………………6分 证明如下://,MG AB AB ⊂平面,PAB MG ⊄平面PAB ,//MG ∴平面PABPO ⊥平面ABCD ,EO ⊂平面ABCD ,PO EO ∴⊥, ∴在平面POD 中,//PO MH ,PO ⊂平面,PAB HM ⊄平面PAB ,//MH ∴平面PABMG MH M =,∴平面//MHG 平面PABGH ⊂平面MHG ,//HG ∴平面PAB .………………7分,OM PH OM ME HE =∴=, 1,3BG OQ ∴===………………8分 在OD 上取一点N ,使23ON =, CN OG ∴==,………………9分 作NT PD ⊥于T ,连结CT .∵,CD OD ⊥,CD OP OD OP O ⊥=,CD ∴⊥平面POD , NT CD ∴⊥,PD CD D =, NT ∴⊥平面PCD ,NCT ∴∠就是OG 与平面PCD 所成的角.………………10分DN DPNT PO =, NT ∴,………………11分 TNQ PAB CD E HOMGsinNTOTNCN∴∠===, 即直线OG与平面P C D所成角的正弦值为………………12分解法三:(1)同解法一.(2)过E作//EQ AB,交BC于点Q,连结PQ,过H作//HM EQ交PQ于点M,过点M作//GM PB,交BC于G,连结HG,则//HG平面PAB,………………6分证明如下://,MG PB PB ⊂平面,PAB MG⊄平面PAB,//MG∴平面PAB同理://MH平面PABMG MH M=,∴平面//MHG平面PAB.GH ⊂平面MHG,//HG∴平面PAB,………………7分2BG PM PHGQ MQ HE∴===,E是AD的中点,∴Q是BC的中点,1133BG BC∴==,………………8分取PD的中点N,连结ON,再连结OG并延长交DC的延长线于点T,连结NT,OP OD=,N是PD中点,ON PD∴⊥,OB OD⊥,,OB OP OD OP D⊥=,OB∴⊥平面PODOB ON∴⊥,//OB CD,ON CD∴⊥,PD CD D=,ON∴⊥平面PCD,OTN∴∠就是OG与平面PCD所成的角.BG OBGC CT=,2CT∴=,OT∴12ON DP=………………11分sinONOTNOT∴∠===,即直线OG与平面PCD所成角的正弦值为………………12分20.本题主要考查直线、椭圆、直线与椭圆的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力,满分12分.TNGMQOHED CBAP解法一:(1)根据题意,可得:1224,21122a b ab ⎧⨯⨯=⎪⎪⎨⎪=⎪⎩即2,ab =⎧=………………………………………………………2分 解得2,1.a b =⎧⎨=⎩………………………………………………………4分∴椭圆M 的方程为2214x y +=.………………………………………………………5分(2)设:l x my n =+,(2,2)n ∈-,直线l 与圆O 相切,得=,即224(1)5m n +=,………………………………6分 从而[)20,4m ∈.又1121(2)2S n y y =+-,2121(2)2S n y y =--,∴1212121(2)(2)2S S n n y y n y y -=⨯--+⋅-=⋅-.………………………………7分将直线l 的方程与椭圆方程联立得222(4)240m y mny n +++-=,显然0∆>.设11(,)P x y ,22(,)Q x y ,得12224mny y m +=-+,212244n y y m -=+. (8)∴12y y -.∴12S S n -===85, 当20m =时,1285S S -=;………………………………10分当2(0,4)m ∈时,122S S -=,………………………………11分且1285S S ->.综上,128,25S S ⎡⎫-∈⎪⎢⎣⎭.………………………………12分解法二:(1)同解法一;(2)当直线l的斜率不存在时,由对称性,不妨设:l x =,此时直线l与椭圆的交点为,12182)(225S S ⎡⎤-=+-=⎢⎥⎣⎦. 直线l 的斜率存在时,设:l y kx b =+,由直线l 与圆O 相切,得=,即224(1)5k b +=. 又点,A B 在直线l 的两侧,∴(2)(2)0k b k b +-+<,2240b k -<,∴224(1)405k k +-<,解得12k >或12k <-.点,A B 分别到直线l 的距离为1d =2d =.将直线l 的方程与椭圆方程联立得222(14)8440k x kbx b +++-=,显然0∆>.设11(,)P x y ,22(,)Q x y ,得122814kbx x k +=-+,21224414b x x k -⋅=+. (7)分∴12PQ x =-.………………………8分 ∴121212S S d d AB-=-⋅=b =b ===2=, 且1285S S ->.综上,128,25S S ⎡⎫-∈⎪⎢⎣⎭. (12)分21.本小题主要考查导数的几何意义、导数及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想等.满分12分.解法一: (1)函数()f x 的定义域是(0,)+∞,1()(1)ln (2)12f x x x a x '=++++,……………………………………………………………1分依题意可得, (1)1f '=, 12122a ∴++=,14a ∴= .……………………………………………………………………2分 ()(1)ln (1)f x x x x '∴=+++=(1)(ln 1)x x ++令()0f x '=,即(1)(ln 1)0x x ++=,10,x x >∴=,……………………………………3分 ()f x ∴的单调递增区间是1(,)e +∞,单调递减区间为1(0,)e .………………………………5分(2)由(Ⅰ)可知, 2211()()ln 24f x x x x x =++,2211()(3)ln 24f x x x x x λλ∴-+->+ln 31x x x x λ-⇔>+,………………………………6分 设ln 3()1x x xh x x -=+, ∴只要min ()h x λ>,……………………………………………7分2(1ln 3)(1)(ln 3)()(1)+-+--'=+x x x x x h x x22ln (1)x xx -+=+,…………………………………………………………………8分令()2ln u x x x =-+, 1()10u x x'∴=+>()u x ∴在(0,)+∞上为单调递增函数, (1)10u =-<, (2)ln 20=>u∴存在0(1,2)x ∈,使0()0u x =,……………………………………………………9分当0(,)x x ∈+∞时,()0u x >,即()0h x '>, 当0(0,)x x ∈时,()0u x <,即()0h x '<, ()h x ∴在0x x =时取最小值,且000min 0ln 3()1-=+x x x h x x ,………………………………10分又0()0u x =, 00ln 2x x ∴=-, 000min 00(2)3()1--∴==-+x x x h x x x ,……………………………………………………11分00(1,2),(2,1)x x ∈∴-∈--又min ()h x λ<,max 2Z λλ∈∴=-. …………………………………………………………………12分解法二:(1)同解法一.(2)由(1)可知, 2211()()ln 24f x x x x x =++2211()(3)ln 24f x x x x λλ∴-+->+ln 30x x x x λλ⇔--->.…………………………6分 设()ln 3g x x x x x λλ=---,∴只要min ()0g x >,………………………………………7分 则()1ln 3g x x λ'=+--ln 2x λ=--令()0g x '=,则ln 2x λ=+,2x e λ+∴=.…………………………………………………8分 当2(0,)x e λ+∈时,()0g x '<,()g x 单调递减;当2(,)x e λ+∈+∞时,()0g x '>,()g x 单调递增,2min ()()g x g e λ+∴=222(2)3e e e λλλλλλ+++=+---2e λλ+=--.…………………………9分设2()h e λλλ+=--,则()h λ在R 上单调递减,………………………………………10分 (1)10,(2)120h e h -=-+<-=-+>,………………………………………………11分 0(2,1)λ∴∃∈--,使0()0h λ=,max 2Z λλ∈∴=- . …………………………………………………………………12分22.选修44-;坐标系与参数方程本小题考查直线和圆的极坐标方程、参数方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想等. 满分10分. 解法一:(1)由1C :2(4cos )4r ρρθ-=-, 得224cos 4r ρρθ-+=,即222440x y x r +-+-=, ………………………………………………………2分 曲线2C 化为一般方程为:222(4)3x y r -+=,即2228163x y x r +-+=,………4分 化为极坐标方程为:228cos 1630r ρρθ-+-=.………………………………5分(2)由224cos 4r ρρθ-+=及228cos 1630r ρρθ-+-=,消去2r ,得曲线3C 的极坐标方程为22cos 20()ρρθρ--=∈R . …………………………………………………7分将θπ=3代入曲线3C 的极坐标方程,可得220ρρ--=,…………………8分 故121ρρ+=,1220ρρ=-<,…………………………………………………9分 故121OA OB ρρ-=+=.…………………………………………………10分 (或由220ρρ--=得0)1)(2(=+-ρρ得1,221-==ρρ,…………………9分 故211-=-=OA OB …………………………………………………10分) 解法二:(1)同解法一;(2)由22244x y x r +-+=及2228163x y x r +-+=,消去2r ,得曲线3C 的直角坐标方程为2222x y x +-=. ………………………………………………………………7分设直线l的参数方程为1,2x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),………………………………8分与2222x y x +-=联立得2213244t t t +-=,即220t t --=,………………………………………………………………9分故121t t +=,1220t t =-<,∴121OA OB t t -=+=.……………………………………………………10分 (或由220t t --=得,,0)1)(2(=+-t t 得1,221-==t t ,∴211-=-=OA OB .……………………………………………………10分)23.选修45-:不等式选讲本小题考查绝对值不等式、基本不等式的解法与性质等基础知识,考查运算求解能力、推理论证能力,考查分类与整合思想、化归与转化思想等. 满分10分.解法一:(1)1,x y +=|2||1|5x x ∴-++≤,………………………………………1分当2x ≥时,原不等式化为215x -≤,解得3x ≤,∴23x ≤≤;………………………………………………2分 当12x -≤<时,原不等式化为215x x -++≤,∴12x -≤<;………………………………………………3分 当1x <-时,原不等式化为215x -+≤,解得2x ≥-,∴21x -≤<-;………………………………………………4分 综上,不等式的解集为{}23x x -≤≤..……………………5分 (2)1,x y +=且0,0x y >>,2222222211()()(1)(1)x y x x y y x y x y +-+-∴--=⋅……………7分222222xy y xy x x y ++=⋅222222()()y y x x x x y y=++225x y y x=++………………………………8分59≥=. 当且仅当12x y ==时,取“=”. ………………………………10分 解法二:(1)同解法一;(2)1,x y +=且0,0x y >>,2222221111(1)(1)x y x y x y --∴--=⋅………………………………6分 22(1)(1)(1)(1)x x y y x y +-+-=⋅22(1)(1)x y y x x y ++=⋅………………………………7分 1x y xyxy+++=………………………………8分21xy =+2219()2x y ≥+=+当且仅当12x y ==时,取“=”. ………………………………10分。

