一元随机变量及分布

合集下载

高考数学复习考点题型专题讲解48 随机变量及其分布

高考数学复习考点题型专题讲解48 随机变量及其分布

高考数学复习考点题型专题讲解专题48 随机变量及其分布高考定位离散型随机变量的分布列、均值、方差和概率的计算问题常常结合在一起进行考查,重点考查超几何分布、二项分布及正态分布,以解答题为主,中等难度.1.(2022·浙江卷)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则P(ξ=2)=________,E(ξ)=________.答案16 35 127解析由题意知P(ξ=2)=C12C24+C22C14C37=1635.ξ的可能取值为1,2,3,4,P(ξ=1)=C26C37=1535=37,P(ξ=3)=C23C37=335,P(ξ=4)=1C37=135,所以ξ的分布列为E(ξ)=1×37+2×1635+3×335+4×135=127.2.(2022·北京卷)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50 m以上(含9.50 m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)解(1)甲在以往的10次比赛成绩中,有4次比赛成绩达到9.50 m以上(含9.50 m),故由频率估计概率可得,甲获得优秀奖的概率为0.4.(2)设甲获得优秀奖为事件A1,乙获得优秀奖为事件A2,丙获得优秀奖为事件A3,则P(A1)=0.4,P(A2)=0.5,P(A3)=0.5.X的可能取值为0,1,2,3,故P(X=0)=P(A-1A-2A-3)=0.6×0.5×0.5=320,P(X=1)=P(A1A-2A-3)+P(A-1A2A-3)+P(A-1A-2A3)=0.4×0.5×0.5+0.6×0.5×0.5+0.6×0.5×0.5=820=25,P(X=2)=P(A1A2A-3)+P(A1A-2A3)+P(A-1A2A3)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=7 20,P(X=3)=P(A1A2A3)=0.4×0.5×0.5=220=110.∴X的分布列为∴E(X)=0×320+1×25+2×720+3×110=75.(3)丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为1 4,甲获得9.80的概率为1 10,乙获得9.78的概率为1 6 .并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.热点一分布列的性质及应用离散型随机变量X的分布列为则(1)p i≥0,i=1,2,…,n.(2)p 1+p 2+…+p n =1.(3)E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n .(4)D (X )=∑n i =1[x i-E (X )]2p i .(5)若Y =aX +b ,则E (Y )=aE (X )+b ,D (Y )=a 2D (X ). 例1 (1)(多选)设离散型随机变量X 的分布列如下表:若离散型随机变量Y =-3X +1,且E (X )=3,则( ) A.m =0.1 B.n =0.1 C.E (Y )=-8 D.D (Y )=-7.8(2)已知随机变量ξ的分布列如表所示,若E (ξ)=D (ξ),则下列结论中不可能成立的是( )A.a =13B.a =23C.k =12D.k =32答案 (1)BC (2)D解析 (1)由E (X )=1×m +2×0.1+3×0.2+4×n +5×0.3=3,得m +4n =0.7, 又由m +0.1+0.2+n +0.3=1, 得m +n =0.4,从而得m =0.3,n =0.1,故A 选项错误,B 选项正确;E (Y )=-3E (X )+1=-8,故C 选项正确;因为D (X )=0.3×(1-3)2+0.1×(2-3)2+0.1×(4-3)2+0.3×(5-3)2=2.6, 所以D (Y )=(-3)2D (X )=23.4,故D 选项错误. (2)由题意得E (ξ)=ka +(k -1)(1-a )=k -1+a ,D (ξ)=[k -(k -1+a )]2·a +[k -1-(k -1+a )]2·(1-a )=a (1-a ). 