福建省厦门市2018届高中毕业班第二次质量检查数学(理)试题(含答案)

福建省厦门市2018届高中毕业班第二次质量检查数学(理)试题(含答案)

福建省厦门市2018届高中毕业班第二次质量检查试题数学(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,集合{}{}260,1,2,3,4A x x x B =--<=,则Venn 图中阴影部分所表示的集合是( )A .{}1,2B .{}2,3C .{}3,4D .{}2,3,4 2.已知4sin ,025πααπ⎛⎫-=-<< ⎪⎝⎭,则sin 2α的值是( )A .2425-B .1225-C .1225D .24253.若13nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式中的常数项是( )A .1215B .135C .18D .94.执行如图的程序框图,若输出S 的值为55,则判断框内应填入( )A .9?n ≥B .10?n ≥C .11?n ≥D .12?n ≥5.等边ABC ∆的边长为1,,D E 是边BC 的两个三等分点,则AD AE ⋅等于( )A .1318 B .34 C .13D .326.从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于( )A .15B .14C .13D .127.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积的经验公式为:21212S ⨯⨯=⨯弦矢+矢.弧田(如图1阴影部分)由圆弧和其所对弦围成,弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.类比弧田面积公式得到球缺(如图 2)近似体积公式:12V =⨯圆面积⨯矢312+⨯矢.球缺是指一个球被平面截下的一部分,厦门嘉庚体育馆近似球缺结构(如图3),若该体育馆占地面积约为180002m ,建筑容积约为3400003m ,估计体育馆建筑高度(单位:m )所在区间为( )参考数据: 3321800032608768+⨯=,3341800034651304+⨯=,3361800036694656+⨯=, 3381800038738872+⨯=,3401800040784000+⨯=.A .()32,34B .()34,36C .()36,38D .()38,40 8.设,x y 满足约束条件0,20,0,x y x y a x -≥⎧⎪++≤⎨⎪≥⎩且3z x y =+的最大值为8,则a 的值是( )A .16-B .6-C .2-D .29.函数()()()cos 20f x x ϕϕπ=+<<在区间,66ππ⎡⎤-⎢⎥⎣⎦单调递减,在区间,06π⎛⎫- ⎪⎝⎭上有零点,则ϕ的取值范围是( )A .,62ππ⎡⎤⎢⎥⎣⎦B .25,36ππ⎡⎫⎪⎢⎣⎭C .2,23ππ⎛⎤ ⎥⎝⎦D .,32ππ⎡⎫⎪⎢⎣⎭10.已知函数()x a x a f x e e --+=+,若33log a b c ==,则( ) A .()()()f a f b f c << B .()()()f b f c f a << C .()()()f a f c f b << D .()()()f c f b f a <<11.抛物线2:4E y x =的准线与x 轴的交点为K ,直线():1l y k x =-与E 交于,A B 两点,若:3:1A K B K =,则实数k 的值是( )A .33±B .1±C .2±D .3± 12.已知函数()3sin f x x x =+,()()11,0,2ln 1,0,x x g x x x ⎧+<⎪=⎨⎪+≥⎩若关于x 的方程()()0f g x m +=有两个不等实根12,x x ,且12x x <,则21x x -的最小值是( )A .2B .3ln 22-C .4ln 23- D .3ln2-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知复数z 满足()31i z i -=,则z 等于 .14.斜率为2的直线l 被双曲线2222:10,0()x y C a b a b -=>>截得的弦恰被点()2,1M 平分,则C 的离心率是 .15.某四面体的三视图如图所示,则该四面体高的最大值是 .16.等边ABC ∆的边长为1,点P 在其外接圆劣弧AB 上,则PAB PBC S S ∆∆+的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 满足()212,n n a n n k k R +=++∈. (1)求数列{}n a 的通项公式;(2)设214n n n n b a a +=,求数列{}n b 的前n 项和n S .18.已知四棱锥P ABCD -的底面ABCD 是直角梯形,//AD BC ,,3,22AB BC AB BC AD ⊥===,E 为CD 的中点,PB AE ⊥.(1)证明:平面PBD ⊥平面ABCD ; (2)若,PB PD PC =与平面ABCD 所成的角为4π,求二面角B PD C --的余弦值. 19.某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程R 的行业标准,予以地方财政补贴.其补贴标准如下表:2017年底随机调査该市1000辆纯电动汽车,统计其出厂续驶里程R ,得到频率分布直方图如图所示. 用样本估计总体,频率估计概率,解决如下问题:(1)求该市纯电动汽车2017年地方财政补贴的均值;(2)某企业统计2017年其充电站100天中各天充电车辆数,得如下的频数分布表:(同一组数据用该区间的中点值作代表)2018年2月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来.该企业拟将转移补贴资金用于添置新型充电设备.现有直流、交流两种充电桩可供购置.直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500元/台; 交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80元/台. 该企业现有两种购置方案:方案一:购买100台直流充电桩和900台交流充电桩; 方案二:购买200台直流充电桩和400台交流充电桩.假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下新设备产生的日利润.(日利润=日收入-日维护费用)20.椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为12,F F ,离心率为12,P 为E 的上顶点,12F PF ∆的内切圆面积为3π. (1)求E 的方程;(2)过1F 的直线1l 交E 于点,A C ,过2F 的直线2l 交E 于,B D ,且12l l ⊥,求四边形ABCD 面积的取值范围. 21.设函数()()2ln 1f x x x ax b x =-+-,()x g x e ex =-. (1)当0b =时,函数()f x 有两个极值点,求a 的取值范围;(2)若()y f x =在点()()1,1f 处的切线与x 轴平行,且函数()()()h x f x g x =+在()1,x ∈+∞时,其图象上每一点处切线的倾斜角均为锐角,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线221:14x C y +=,曲线222cos :2sin x C y ϕϕ=+⎧⎨=⎩(ϕ为参数).以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系. (1)求12,C C 的极坐标方程;(2)射线l 的极坐标方程为()0θαρ=≥,若l 分别与12,C C 交于异于极点的,A B 两点,求OB OA的最大值.23.选修4-5:不等式选讲已知函数()2f x x x a =--+,其中0a >. (1)求函数()f x 的值域;(2)对于满足221b c bc ++=的任意实数,b c ,关于x 的不等式()()3f x b c ≥+恒有解,求a 的取值范围.试卷答案一、选择题1-5: CABCA 6-10: DBBCC 11、12:DD二、填空题13.22 14.2 15. 2 16.12三、解答题17. 解:(1)(法一)由()212n n a n n k +=++,令1,2,3n =, 得到12331021,,234k k ka a a +++===∵{}n a 是等差数列,则2132a a a =+,即202321324k k k+++=+解得:1k =-由于()()()2121211n n a n n n n +=+-=-+ ∵10n +≠,∴21n a n =-(法二)∵{}n a 是等差数列,公差为d ,设()()111n a a d n dn a d =+-=+- ∴()()()211111n n a n dn a d dn a n a d +=++-=++- ∴22112dn a n a d n n k ++-=++对于*n N ∀∈均成立 则1121d a a d k =⎧⎪=⎨⎪-=⎩,解得1k =-,21n a n =- (2)由()()2222214441121214141n n n n n n b a a n n n n +====+-+-- ()()111111212122121n n n n ⎛⎫=+=-+ ⎪-+-+⎝⎭11111111111111112323525722121n S n n ⎛⎫⎛⎫⎛⎫⎛⎫=-++-++-+++-+ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭1111111111112335572121221n n n n n ⎛⎫⎛⎫=-+-+-++-+=-+ ⎪ ⎪-++⎝⎭⎝⎭2222121n n nn n n +=+=++ 18.(1)证明:由ABCD 是直角梯形,3,22AB BC AD ===, 可得2,,23DC BCD BD π=∠==从而BCD ∆是等边三角形,3BCD π∠=,BD 平分ADC ∠∵E 为CD 的中点,1DE AD ==,∴BD AE ⊥ 又∵,PB AE PB BD B ⊥⋂=,∴AE ⊥平面PBD ∵AE ⊂平面ABCD ,∴平面PBD ⊥平面ABCD (2)法一:作PO BD ⊥于O ,连OC ,∵平面PBD ⊥平面ABCD ,平面PBD ⋂平面ABCD BD = ∴PO ⊥与平面平面ABCD∴PCO ∠为PC 与平面ABCD 所成的角,4PCO π∠=,又∵PB PD =,∴O 为BD 中点,,3OC BD OP OC ⊥== 以,,OB OC OP 为,,x y z 轴建立空间直角坐标系,()()()()1,0,0,0,3,0,1,0,0,0,0,3B C D P - ()()0,3,3,1,0,3PC PD =-=--,设平面PCD 的一个法向量(),,n x y z =, 由00n PC n PD ⎧⋅=⎪⎨⋅=⎪⎩得33030y z x z ⎧-=⎪⎨+=⎪⎩, 令1z =得()3,1,1n =-,又平面PBD 的一个法向量为()0,1,0m =, 设二面角B PD C --为θ,则15cos 551n m n mθ⋅===⨯⋅ 所求二面角B PD C --的余弦值是55. 解法二:作PO BD ⊥于点O ,连OC ,∵平面PBD ⊥平面ABCD ,平面PBD ⋂平面ABCD BD = ∴PO ⊥ 平面ABCD∴PCO ∠为PC 与平面ABCD 所成的角4PCO π∠=,又∵PB PD =,∴O 为BD 中点,,3OC BD OP OC ⊥== 作OH PD ⊥于点H ,连CH ,则PD ⊥平面CHO ,则PD HC ⊥, 则CHO ∠为所求二面角B PD C --的平面角 由3OC =,得32OH =,∴152CH =,∴5cos 5CHO ∠=. 19.(1)依题意可得纯电动汽车地方财政补贴的分布列为:纯电动汽车2017年地方财政补贴的平均数为30.240.5 4.50.3 3.95⨯+⨯+⨯=(万元) (2)由充电车辆天数的频数分布表得每天需要充电车辆数的分布列:若采用方案一,100台直流充电桩和900台交流充电桩每天可充电车辆数为3010049006600⨯+⨯=(辆)可得实际充电车辆数的分布列如下表:于是方案一下新设备产生的日利润均值为()2560000.26600.85001008090040000⨯⨯+⨯-⨯-⨯=0(元)若采用方案二,200台直流充电桩和400台交流充电桩每天可充电车辆数为 3020044007600⨯+⨯=(辆) 可得实际充电车辆数的分布列如下表:于是方案二下新设备产生的日利润均值为 2560000.270000.376000.55002008040045500()⨯⨯+⨯+⨯-⨯-⨯=(元) 20.解:(1)设12F PF ∆内切圆的半径为r ,则23r ππ=,得33r =设椭圆E 的焦距122F F c =,则()12122F PF S c b bc ∆=⋅⋅=,又由题意知122PF PF a +=, 所以()12121212F PF S PF PF F F r ∆=⋅++⋅=()()13322233a c a c ⋅+⋅=+,所以()33a c bc +=, 结合2ce a==及222a b c =+,解得2,3,1a b c ===,所以E 的方程为22143x y +=.(2)设直线,AC BD 的交点为M ,则由12MF MF ⊥知,点M 的轨迹是以线段12F F 为直径的圆,其方程为221x y +=.该圆在椭圆E 内,所以直线,AC BD 的交点M 在椭圆E 内,从而四边形ABCD 面积可表示为12S AC BD =⋅⋅. ①当直线AC 与坐标轴垂直时,12S AC BD =⋅⋅22122262b a b a =⋅⋅==.②当直线AC 与坐标轴不垂直时,设其方程为()10x ty t =-≠,设()()1122,,,A x y C x y , 联立221143x ty x y =-⎧⎪⎨+=⎪⎩,得()2234690t y ty +--=,其中()()()()222643491441t t t ∆=--⨯+⨯-=+,12122269,3434t y y y y t t -+==++, 所以()()()222121221211434t AC t y y y y t +⎡⎤=++-=⎣⎦+.由直线BD 的方程为11x y t =-+,同理可得()2222112112143134t t BD t t ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭==+⎛⎫-+ ⎪⎝⎭. 所以()()()()()222222221211217211234433443t t t S t t t t +++=⋅⋅=++++()()()2222721311411t t t +=⎡⎤⎡⎤+++-⎣⎦⎣⎦()()()222222227217211121111211t t t t t +==⎛⎫+++--++ ⎪++⎝⎭.令()21,0,11m m t =∈+,所以222211121211m m t t ⎛⎫-++=-++ ⎪++⎝⎭, 令()()212,0,1g m m m m =-++∈, 所以()4912,4g m ⎛⎤∈ ⎥⎝⎦,从而288,649S ⎡⎫∈⎪⎢⎣⎭. 综上所述,四边形ABCD 面积的取值范围是288,649⎡⎫⎪⎢⎣⎭.21.解:法一:(1)当0b =时,()2ln f x x x ax x =--,()ln 2f x x ax '=-,令()ln 2p x x ax =-,()1122ax p x a x x-'=-= ①(],0a ∈-∞时,()0p x '>,∴()p x 在()0,+∞单调递增,不符合题意;②()0,a ∈+∞时,令()0p x '>,10,2x a ⎛⎫∈ ⎪⎝⎭,∴()p x 在10,2a ⎛⎫ ⎪⎝⎭单调递增;令()0p x '<,1,2x a ⎛⎫∈+∞ ⎪⎝⎭,∴()p x 在1,2a ⎛⎫+∞ ⎪⎝⎭单调递减; 令1ln 2102p a a ⎛⎫=--> ⎪⎝⎭,∴10,2a e ⎛⎫∈ ⎪⎝⎭又因为()120p a =-<,22111ln 0442p a a a ⎛⎫=-< ⎪⎝⎭,且211124a a <<, 所以10,2a e ⎛⎫∈ ⎪⎝⎭时,()2ln f x x x ax x =--有两个极值点. 即2y a =与()ln x m x x=的图像的交点有两个. 法二:(1) )当0b =时,()2ln f x x x ax x =--,()ln 2f x x ax '=-,所以()2ln f x x x ax x =--有两个极值点就是方程ln 20x ax -=有两个解,即2y a =与()ln x m x x =的图像的交点有两个. ∵()21ln x m x x-'=,当()0,x e ∈时,()0m x '>,()m x 单调递增;当(),x e ∈+∞时,()0m x '<,()m x 单调递减.()m x 有极大值1e又因为(]0,1x ∈时,()0m x ≤;当()1,x ∈+∞时,()102m x e<<. 当1,2a e ⎛⎫∈+∞ ⎪⎝⎭时2y a =与()ln x m x x =的图像的交点有0个; 当(],0a ∈-∞或12a e =时2y a =与()ln x m x x=的图像的交点有1个; 当10,2a e ⎛⎫∈ ⎪⎝⎭时2y a =与()ln x m x x =的图象的交点有2个; 综上10,2a e ⎛⎫∈ ⎪⎝⎭. (2)函数()y f x =在点()()1,1f 处的切线与x 轴平行,所以()10f '=且()10f ≠,因为()ln 2f x x ax b '=-+, 所以2b a =且1a ≠;()()2ln 1x h x x x ax b x e ex =-+-+-在()1,x ∈+∞时,其图像的每一点处的切线的倾斜角均为锐角, 即当1x >时,()()()0h x f x g x '''=+>恒成立,即ln 220x x e ax a e +-+->,令()ln 22x t x x e ax a e =+-+-,∴()12x t x e a x '=+- 设()12x x e a x ϕ=+-,()21x x e x ϕ'=-,因为1x >,所以21,1x e e x><,∴()0x ϕ'>, ∴()x ϕ在()1,+∞单调递增,即()t x '在()1,+∞单调递增,∴()()112t x t e a ''>=+-,当12e a +≤且1a ≠时,()0t x '≥, 所以()ln 22x t x x e ax a e =+-+-在()1,+∞单调递增;∴()()10t x t >=成立 当12e a +>,因为()t x '在()1,+∞单调递增,所以()1120t e a '=+-<,()1ln 2220ln 2t a a a a'=+->, 所以存在()01,ln 2x a ∈有()00t x '=;当()01,x x ∈时,()0t x '<,()h x 单调递减,所以有()()010t x t <=,()0t x >不恒成立;所以实数a 的取值范围为()1,11,2e +⎛⎤-∞⋃ ⎥⎝⎦. 22.解:(1)221:44C x y +=,∵cos ,sin x y ρθρθ==,故1C 的极坐标方程:()223sin 14ρθ+=.2C 的直角坐标方程:()2224x y -+=, ∵cos ,sin x y ρθρθ==,故2C 的极坐标方程:4cos ρθ=.(2)直线l 分别与曲线12,C C 联立,得到()223sin 14ρθθα⎧+=⎪⎨=⎪⎩,则2243sin 1OA α=+, 4cos ρθθα=⎧⎨=⎩,则2216cos OB α=, ∴()22224cos 3sin 1OBOA αα=+()()2244sin 3sin 1αα=-+令2sin t α=,则()()22244311284OBt t t t OA =-+=-++所以13t =,即3sin 3α=±时,OB OA 有最大值433. 23.解:(1)∵0a >,∴2a -<∴()2,22,22,2a x a f x x a a x a a +≤-⎧⎪=--+-<<⎨⎪--≥⎩故()[]2,2f x a a ∈--+.(2)∵()221024b c bc b c +⎛⎫-=-≥ ⎪⎝⎭,∴22b c bc +⎛⎫≤ ⎪⎝⎭, ∵()21b c bc +=+,∴()2212b c b c +⎛⎫+≤+ ⎪⎝⎭,∴223333b c -≤+≤. 当且仅当33b c ==时,()max 233b c +=,∴()max 323b c +=⎡⎤⎣⎦ 关于x 的不等式()()3f x b c +恒有解()()max max 3f x b c ⇔≥+⎡⎤⎡⎤⎣⎦⎣⎦ 即223a +≥,故232a ≥-,又0a >,所以232a ≥-.。