因为E (ξ)=D (ξ), 所以k -1+a =a (1-a ), 所以k =1-a 2,又⎩⎨⎧a ≥0,1-a ≥0,所以0≤a ≤1, 所以k =1-a 2∈[0,1],故k =32不成立.规律方法 分布列性质的两个作用(1)利用分布列中各事件概率之和为1的性质可求参数的值及检查分布列的正确性. (2)随机变量X 所取的值分别对应的事件是两两互斥的,利用这一点可以求随机变量在某个范围内的概率.训练1 (1)(2022·温州模拟)已知随机变量X ,Y 的分布列如下:则( )A.D(X)=3D(Y)B.D(Y)=3D(X)C.D(X)=9D(Y)D.D(Y)=9D(X)(2)(2022·长沙模拟)设a>0,若随机变量ξ的分布列如下:则下列方差值中最大的是( )A.D(ξ)B.D(|ξ|)C.D(2ξ-1)D.D(2|ξ|+1)答案(1)D (2)C解析(1)从表中可知Y=3X-1,∴D(Y)=D(3X-1),∴D(Y)=9D(X),故选D.(2)由题意知a+2a+3a=1,a=1 6,E(ξ)=-1×16+0×13+2×12=56,E(|ξ|)=1×16+0×13+2×12=76,D(ξ)=16×⎝⎛⎭⎪⎫-1-562+13×⎝⎛⎭⎪⎫0-562+12×⎝⎛⎭⎪⎫2-562=5336,D(|ξ|)=16×⎝⎛⎭⎪⎫1-762+13×⎝⎛⎭⎪⎫0-762+12×⎝⎛⎭⎪⎫2-762=2936.D(ξ)>1>D(|ξ|),D(2ξ-1)=4×5336=539,D(2|ξ|+1)=4×2936=299.所以D(2ξ-1)最大.热点二随机变量的分布列1.二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n. E(X)=np,D(X)=np(1-p).2.超几何分布一般地,假设一批产品共有N件,其中有M件次品,从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=C k M C n-kN-MC n N,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},E(X)=n·M N .考向1 二项分布例2 (2022·南昌模拟)接种新冠疫苗可以有效降低感染新冠肺炎的概率.某地区有A,B,C三种新冠疫苗可供居民接种.假设在某个时间段该地区集中接种第一针疫苗,而且这三种疫苗的供应都很充足.为了节省时间和维持良好的接种秩序,接种点设置了号码机,号码机可以随机地产生A,B,C三种号码(产生每个号码的可能性都相等),前去接种第一针疫苗的居民先从号码机上取一张号码,然后去接种与号码相对应的疫苗(例如:取到号码A,就接种A种疫苗,以此类推).若甲,乙,丙,丁四个人各自独立的去接种第一针新冠疫苗.(1)求这四个人中恰有一个人接种A 种疫苗的概率;(2)记甲,乙,丙,丁四个人中接种A 种疫苗的人数为X ,求随机变量X 的分布列和数学期望.解 (1)记四个人中恰有一个人接种A 种疫苗的事件为M , 则P (M )=C 14⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫233=3281,所以四个人中恰有一个人接种A 种疫苗的概率为3281. (2)由题意可知,X 的取值依次为0,1,2,3,4,且X ~B ⎝ ⎛⎭⎪⎫4,13,P (X =k )=C k4⎝ ⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫234-k(k =0,1,2,3,4),故随机变量X 的分布列:故E (X )=4×13=43.考向2 超几何分布例3(2022·烟台模拟)2022年2月4日至20日,第24届冬季奥林匹克运动会在北京成功举办.某学校统计了全校学生观看北京冬奥会开幕式和闭幕式的时长情况(单位:分钟),并根据样本数据绘制得到如图所示的频率分布直方图.(1)求频率分布直方图中a的值,并估计样本数据的85%分位数;(2)采用样本量比例分配的分层随机抽样方式,从观看时长在[200,280]的学生中抽取6人.