福建省厦门市2018届高三第二次(5月)质量检测数学(理)试题Word版含答案

福建省厦门市2018届高三第二次(5月)质量检测数学(理)试题Word版含答案

福建省厦门市2018届高三第二次(5月)质量检测数学(理)试题满分150分,考试时间90分钟一、选择题:本大题共12小题,每小题5分,共60分。

在每小题所给出的四个备选项中,只有一项是符合题目要求的。

1. 若集合A={}N x x x ∈<且4,B={}022>-x x x , 则B A ⋂= .A .{}2B . {}3C . {}3,2D . {}43,2.“互联网+”时代,全民阅读的内涵已经多元化,倡导读书成为一种生活方式,某校为了解高中学生的阅读情况,拟采取分层抽样的方法从该校三个年级的学生中抽取一个容量为60的样本进行调查,已知该校有高一学生600人,高二学生400人,高三学生200人,则应从高一学生抽取的人数为 .A . 10B . 20C .30D . 403.已知命题p :⎪⎭⎫⎝⎛∈∀2,0πx ,sinx<x,则 . A .p 是真命题,:p ⌝⎪⎭⎫⎝⎛∈∀2,0πx ,sinx ≥x B . p 是真命题,:p ⌝⎪⎭⎫⎝⎛∈∀2,00πx ,sinx ≥0x C . p 是假命题,:p ⌝⎪⎭⎫⎝⎛∈∀2,0πx ,sinx ≥x D . p 是假命题,:p ⌝⎪⎭⎫⎝⎛∈∀2,00πx ,sinx ≥0x4.执行如图所示的程序框图,则输出的结果是 .A .21-B .0C .21D .1 5.在ABC ∆中,BC BQ AB AP 31,31==,记===PQ b AC a AB 则,, .A .b a 3131+B .b a 3132+ C . b a 3232+ D . b a 3231- 6.从6名女生中选4人参加4⨯100米接力赛,要求甲、乙两人至少有一人参赛,如果甲、乙两人同时参赛,他们的接力顺序就不能相邻,不同的排法种数为 .A .144B .192C .228D . 2647.将函数()()02cos >⎪⎭⎫⎝⎛-=ωπωx x f 的图像向右平移4π个单位长度,所得的图像经过点⎪⎭⎫⎝⎛0,43π,则ω的最小值是 .A .31 B . 1 C .35D . 28.《九章算术》中,将底面是直角形的直三棱柱称之为“堑堵” ,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该 “堑堵”的侧面积为 .A . 2B . 224+C . 244+D . 246+9. 已知y x ,满足⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x ,若不等式1≥-y ax 恒成立,则实数a 的取值范围是.A .⎪⎭⎫⎢⎣⎡∞+,527 B . ⎪⎭⎫⎢⎣⎡∞+,511 C . ⎪⎭⎫⎢⎣⎡∞+,53 D . [)∞+,2 10.直线kx y l =:与曲线x x x y C 3423+-=:顺次相交于C B A ,,三点,若BC AB =,则=k .A . 5-B . 59-C . 21-D . 2111.已知点B A M ,,,)01(是椭圆1422=+y x 上的动点,且0=•MB MA ,则BA MA •的取值范围是. A .⎥⎦⎤⎢⎣⎡132, B . []91, C .⎥⎦⎤⎢⎣⎡932, D .⎥⎦⎤⎢⎣⎡336, 12.已知平面四点D C B A ,,,满足,,322====AD CD BC AB 设BCD ABD ∆∆,的面积分别为S S 21,,则S S 2221+的取值范围是.A .(]141238,- B .(]381238,- C . (]1412, D . (]2812,二、填空题:本大题4小题,每小题5分,共20分。

2018年福建省厦门市高考数学二模试卷(理科)(解析版)

2018年福建省厦门市高考数学二模试卷(理科)(解析版)

2018年福建省厦门市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知全集U=R,集合A={x|x2﹣x﹣6<0},B={1,2,3,4},则Venn图中阴影部分所表示的集合是()A.{1,2}B.{2,3}C.{3,4}D.{2,3,4} 2.(5分)已知sin()=﹣,0<α<π,则sin2α的值是()A.B.C.D.3.(5分)若(3x+)n展开式是二项式系数之和为64,则展开式中的常数项是()A.1215B.135C.18D.94.(5分)执行如图的程序框图,若输出S的值是55,则判断框内应输入()A.n≥9?B.n≥10?C.n≥11?D.n≥12?5.(5分)等边△ABC的边长为1,D,E是边BC的两个三等分点,则等于()A.B.C.D.6.(5分)从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于()A.B.C.D.7.(5分)《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积的经验公式为:S=弦×矢2,弧田(如图1阴影部分)由圆弧和其所对弦所围成,“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.类比弧田面积公式得到球缺(如图2)的近似体积公式:V=圆面积×矢×矢3.球缺是指一个球被平面截下的一部分,厦门嘉庚体育馆近似球缺结构(如图3),若该体育馆占地面积约为18000m2,建造容积约为340000m3,估计体育馆建筑高度(单位:m)所在区间为()参考数据:323+18000×32=608768,343+18000×34=651304,363+18000×36=694656,383+18000×38=738872,403+18000×40=784000A.(32,34)B.(34,36)C.(36,38)D.(38,40)8.(5分)设x,y满足约束条件,且z=x+3y的最大值为8,则a的值是()A.﹣16B.﹣6C.2D.29.(5分)函数f(x)=cos(2x+φ)(0<φ<π)在区间[﹣]单调递减,在区间()有零点,则φ的取值范围是()A.[]B.[)C.(]D.[)10.(5分)已知函数f(x)=e x﹣a+e﹣x+a,若3a=log3b=c,则()A.f(a)<f(b)<f(c)B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b)D.f(c)<f(b)<f(a)11.(5分)抛物线E:y2=4x的准线与x轴的交点为K,直线l:y=k(x﹣1)与E交于A,B两点,若|AK|:|BK|=3:1,则实数k的值是()A.B.±1C.D.12.(5分)已知函数f(x)=x3+sin x,g(x)=,若关于x的方程f(g (x))+m=0有两个不等实根x1,x2,且x1<x2,则x2﹣x1的最小值是()A.2B.C.D.3﹣2ln2二、填空题:共4小题,每小题5分,共20分)13.(5分)已知复数z满足(1﹣i)z=i3,则|z|等于.14.(5分)斜率为2的直线l被双曲线C:=1(a>0,b>0)截得的弦恰被点M (2,1)平分,则C的离心率是.15.(5分)某四面体的三视图如图所示,则该四面体高的最大值是.16.(5分)等边△ABC的边长为1,点P在其外接圆劣弧上,则S△P AB+S△PBC的最大值为.三、解答题:共70分。