若从这6人中随机抽取3人在全校交流观看体会,设抽取的3人中观看时长在[200,240)的人数为X,求X的分布列和数学期望.解(1)由题意,40×(0.000 5+0.002×2+2a+0.006+0.006 5)=1,解得a=0.004. 由频率分布直方图知,观看时长在200分钟以下占比为40×(0.000 5+0.002+0.004+0.006+0.006 5)=0.76.观看时长在240分钟以下占比为0.76+40×0.004=0.92.所以85%分位数位于[200,240)内,85%分位数为200+40×0.85-0.760.92-0.76=222.5.(2)由题意,观看时长[200,240)、[240,280]对应的频率分别为0.16和0.08,所以采用分层随机抽样的方式在两个区间中应分别抽取4人和2人.于是抽取的3人中观看时长在[200,240)中的人数X的所有可能取值为1,2,3.所以,P(X=1)=C14·C22C36=15,P(X=2)=C24·C12C36=35,P(X=3)=C34C36=15.X的分布列为所以,E(X)=1×15+2×35+3×15=2.规律方法求随机变量X的均值与方差的方法及步骤(1)理解随机变量X的意义,写出X可能的全部取值;(2)求X取每个值对应的概率,写出随机变量X的分布列;(3)由均值和方差的计算公式,求得均值E(X),方差D(X);(4)若随机变量X的分布列为特殊分布列(如:两点分布、二项分布、超几何分布),可利用特殊分布列的均值和方差的公式求解.训练2(2022·茂名二模)冰壶是冬季奥运会的比赛项目之一.冰壶比赛的场地如图所示,其中左端(投掷线MN的左侧)有一个发球区,运动员在发球区边沿的投掷线MN将冰壶掷出,使冰壶沿冰道滑行,冰道的右端有一圆形的营垒,以场上冰壶最终静止时距离营垒区圆心O的远近决定胜负,甲、乙两人进行投掷冰壶比赛,规定冰壶的重心落在圆O中,得3分,冰壶的重心落在圆环A中,得2分,冰壶的重心落在圆环B中,得1分,其余情况均得0分.已知甲、乙投掷冰壶的结果互不影响,甲、乙得3分的概率分别为13,14;甲、乙得2分的概率分别为25,12;甲、乙得1分的概率分别为15,16.(1)求甲、乙两人所得分数相同的概率;(2)设甲、乙两人所得的分数之和为X ,求X 的分布列和期望. 解 (1)由题意知,甲得0分的概率为1-13-25-15=115,乙得0分的概率为1-14-12-16=112,所以甲、乙两人所得分数相同的概率为 13×14+25×12+15×16+115×112=2990. (2)X 可能取值为0,1,2,3,4,5,6, 则P (X =0)=115×112=1180,P (X =1)=115×16+15×112=136,P (X =2)=115×12+15×16+25×112=110,P (X =3)=115×14+15×12+25×16+13×112=1990,P (X =4)=15×14+25×12+13×16=1136, P (X =5)=25×14+13×12=415,P(X=6)=13×14=112,所以,随机变量X的分布列为所以E(X)=0×1180+1×136+2×110+3×1990+4×1136+5×415+6×112=4712.热点三正态分布解决正态分布问题的三个关键点(1)对称轴x=μ.(2)样本标准差σ.(3)分布区间:利用3σ原则求概率时,要注意利用μ,σ分布区间的特征把所求的范围转化为3σ的特殊区间.例4 (1)(2022·滨州二模)设随机变量X~N(μ,σ2),则“μ≥1”是“P(X<2)<1 2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(多选)(2022·沈阳模拟)已知某种袋装食品每袋质量(单位:g)X~N(500,16).P(μ-σ≤X≤μ+σ)=0.682 7,P(μ-2σ≤X≤μ+2σ)=0.954 5,P(μ-3σ≤X≤μ+3σ)=0.997 3,则下面结论正确的是( )A.σ=4B.P(496≤X≤504)=0.954 5C.随机抽取10 000袋这种食品,袋装质量在区间[492,504]的约8 186袋D.随机抽取10 000袋这种食品,袋装质量小于488 g的一定不多于14袋答案(1)B (2)AC解析(1)当μ=1时,根据正态曲线的对称性可知P(X<2)>1 2,故μ≥1不是P(X<2)<12的充分条件;反之,若P(X<2)<1 2,由对称性可知μ≥1,故μ≥1是P(X<2)<12的必要条件;故μ≥1是P(X<2)<12的必要不充分条件.故选B.(2)对于A,∵袋装食品每袋质量(单位:g)X~N(500,16),∴σ=4,故A正确;对于B,P(496≤X≤504)=P(500-4≤X≤500+4)=P(μ-σ≤X≤μ+σ)=0.682 7,故B错误;对于C,∵P(500≤X≤504)=12P(496≤X≤504)=12×0.682 7=0.341 35,P(492≤X≤500)=12P(μ-2σ≤X≤μ+2σ)=12×0.954 5=0.477 25,∴P(492≤X≤504)=P(492≤X≤500)+P(500≤X≤504)=0.818 6,10 000×0.818 6=8 186,故随机抽取10 000袋这种食品,袋装质量在区间[492,504]的约8 186袋,故C正确;对于D,P(X≤488)=12[1-P(μ-3σ<X≤μ+3σ)]=12(1-0.997 3)=0.001 35,10 000×0.001 35=13.5,故随机抽取10 000袋这种食品,袋装质量小于488 g的约为13.5袋,但抽取时有可能多于14袋,故D错误.故选AC.规律方法利用正态曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x=μ对称,及曲线与x轴之间的面积为1,注意下面三个结论的活用:(1)对任意的a,有P(X<μ-a)=P(X>μ+a).(2)P(X<x0)=1-P(X≥x0).(3)P(a<X<b)=P(X<b)-P(X≤a).训练3 (1)设随机变量ξ~N(μ,1),函数f(x)=x2+2x-ξ没有零点的概率是0.5,则P(0≤ξ≤1)等于( )(附:若ξ~N(μ,σ2),则P(μ-σ≤ξ≤μ+σ)≈0.682 7,P(μ-2σ≤ξ≤μ+2σ)≈0.954 5)A.0.158 7B.0.135 9C.0.271 8D.0.341 3(2)(2022·新高考Ⅱ卷)已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)=________.答案(1)B (2)0.14解析(1)∵函数f(x)=x2+2x-ξ没有零点,即一元二次方程x2+2x-ξ=0无实根,∴Δ=4+4ξ<0,即ξ<-1,又f(x)=x2+2x-ξ没有零点的概率是0.5,∴P (ξ<-1)=0.5,由正态曲线的对称性知μ=-1, ∴ξ~N (-1,1),∴μ=-1,σ=1,∴μ-σ=-2,μ+σ=0,μ-2σ=-3,μ+2σ=1, ∴P (-2≤ξ≤0)≈0.682 7,P (-3≤ξ≤1)≈0.954 5,∴P (0≤ξ≤1)=12[P (-3≤ξ≤1)-P (-2≤ξ≤0)]≈0.954 5-0.682 72=0.135 9.(2)因为X ~N (2,σ2), 所以P (X >2)=0.5,所以P (X >2.5)=P (X >2)-P (2<X ≤2.5)=0.5-0.36=0.14.一、基本技能练1.(2022·金华模拟)已知5件产品中有2件次品,3件正品,检验员从中随机抽取2件进行检测,记取到的正品数为ξ,则数学期望E (ξ)为( ) A.45B.910 C.1 D.65答案 D解析 ξ可取0,1,2, P (ξ=0)=C 22C 25=110,P (ξ=1)=C 12C 13C 25=610,P (ξ=2)=C 23C 25=310,∴E(ξ)=0×110+1×610+2×310=65,故选D.2.(2022·海南模拟)已知随机变量X~N(3,σ2),且P(X<0)·P(X>6)=0.04,则P(0<X<3)=( )A.0.2B.0.3C.0.4D.0.1答案 B解析因为随机变量X~N(3,σ2),所以曲线关于x=3对称,且令P(X<0)=P(X>6)=t,∴t2=0.04,∴t=0.2,即P(X<0)=P(X>6)=0.2,∴P(0<X<3)=0.5-P(X<0)=0.3,故选B.3.