厦门市2018届高中毕业班第二次质量检查数学试题(文)及答案

厦门市2018届高中毕业班第二次质量检查数学试题(文)及答案

福建省厦门市2018届高中毕业班第二次质量检查试题;;数学(文);; 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,0,1,2,2,A B x x n n Z =-==∈,则A B ⋂=( ) A .{}2 B .{}0,2 C .{}1,0,2- D .∅2.复数z 满足()234i z i +=-,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知()33f x x x =+,0.3222,0.3,log 0.3a b c ===,则( ) A .()()()f a f b f c << B .()()()f b f c f a << C .()()()f c f b f a << D .()()()f b f a f c <<4.如图所示的风车图案中,黑色部分和白色部分分别由全等的等腰直角三角形构成.在图案内随机取一点,则此点取自黑色部分的概率是( )A .14 B .13C .23D .34 5.等差数列{}n a 的公差为1,125,,a a a 成等比数列,则{}n a 的前10项和为( ) A .50 B .50- C .45 D .45-6.已知拋物线2:4C y x =的焦点为F ,过F 的直线与曲线C 交于,A B 两点,6AB =,则AB 中点到y 轴的距离是( )A .1B .2C .3D .47.如图,在正方体1111ABCD A B C D -中,,,M N P 分别是1111,,C D BC A D 的中点,则下列命题正确的是( )A .//MN APB .1//MN BDC .//MN 平面11BBD D D .//MN 平面BDP 8.如图是为了计算11111234561920S =++++⨯⨯⨯⨯的值,则在判断框中应填入( )A .19?n >B .19?n ≥C .19?n <D .19?n ≤ 9.函数()()()sin 0f x x ωϕω=+>的周期为π,()12f π=,()f x 在0,3π⎛⎫⎪⎝⎭上单调递减,则ϕ的一个可能值为( ) A .6π B .3π C .23π D .56π10.设函数()()21,1,ln ,1,x a x f x x x ⎧--≤⎪=⎨>⎪⎩若()()1f x f ≥恒成立,则实数a 的取值范围为( )A .[]1,2B .[]0,2C .[)1,+∞D .[)2,+∞ 11.已知某正三棱锥的侧棱长大于底边长,其外接球体积为1256π,三视图如图所示,则其侧视图的面积为( )A .32B .2C .4D .6 12.设函数()x f x x e -=-,直线y mx n =+是曲线()y f x =的切线,则m n +的最小值是( )A .1e -B .1C .11e -D .311e+第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知向量a 与b 的夹角为90︒,1,2a b ==,则a b -=. 14.已知,x y 满足约束条件1,3,1,x y x y x -≤⎧⎪+≤⎨⎪≥⎩则2z x y =+的最小值为.15.若双曲线22220,1()0:x y C a ba b -=>>的渐近线与圆()2221x y -+=无交点,则C 的离心率的取值范围为.16.已知数列{}n a 满足121,3a a ==,()1,3n n a a n n N n --=∈≥,{}21n a -是递增数列,{}2n a 是递减数列,则2018a =.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,()()cos 2cos b A a c B π=--. (1)求B ;(2)若1,sin sin 2a b A C >=,ABC ∆的周长为3,求ABC ∆的面积. 18.在如图所示的四棱锥P ABCD -中,底面ABCD 为菱形,60DAB ∠=︒,PAB ∆为正三角形.(1)证明:AB PD ⊥;(2)若PD =,四棱锥的体积为16,求PC 的长. 19.为提高玉米产量,某种植基地对单位面积播种数x与每棵作物的产量y 之间的关系进行研究,收集了 11块实验田的数据,得到下表:技术人员选择模型21y a bx =+作为y 与x 的回归方程类型,令21,i i i iu x y υ==,相关统计量的值如下表:由表中数据得到回归方程后进行残差分析,残差图如图所示:(1)根据残差图发现一个可疑数据,请写出可疑数据的编号(给出判断即可,不必说明理由); (2)剔除可疑数据后,由最小二乘法得到υ关于u 的线性回归方程u υβα=+中的0.03β=,求y 关于x 的回归方程;(3)利用(2)得出的结果,计算当单位面积播种数x 为何值时,单位面积的总产量w xy =的预报值最大?(计算结果精确到0.01) 附:对于一组数据()()()1122,,,,,,n n u u u υυυ,其回归直线u υαβ=+的斜率和截距的最小二乘法估计分别为121ni ii n ii u nu unuυυβ==-⋅=-∑∑,u αβ=-5.48≈.20.过椭圆2222:1()0x E bb y a a +>>=的右焦点F 作两条互相垂直的直线12,l l ,直线1l 与E 交于,A B 两点,直线2l 与E 交于,C D 两点.当直线1l 的斜率为0时,AB CD ==(1)求椭圆E 的方程;(2)求四边形ABCD 面积的取值范围.21.已知函数()2ln 1f x x ax x =++-,()()11,x g x x e a R -=-∈. (1)讨论函数()f x 的单调性;(2)当1x ≥时,()()2a f x ax g x ⎡⎤-≤⎣⎦恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线221:14x C y +=,曲线222cos :2sin x C y ϕϕ=+⎧⎨=⎩(ϕ为参数).以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系. (1)求12,C C 的极坐标方程;(2)射线l 的极坐标方程为()0θαρ=≥,若l 分别与12,C C 交于异于极点的,A B 两点,求OB OA的最大值.23.选修4-5:不等式选讲已知函数()2f x x x a =--+,其中0a >. (1)求函数()f x 的值域;(2)对于满足221b c bc ++=的任意实数,b c ,关于x 的不等式()()3f x b c ≥+恒有解,求a 的取值范围.试卷答案一、选择题1-5: BDCBA 6-10: BCADA 11、12:DC 二、填空题14. 2 15.⎫+∞⎪⎪⎝⎭ 16.1005- 三、解答题17. 解:(1)因为()()cos 2cos b A a c B π=--, 由正弦定理得()()sin cos sin 2sin cos B A A C B =-- 所以()sin 2sin cos A B C B += 所以1cos 2B =,且()0,B π∈所以3B π=.(2)因为23A C π+=,所以211sin sin sin sin 322A A A A A π⎫⎛⎫-=⋅+=⎪ ⎪⎪⎝⎭⎝⎭,2cos cos A A A ⋅=,)cos cos 0A A A -=,cos 0A =或tan A =解得:6A π=或2π因为a b >,所以2A π=所以,6C π=所以,2a c b ==因为3a b c ++=2,1,a c b ===所以1sin 2ABC S bc A ∆==.18.(1)证明:取AB 中点为O ,连接,,PO DO BD ∵底面ABCD 为菱形,60DAB ∠=︒, ∴ABD ∆为正三角形,DA DB = ∴DO AB ⊥又∵PAB ∆为正三角形, ∴PO AB ⊥又∵,DO PO O PO ⋂=⊂平面POD ,DO ⊂平面POD , ∴AB ⊥平面POD , ∵PD ⊂平面POD , ∴AB PD ⊥.(2)法一:设2AB x =,则PD ,在正三角形PAB ∆中,PO =,同理DO =, ∴222PO OD PD +=, ∴PO OD ⊥,又∵,PO AB DO AB O ⊥⋂=,DO ⊂平面ABCD ,AB ⊂平面ABCD , ∴PO ⊥平面ABCD ,∴21163P ABCD V -=⨯=,∴2x =,∵//,AB CD AB PD ⊥∴CD PD ⊥∴PC==.法二:设2ABx =,则PD ,在正三角形PAB∆中,PO=,同理DO =, ∴222PO OD PD +=, ∴PO OD ⊥,又∵,PO AB DO AB O ⊥⋂=,DO ⊂平面ABCD ,AB ⊂平面ABCD , ∴PO ⊥平面ABCD,∴21163P ABCD V -=⨯=,∴2x =,连接OC ,∵在OBC ∆中,2,4,120OB BC OBC ==∠=︒,∴由余弦定理得OC , ∴在RT POC∆中,PC =.19.解:(1)可疑数据为第10组(2)剔除数据()10,0.25后,在剩余的10组数据中11101600100501010ii uu u =--===∑,1110144441010i i v v v =--===∑所以0.034500.03 2.5v u α=-⋅=-⨯= 所以v 关于u 的线性回归方程为0.03 2.5v u =+ 则y 关于x 的回归方程为212.50.03y x=+ (3)根据(2)的结果并结合条件,单位面积的总产量w 的预报值 22.50.03xw x =+12.50.03x x=+1.83≤=≈ 当且仅当2.50.03x x=时,等号成立,此时9.13x =≈, 即当9.13x =时,单位面积的总产量w 的预报值最大,最大值是1.83. 20.解:(1)由已知得:2AB a ==将x c =代入22221x y a b +=得2b y a =±,所以222b CD a ===24b = 所以椭圆22:184x y E +=(2)①当直线12,l l —条的斜率为0,另一条的斜率不存在时,11822ACBD S AB CD =⋅=⨯=. ②当两条直线的斜率均存在时,设直线AB 的方程为2x my =+, 则直线CD 的方程为12x y m=-+.设 ()()1122,,,A x y B x y 由222280x my x y =+⎧⎨+-=⎩,得()222440m y my ++-= ()()22216162321m m m ∆=++=+,12y y -=)212212m AB y y m +=-=+(或:12122244,22m y y y y m m --+==++,)2212m AB m +==+)用1m -取代m得)22221111212m m CD m m ⎫+⎪+⎝⎭==++∴))2222111122221ACBDm m S AB CD m m ++=⋅=⨯⨯++ ()()42422424221252168252252mm m m m m m m m ++++-=⨯=⨯++++2288225m m=-++又22224m m+≥,当且仅当1m =±取等号 所以[)22224,m m +∈+∞ 所以228648,82925ACBD S m m⎡⎫=-∈⎪⎢⎣⎭++ 综上:四边形ACBD 面积的取值范围是64,89⎡⎤⎢⎥⎣⎦.21.解:(1)依题意,()()2121210ax x f x ax x x x++'=++=>①当0a ≥时,()1210f x ax x'=++>,所以()f x 在()0,+∞上单调递增;②当0a <时,180a ∆=->,12x x ==120x x >>,令()()()1220a x x x x f x x--'=>得21x x x <<,令()0f x '<得20x x <<或1x x >,此时()f x 在()21,x x 上单调递增;在()()210,,,x x +∞上单调递减 综上可得,①0a ≥时,()f x 在()0,+∞上单调递增; ②当0a <时,()f x在⎝⎭上单调递增;在,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减 (2)法一:原不等式可化为()()20a f x ax g x ⎡⎤--≤⎣⎦,即()()1ln 110x a x x x e -+---≤记()()()1ln 11,1x h x a x x x e x -=+---≥,只需()0h x ≤即可. ①当0a ≤时,由1x ≥可知ln 10x x +-≥,()110x x e --≥, 所以()0h x ≤,命题成立.②当102a <≤时,显然()111x h x a xe x -⎛⎫'=+- ⎪⎝⎭在[)1,+∞上单调递减, 所以()()1210h x h a ''≤=-≤所以()h x 在[)1,+∞上单调递减,从而()()10h x h ≤=,命题成立. ③当12a >时, 显然()111x h x a xe x -⎛⎫'=+- ⎪⎝⎭在[)1,+∞上单调递减,因为()1210h a '=->, ()2212221112222420222a h a a ae a a a -'=+-≤+-=-< 所以在()1,2a 内,存在唯一的()01,2x a ,使得()00h x '=,且当01x x <<时,()0h x '> 即当01x x <<时,()()10h x h >=,不符合题目要求,舍去. 综上所述,实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.法二:原不等式可化为()()20a f x ax g x ⎡⎤--≤⎣⎦,即()()1ln 110x a x x x e -+---≤记()()()1ln 11,1x h x a x x x e x -=+---≥,只需()0h x ≤即可. 可得()21111111x x x e h x a xe a x x x --⎛⎫⎛⎫⎛⎫'=+-=+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,令()21,11x x e m x a x x -=-≥+,则()()()2122201x x x x e m x x -++'=-<+ 所以()m x 在[)1,+∞上单调递减,所以()()112m x m a ≤=-. 12a ≤时,()10m ≤,从而()0m x ≤,所以()()110h x m x x ⎛⎫'=+≤ ⎪⎝⎭, 所以()h x 在[)1,+∞上单调递减, 所以()()10h x h ≤=,原不等式成立 ②当12a >时,()10m >, ()()22121244m 20212121a a a a e a a a a a a a --=-<-=<+++,所以存在唯一()01,2x a ∈,使得()00m x =,且当01x x <<时,()0m x >, 此时()()110h x m x x ⎛⎫'=+> ⎪⎝⎭,()h x 在()01,x 上单调递增,从而有()()10h x h >=,不符合题目要求,舍去.综上所述,实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. 22.解:(1)221:44C x y +=,∵cos ,sin x y ρθρθ==, 故1C 的极坐标方程:()223sin 14ρθ+=.2C 的直角坐标方程:()2224x y -+=, ∵cos ,sin x y ρθρθ==,故2C 的极坐标方程:4cos ρθ=.(2)直线l 分别与曲线12,C C 联立,得到()223sin 14ρθθα⎧+=⎪⎨=⎪⎩,则2243sin 1OA α=+, 4cos ρθθα=⎧⎨=⎩,则2216cos OB α=, ∴()22224cos 3sin 1OBOA αα=+()()2244sin 3sin 1αα=-+令2sin t α=,则()()22244311284OBt t t t OA =-+=-++ 所以13t =,即sin α=时,OB OA23.解:(1)∵0a >,∴2a -<∴()2,22,22,2a x a f x x a a x a a +≤-⎧⎪=--+-<<⎨⎪--≥⎩故()[]2,2f x a a ∈--+.(2)∵()221024b c bc b c +⎛⎫-=-≥ ⎪⎝⎭,∴22b c bc +⎛⎫≤ ⎪⎝⎭, ∵()21b c bc +=+,∴()2212b c b c +⎛⎫+≤+ ⎪⎝⎭,∴b c ≤+≤当且仅当b c ==时,()max b c +=,∴()max 3b c +=⎡⎤⎣⎦关于x 的不等式()()3f x b c +恒有解()()max max 3f x b c ⇔≥+⎡⎤⎡⎤⎣⎦⎣⎦即2a≥.a≥,又0a+≥2a>,所以2。

福建省厦门市高三数学下学期第二次质量检查(5月)试题文(扫描(2021年整理)

福建省厦门市高三数学下学期第二次质量检查(5月)试题文(扫描(2021年整理)