设随机变量X,Y满足Y=3X-1,X~B(2,p),若P(X≥1)=59,则D(Y)等于( )A.4B.5C.6D.7 答案 A解析由题意可得,P(X≥1)=1-P(X=0)=1-C02(1-p)2=5 9,解得p=1 3,则D(X)=np(1-p)=2×13×23=49,D (Y )=32D (X )=4.故选A.4.(2022·武汉模拟)已知随机变量X ~N (1,σ2),且P (X ≤0)=P (X ≥a ),则⎝⎛⎭⎪⎫x -a x 6的展开式中常数项为( ) A.-240 B.-60 C.240 D.60 答案 D解析 根据正态分布曲线关于直线x =1对称,且P (X ≤0)=P (X ≥a ),可得a =2,则⎝⎛⎭⎪⎫x -a x 6=⎝ ⎛⎭⎪⎫x -2x 6,通项为T r +1=C r 6(x )6-r ⎝ ⎛⎭⎪⎫-2x r =(-2)r C r 6x6-3r 2,若此项为常数项,则6-3r =0,解得r =2, 所以常数项为(-2)2C 26=60,故选D.5.(2022·广州二模)某种包装的大米质量ξ(单位:kg)服从正态分布ξ~N (10,σ2),根据检测结果可知P (9.98≤ξ≤10.02)=0.98,某公司购买该种包装的大米2 000袋,则大米质量在10.02 kg 以上的袋数大约为( ) A.10 B.20 C.30 D.40 答案 B解析 因为大米质量ξ~N (10,σ2),且P (9.98≤ξ≤10.02)=0.98, 则P (ξ>10.02)=1-P (9.98≤ξ≤10.02)2=0.01,所以大米质量在10.02 kg 以上的袋数大约为2 000×0.01=20.故选B.6.(多选)若随机变量X 服从两点分布,其中P (X =0)=13,E (X ),D (X )分别为随机变量X的均值与方差,则下列结论正确的是( ) A.P (X =1)=23B.E (3X +2)=4C.D (3X +2)=2D.D (X )=49答案 ABC解析 ∵随机变量X 服从两点分布,其中P (X =0)=13,∴P (X =1)=23,E (X )=0×13+1×23=23,D (X )=⎝ ⎛⎭⎪⎫0-232×13+⎝ ⎛⎭⎪⎫1-232×23=29,在A 中,P (X =1)=23,故A 正确;在B 中,E (3X +2)=3E (X )+2=3×23+2=4,故B 正确;在C 中,D (3X +2)=9D (X )=9×29=2,故C 正确;在D 中,D (X )=29,故D 错误.7.已知随机变量ξ服从正态分布N (3,σ2),P (ξ≤6)=0.84,则P (ξ≤0)=________. 答案 0.16解析 因为随机变量ξ服从正态分布N (3,σ2), 所以P (ξ≤0)=P (ξ≥6),又P(ξ≤6)=0.84,所以P(ξ≤0)=1-P(ξ≤6)=1-0.84=0.16.8.已知某小组7人中有4人未接种疫苗,3人接种了疫苗.从这7人中随机抽取3人,用X表示抽取的3人中未接种疫苗的人数,则随机变量X的数学期望为________;记“抽取的3人中,既有接种疫苗的人,也有未接种疫苗的人”为事件A,则P(A)=________.答案12 7 6 7解析由题意可得X的可能取值为0,1,2,3,则P(X=0)=C33C37=135,P(X=1)=C14C23C37=1235,P(X=2)=C24C13C37=1835,P(X=3)=C34C37=435,∴E(X)=0×135+1×1235+2×1835+3×435=127.P(A)=P(X=1)+P(X=2)=1235+1835=67.9.(2022·宁波二模)一个袋中装有大小质地完全相同的m个红球和2m个白球(m∈N*),从中任取3个球.记取出的白球个数为ξ,若P(ξ=1)=15,则m=________,E(ξ)=________. 答案 2 2解析根据题意,取出的三个球中恰好有一个白球的概率为P(ξ=1)=C12mC2mC33m=15,解得m=2.所以袋中有2个红球,4个白球,则取出的三个球中白球个数ξ的可能取值为1,2,3,所以P(ξ=1)=15,P(ξ=2)=C24C12C36=35,P(ξ=3)=C34C36=15,∴E(ξ)=1×15+2×35+3×15=2.10.甲、乙两个球队进行篮球决赛,采取五局三胜制(共赢得三场比赛的队伍获胜,最多比赛五局),每场球赛无平局.根据前期比赛成绩,甲队的主场安排为“主客主主客”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以3∶2获胜的概率为________.答案0.18解析由题意知,甲队以3∶2获胜,则甲队第五场必胜,前四场“主客主主”中胜两局,有两种情况:一种为三个主场胜两场,一种为客场胜一场主场胜一场,其概率为C23×0.62×0.4×0.5×0.5+C13×0.6×0.42×0.5×0.5=0.18.11.(2022·唐山模拟)甲、乙两支队伍进行某项比赛,赛制分为两种,一种是五局三胜制,另一种是三局两胜制.根据以往数据,在决胜局(在五局三胜制中指的是第五局比赛,在三局两胜制中指的是第三局比赛)中,甲、乙两队获胜的概率均为0.5;而在非决胜局中,甲队获胜的概率为0.6,乙队获胜的概率为0.4.(1)若采用五局三胜制,直到比赛结束,共进行了ξ局比赛,求随机变量ξ的分布列,并指出进行几局比赛的可能性最大;(2)如果你是甲队的领队,你希望举办方采用五局三胜制还是三局两胜制?解(1)由题意知:ξ的可能取值为3,4,5.则P(ξ=3)=0.63+0.43=0.28;P(ξ=4)=C13×0.4×0.63+C13×0.6×0.43=0.374 4;P(ξ=5)=C24×0.42×0.62=0.345 6. 则ξ的分布列为∵0.374 4>0.345 6>0.28,∴进行四局比赛的可能性最大.(2)作为甲队领队,希望甲队最终获胜,若采用五局三胜制,甲队获胜的概率为p 1=0.63+C13×0.4×0.63+C24×0.42×0.62×0.5=0.648;若采用三局两胜制,甲队获胜的概率为p 2=0.62+C12×0.4×0.6×0.5=0.6;∵p1>p2,∴作为甲队领队,希望采用五局三胜制.12.(2022·济宁模拟)血液检测是诊断是否患疾病的重要依据,通过提取病人的血液样本进行检测,样本的某一指标会呈现阳性或阴性.若样本指标呈阳性,说明该样本携带病毒;若样本指标呈阴性,说明该样本不携带病毒.根据统计发现,每个疑似病例的样本呈阳性(即样本携带病毒)的概率均为p(0<p<1).现有4例疑似病例,分别对其进行血液样本检测.多个样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验,混合样本中只要携带病毒,则混合样本化验结果就会呈阳性.若混合样本呈阳性,则将该组中各个样本再逐个化验;若混合样本呈阴性,则该组各个样本均为阴性.现有以下两种方案: 方案一:逐个化验; 方案二:平均分成两组化验.在该疾病爆发初期,由于检测能力不足,化验次数的期望值越小,则方案越“优”. (1)若p =13,求这4例疑似病例中呈阳性的病例个数X 的分布列;(2)若将该4例疑似病例样本进行化验,且方案二比方案一更“优”,求p 的取值范围. 解 (1)由题意知,X ~B ⎝ ⎛⎭⎪⎫4,13,则P (X =0)=C 04⎝⎛⎭⎪⎫1-134=1681;P (X =1)=C 14×13×⎝ ⎛⎭⎪⎫1-133=3281;P (X =2)=C 24×⎝ ⎛⎭⎪⎫132×⎝⎛⎭⎪⎫1-132=2481=827;P (X =3)=C 34×⎝ ⎛⎭⎪⎫133×⎝⎛⎭⎪⎫1-13=881;P (X =4)=C 44⎝ ⎛⎭⎪⎫134=181.则这4例疑似病例中呈阳性的病例个数X 的分布列为(2)方案一中,逐个化验,化验次数为4,期望为4.方案二中,设化验次数为Y ,则Y 的所有可能取值为2,4,6. 每组两个样本化验呈阴性的概率为(1-p )2,设x =(1-p )2. 则P (Y =2)=x 2;P (Y =4)=C 12x (1-x ); P (Y =6)=(1-x )2.所以E (Y )=2×x 2+4×C 12x (1-x )+6×(1-x )2=6-4x .若方案二比方案一更“优”,则E (Y )=6-4x <4,解得x >12,即x =(1-p )2>12,解得0<p <1-22.所以当0<p <1-22时,方案二比方案一更“优”. 二、创新拓展练13.