福建省厦门市2018届高三数学下学期第二次质量检查(5月)试题文(扫描版)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省厦门市2018届高三数学下学期第二次质量检查(5月)试题文(扫描版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省厦门市2018届高三数学下学期第二次质量检查(5月)试题文(扫描版)的全部内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省厦门市2018届高中毕业班第二次质量检查试题数学(理)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,集合,则图中阴影部分所表示的集合是()A. B. C. D.【答案】C【解析】分析:解二次不等式得集合A,由集合的运算得阴影部分.详解:由题意,,∴阴影部分为.故选C.2. 已知,则的值是()A. B. C. D.【答案】A【解析】分析:由诱导公式求得,再由同角关系式求得,最后由二倍角公式得. 详解:,∵,∴,∴,故选A.点睛:本题考查的恒等变换,三角函数的诱导公式、同角间的三角函数关系、两角和与差的正弦(余弦、正切)公式、二倍角公式是解这类题常要用到的公式,需要熟练掌握.另外需要观察“已知角”和“未知角”之间的关系,寻找它们之间的联系,从而确定选用什么公式进行变形、化简.3. 若展开式的二项式系数之和为64,则展开式中的常数项是()A. 1215B. 135C. 18D. 9【答案】B【解析】分析:由二项式系数和求出指数,再写出展开式通项后可求得常数项.详解:由题意,,∴通项为,令,,∴常数项为,故选B..点睛:在展开式中二项式系数为,所有项的系数和为.要注意这两个和是不一样的,二项式系数和是固定的,只与指数有关,而所有项系数和还与二项式中的系数有关.4. 执行如图的程序框图,若输出的值为55,则判断框内应填入()A. B. C. D.【答案】C【解析】分析:模拟程序运行,观察变量的值可得结论.详解:程序运行中变量值依次为:;;;;;;;;;,此时应结束循环,条件应为.故选C.点睛:本题考查程序框图中的循环结构,解题时可模拟程序运行,由其中变量值的变化结论.,本题也可由程序得出其数学原理,然后研究得出.本题程序实质是求数列的和:,当为偶数时,,当为奇数时,,计算后可得=10时,,程序运行后=11,从而得出判断条件.5. 等边的边长为1,是边的两个三等分点,则等于()A. B. C. D.【答案】A【解析】分析:先为基底,把用基底表示后再进行数量积的运算.详解:由已知,,故选A.点睛:本题考查平面向量的数量积运算,解题关键是选取基底,把其它向量都用基底表示,然后进行计算即可,因此也考查了平面向量基本定理,属于基础题.6. 从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于()A. B. C. D.【答案】D【解析】分析:这是一个条件概率,可用古典概型概率公式计算,即从5个球中取三个排列,总体事件是第二次是黑球,可在第二次是黑球的条件下抽排第一次和第三次球.详解:.点睛:此题是一个条件概率,条件是第二次抽取的是黑球,不能误以为是求第二次抽到黑球,第三次抽到白球的概率,如果那样求得错误结论为.7. 《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积的经验公式为:.弧田(如图1阴影部分)由圆弧和其所对弦围成,弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.类比弧田面积公式得到球缺(如图 2)近似体积公式:圆面积矢.球缺是指一个球被平面截下的一部分,厦门嘉庚体育馆近似球缺结构(如图3),若该体育馆占地面积约为18000,建筑容积约为340000,估计体育馆建筑高度(单位:)所在区间为()参考数据: ,,,,.A. B. C. D.【答案】B【解析】分析:根据所给近似体积公式分别计算时的体积近似值.详解:设体育馆建筑高度为,则,若,则;若,则,若,则,,∴,故选B.点睛:本题通过数学文化引入球缺体积近似公式,即吸引了学生的眼球,又培养了学生的兴趣,同时培养了学生的爱国情怀,是一道好题.8. 设满足约束条件且的最大值为8,则的值是()A. B. C. D. 2【答案】B【解析】分析:作出可行域,作出直线,平移直线可得最优解,由最优解可解值.详解:作出可行域,如图内部(含边界),作出直线,易知向上平移直线时,增大,所以当过点时,取最大值,由得,∴,解得.故选B.点睛:本题考查简单的线性规划问题,其解法如下:作出可行域,作出目标函数对应的直线,平移直线得最优解.9. 函数在区间单调递减,在区间上有零点,则的取值范围是()A. B. C. D.【答案】C【解析】分析:结合余弦函数的单调减区间,求出零点,再结合零点范围列出不等式详解:当,,又∵,则,即,,由得,,∴,解得,综上.故选C.点睛:余弦函数的单调减区间:,增区间:,零点:,对称轴:,对称中心:,.10. 已知函数,若,则()A. B.C. D.【答案】C【解析】分析:利用导数研究函数的单调性,由指数函数与对数函数的性质得的大小,然后可得结论. 详解:,当时,,递减,当时,,递增,∴是的最小值,又,∴且,∴,∴,故选C.点睛:比较函数值的大小,通常是利用函数单调性,象本题这种函数的单调性一般通过导数来研究,11. 抛物线的准线与轴的交点为,直线与交于两点,若,则实数的值是()A. B. C. D.【答案】D【解析】分析:由抛物线的焦点弦性质知,这个结论必须先证明(可用几何方法也可用代数方法),然后把用直线的倾斜角表示后求出,从而得斜率,还要注意对称性,应该有两解.详解:直线过抛物线的焦点,过分别作抛物线的准线的垂线,垂足分别为,由抛物线的定义知,又,∴,而,∴∽,∴,即,设直线的倾斜角为,若,则,,,由对称性也有. 故选D.点睛:关于的证明方法还可用代数方程证明:设方程为,代入得,设,则,,∴直线关于轴对称,即,由面积法或角平分线定理得.这实质是任意的抛物线的过焦点的弦的性质之一.12. 已知函数,若关于的方程有两个不等实根,且,则的最小值是()A. 2B.C.D.【答案】D【解析】分析:由导数得是增函数,则有且只有一解,因此方程有两解,则有两解,再由与性质可得结论.详解:,当时,,当时,,∴在上恒成立,∴是上的增函数.令,则有且只有一解,则要使方程有两解,只要有两解即可.由于在和上都是增函数,因此当时,有两解,设解为且,则,,,(如图),,,,令,,易知时,,时,,即时取得极小值也是最小值.故选D.点睛:本题考查导数在研究函数中的应用和函数的概念与性质,首先利用导数判断出函数是单调函数,从而方程有且只有一解,因此问题转化为方程有两个解,通过的图象得出两解的范围与表达式及的范围,然后可以把表表示出来,再由导数求出此关于的函数的最小值.本题还考查了逻辑思维能力、转化与化归思想,属于难题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知复数满足,则等于__________.【答案】【解析】分析:可先求出,再根据复数模的定义求出模.详解:由题意,则.故答案为.点睛:复数,由,本题也可根据模的性质求解:,.14. 斜率为2的直线被双曲线截得的弦恰被点平分,则的离心率是__________.【答案】【解析】分析:设出弦两端点的坐标,代入双曲线方程后作差可得的关系式,从而求得离心率.详解:设直线的与双曲线的两个交点为,则,两式相减得,即,又由已知,,∴,即,,所以.故答案为.点睛:设斜率为的直线与双曲线交于两点,弦的中点为,则,即.证明方法可用“点差法”.15. 某四面体的三视图如图所示,则该四面体高的最大值是__________.【答案】2【解析】分析:由三视图还原出几何体,分析结构图即可.详解:如图是原几何体,其在正方体中的位置,正方体棱长为2,则该四面体高的最大值为2.故答案为2.点睛:本题考查由三视图还原几何体问题,解题时必须掌握基本几何体的三视图,再由基本几何体得出一些组合体的三视图.16. 等边的边长为1,点在其外接圆劣弧上,则的最大值为__________.【答案】【解析】分析:引入一个参数,设,利用正弦定理把用表示,这样可把也用表示出来,然后由三角函数的性质可求得最大值.详解:设,则,外接圆半径为,在中,,同理,,,则.当时,的最大值为.点睛:本题考查解三角形的应用,解题关键是建立三角函数的模型,题中点P在劣弧AB上移动,因此选为变量,把面积和表示的函数,结合三角函数知识求得最大值.解决此类问题必须掌握两角和与差的正弦(余弦)公式、二倍角公式、正弦函数的性质、三角形的面积公式等知识,本题同时考查了学生的运算求解能力.