(多选)(2022·苏州模拟)已知随机变量X 服从二项分布B (4,p ),其数学期望E (X )=2,随机变量Y 服从正态分布N (p ,4),且P (X =3)+P (Y <a )=1,则( ) A.p =14B.p =12C.P (Y >1-a )=14D.P (Y >1-a )=34答案 BD解析 由题意知E (X )=np =4p =2,即p =12,P (X =3)=C 34⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫124-3=14,∴P (Y <a )=34,由于Y ~N ⎝ ⎛⎭⎪⎫12,4,对称轴x =12,所以P (Y >1-a )=P (Y <a )=34.故选BD.14.(多选)(2022·南京模拟)下列命题中,正确的命题的选项为( ) A.已知随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =23B.将一组数据中的每个数据都加上同一个常数后,方差恒不变C.设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=p ,则P (-1<ξ≤0)=12-pD.某人在10次射击中,击中目标的次数为X ,X ~B (10,0.8),则当X =8时概率最大 答案 BCD解析 对于A ,⎩⎨⎧E (X )=np =30,D (X )=np (1-p )=20,解得⎩⎨⎧p =13,n =90,A 错误; 对于B ,方差反映的是数据与均值的偏移程度,因此每个数据都加上同一个常数后,每个新数据与新均值的偏移不变,方差恒不变,B 正确;对于C ,ξ服从正态分布N (0,1),P (-1<ξ≤0)=P (0≤ξ<1)=12-P (ξ>1)=12-p ,C 正确;对于D ,X ~B (10,0.8),则P (X =k )=C k 100.8k ×0.210-k, 由⎩⎨⎧C k 100.8k ×0.210-k ≥C k -1100.8k -1×0.211-k,C k 100.8k ×0.210-k ≥C k +1100.8k +1×0.29-k,解得395≤k≤445,因为k∈N*,所以k=8.D正确.15.(多选)(2022·福州模拟)在某独立重复试验中,事件A,B相互独立,且在一次试验中,事件A发生的概率为p,事件B发生的概率为1-p,其中p∈(0,1).若进行n次试验,记事件A发生的次数为X,事件B发生的次数为Y,事件AB发生的次数为Z,则下列说法正确的是( )A.E(X)=E(Y)B.D(X)=D(Y)C.E(Z)=D(X)D.n·D(Z)=D(X)·D(Y)答案BC解析因为E(X)=np,E(Y)=n(1-p),即A错误;因为D(X)=np(1-p),D(Y)=n(1-p)p,即B正确;因为A,B相互独立,所以P(AB)=p(1-p),所以E(Z)=np(1-p)=D(X),即C正确;因为nD(Z)=n2p(1-p)[1-p(1-p)],D(X)D(Y)=n2p2(1-p)2,即D错误.故选BC.16.(2022·徐州模拟)在一次以“二项分布的性质”为主题的数学探究活动中,立德中学高三某小组的学生表现优异,发现的正确结论得到老师和同学的一致好评.设随机变量X~B(n,p),记p k=C k n p k(1-p)n-k,k=0,1,2,…,n.在研究p k的最大值时,小组同学发现:若(n+1)p为正整数,则k=(n+1)p时,p k=p k-1,此时这两项概率均为最大值;若(n+1)p为非整数,当k取(n+1)p的整数部分时,则p k是唯一的最大值.以此为理论基础,有同学重复投掷一枚质地均匀的骰子并实时记录点数1出现的次数.当投掷到第20次时,记录到此时点数1出现5次,若继续再进行80次投掷试验,则当投掷到第100次时,点数1总共出现的次数为________的概率最大.答案 18解析 继续再进行80次投掷试验,出现点数为1的次数X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫80,16,由k =(n +1)p =81×16=272=13.5,结合题中的结论可知,当k =13时,概率最大,即后面80次中出现13次点数1的概率最大,加上前面20次中的5次, 所以出现18次的概率最大.17.(2022·日照模拟)春节期间,我国高速公路继续执行“节假日高速免费政策”.某路桥公司为了解春节期间车辆出行的高峰情况,在某高速收费点发现大年初三上午9:20~10:40这一时间段内有600辆车通过,将其通过该收费点的时刻绘成频率分布直方图.