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列满足.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2)【解析】分析:(1)已知数列是等差数列,因此由已知先求出,利用成等差数列求出参数,从而可得数列的通项公式;(2)把变形为,从而用分组求和与裂项相消求和法求得其前项和.详解:(1)(法一)由,令,得到∵是等差数列,则,即解得:由于∵,∴(法二)∵是等差数列,公差为,设∴∴对于均成立则,解得,(2)由18. 已知四棱锥的底面是直角梯形,,,为的中点,.(1)证明:平面平面;(2)若与平面所成的角为,求二面角的余弦值.【答案】(1)见解析;(2)【解析】分析:(1)在直角梯形中,由已知得是等边三角形,这样结合可得,再有,因此有平面,从而可证面面垂直;(2)只要作于点,则可得平面,从而得是中点,,计算得,以为坐标轴建立空间直角坐标系,写出各点坐标,求出平面和平面的法向量,由法向量的夹角的余弦值得二面角的余弦值.详解:(1)证明:由是直角梯形,,可得从而是等边三角形,,平分∵为的中点,,∴又∵,∴平面∵平面,∴平面平面(2)法一:作于,连,∵平面平面,平面平面∴与平面平面∴为与平面所成的角,,又∵,∴为中点,以为轴建立空间直角坐标系,,设平面的一个法向量,由得,令得,又平面的一个法向量为,设二面角为,则所求二面角的余弦值是.解法二:作于点,连,∵平面平面,平面平面∴平面∴为与平面所成的角,又∵,∴为中点,作于点,连,则平面,则,则为所求二面角的平面角由,得,∴,∴.点睛:在立体几何中求空间角(异面直线所成的角,直线与平面所成的角,二面角)常常是建立空间直角坐标系,写出各点坐标,求出直线的方向向量和平面的法向量,由空间向量的夹角与空间角的关系,采用向量法求得空间角.19. 某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程的行业标准,予以地方财政补贴.其补贴标准如下表:2017年底随机调査该市1000辆纯电动汽车,统计其出厂续驶里程,得到频率分布直方图如图所示.用样本估计总体,频率估计概率,解决如下问题:(1)求该市纯电动汽车2017年地方财政补贴的均值;(2)某企业统计2017年其充电站100天中各天充电车辆数,得如下的频数分布表:(同一组数据用该区间的中点值作代表)2018年2月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来.该企业拟将转移补贴资金用于添置新型充电设备.现有直流、交流两种充电桩可供购置.直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500元/台;交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80元/台.该企业现有两种购置方案:方案一:购买100台直流充电桩和900台交流充电桩;方案二:购买200台直流充电桩和400台交流充电桩.假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下新设备产生的日利润.(日利润日收入日维护费用)【答案】(1)3.95;(2)见解析【解析】分析:(1)由频率分布直方图求出补贴分别是3万元,4万元,4.5万元的概率,即得概率分布列,然后可计算出平均值;(2)由频数分布表计算出每天需要充电车辆数的分布列,分别计算出两种方案中新设备可主观能动性车辆数,从而得实际充电车辆数的分布列,由分布列可计算出均值,从而计算出日利润.详解:(1)依题意可得纯电动汽车地方财政补贴的分布列为:纯电动汽车2017年地方财政补贴的平均数为(万元)(2)由充电车辆天数的频数分布表得每天需要充电车辆数的分布列:若采用方案一,100台直流充电桩和900台交流充电桩每天可充电车辆数为(辆)可得实际充电车辆数的分布列如下表:于是方案一下新设备产生的日利润均值为(元)若采用方案二,200台直流充电桩和400台交流充电桩每天可充电车辆数为(辆)可得实际充电车辆数的分布列如下表:于是方案二下新设备产生的日利润均值为(元)点睛:本题考查统计与概率的相关知识,如频率分布直方图,随机变量的分布列,期望,分布表等,考查数据处理能力,运用数据解决实际问题的能力.20. 椭圆的左、右焦点分别为,离心率为,为的上顶点,的内切圆面积为.(1)求的方程;(2)过的直线交于点,过的直线交于,且,求四边形面积的取值范围.【答案】(1);(2)【解析】分析:(1)由离心率得,由圆面积得圆半径,而的面积,一方面等于,另一方面等于,两者相等得,再结合可解得,得椭圆方程;(2)利用可求得两直线交点的轨迹是单位圆,单位圆在椭圆内部,即点M在椭圆内部,因此有,下面分两类求面积,一类是中有一个斜率不存在,求得面积为6,第二类是中斜率都存在,设为,,由直线与椭圆方程联立消元后可得,,同理方程为,得,这样就表示为的函数,变形注意先把作变整体变形,然后用换元变为的函数,最后可求得的范围.详解:(1)设内切圆的半径为,则,得设椭圆的焦距,则,又由题意知,所以,所以,结合及,解得,所以的方程为.(2)设直线的交点为,则由知,点的轨迹是以线段为直径的圆,其方程为.该圆在椭圆内,所以直线的交点在椭圆内,从而四边形面积可表示为.①当直线与坐标轴垂直时,.②当直线与坐标轴不垂直时,设其方程为,设,联立,得,其中,,所以.由直线的方程为,同理可得.所以.令,所以,令,所以,从而.综上所述,四边形面积的取值范围是.点睛:本题以椭圆与直线的位置关系为背景,以椭圆的轨迹方程为主要考查内容,考查观察分析、推理论证、数学运算等数学能力,考查数形结合、转化与化归、函数与方程等数学思想.对直线与椭圆相交问题,本题中的解法常称为“设而不求”.21. 设函数,.(1)当时,函数有两个极值点,求的取值范围;(2)若在点处的切线与轴平行,且函数在时,其图象上每一点处切线的倾斜角均为锐角,求的取值范围.【答案】(1);(2)【解析】分析:(1)求得导函数,题意说明有两个零点,即有两个解,或直线与函数的有两个交点,可用导数研究的性质(单调性,极值等),再结合图象可得的范围;(2)首先题意说明,从而有且,其次时,恒成立,因此的最小值大于0,这可由导数来研究,从而得出的范围.详解:(1) )当时,,,所以有两个极值点就是方程有两个解,即与的图像的交点有两个.∵,当时,,单调递增;当时,,单调递减.有极大值又因为时,;当时,.当时与的图像的交点有0个;当或时与的图像的交点有1个;当时与的图象的交点有2个;综上.(2)函数在点处的切线与轴平行,所以且,因为,所以且;在时,其图像的每一点处的切线的倾斜角均为锐角,即当时,恒成立,即,令,∴设,,因为,所以,∴,∴在单调递增,即在单调递增,∴,当且时,,所以在单调递增;∴成立当,因为在单调递增,所以,,所以存在有;当时,,单调递减,所以有,不恒成立;所以实数的取值范围为.点睛:本题考查函数的单调性、极值、零点、函数与方程、不等式等基础知识,考查运算求解、推理论证能力,考查数形结合、分类与整合、转化与化归等数学思想.解题时转化的方法有多种多样,第(1)小题人等价转化还可这样转化求解:当时,,,令,①时,,∴在单调递增,不符合题意;②时,令,,∴在单调递增;令,,∴在单调递减;令,∴又因为,,且,所以时,有两个极值点.即与的图像的交点有两个.22. 在直角坐标系中,曲线,曲线(为参数).以坐标原点为极点,以轴的正半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)射线的极坐标方程为,若分别与交于异于极点的两点,求的最大值.【答案】(1),;(2)【解析】分析:(1)将曲线,曲线消去参数可得普通方程,然后利用即可得的极坐标方程;(2)将分别代入的极坐标方程可得,,,换元后,结合三角函数的有界性,利用二次函数的性质求解即可.详解:(1),∵,故的极坐标方程:.的直角坐标方程:,∵,故的极坐标方程:.(2)直线分别与曲线联立,得到,则,,则,∴令,则所以,即时,有最大值.点睛:参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.23. 已知函数,其中.(1)求函数的值域;(2)对于满足的任意实数,关于的不等式恒有解,求的取值范围.【答案】(1);(2)【解析】分析:(1)将函数,写成分段函数形式,判断函数的单调性,利用单调性可得函数的值域;(2)先利用作差法证明,再由,利用基本不等式可得,结合(1)可得,从而可得结果.详解:(1)∵,∴∴故.(2)∵,∴,∵,∴,∴.当且仅当时,,∴关于的不等式恒有解即,故,又,所以.点睛:转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题中,将“任意实数,关于的不等式恒有解”转化为“”是解题的关键.。

相关文档
最新文档