其中时间段9:20~9:40记作区间[20,40),9:40~10:00记作[40,60),10:00~10:20记作[60,80),10:20~10:40记作[80,100],例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层随机抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,记X 为9:20~10:00之间通过的车辆数,求X 的分布列与数学期望;(3)由大数据分析可知,车辆在春节期间每天通过该收费点的时刻T服从正态分布N(μ,σ2),其中μ可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,σ2可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1 000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).参考数据:若T~N(μ,σ2),则P(μ-σ≤T≤μ+σ)=0.682 7,P(μ-2σ≤T≤μ+2σ)=0.954 5,P(μ-3σ≤T≤μ+3σ)=0.997 3.解(1)这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值为(30×0.005+50×0.015+70×0.020+90×0.010)×20=64,即10:04.(2)结合频率分布直方图和分层随机抽样的方法可知,抽取的10辆车中,在10:00前通过的车辆数就是位于时间分组中在[20,60)这一区间内的车辆数,即(0.005+0.015)×20×10=4,所以X的可能取值为0,1,2,3,4.所以P(X=0)=C46C410=114,P(X=1)=C14C36C410=821,P(X=2)=C24C26C410=37,P(X=3)=C34C16C410=435,P(X=4)=C44C410=1210.所以X的分布列为所以E(X)=0×114+1×821+2×37+3×435+4×1210=85.(3)由(1)得μ=64,σ2=(30-64)2×0.1+(50-64)2×0.3+(70-64)2×0.4+(90-64)2×0.2=324,所以σ=18,估计在9:46~10:40之间通过的车辆数也就是在[46,100)通过的车辆数,由T~N(64,182),得P(64-18≤T≤64+2×18)=P(μ-σ≤T≤μ+σ)2+P(μ-2σ≤T≤μ+2σ)2=0.818 6,所以估计在9:46~10:40之间通过的车辆数为1 000×0.818 6≈819(辆).。

《概率论与数理统计》习题随机变量及其分布

《概率论与数理统计》习题随机变量及其分布

第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率: P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z P α723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时0)(=x X ϕ当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X xdy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ.8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,181)3(,91)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______. iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案.2. ),4,2,0(!/)( ===-k k e c k X P k λλ是随机变量X 的概率分布, 则λ, c 一定满足 (A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0解. 因为),4,2,0(!/)( ===-k k e c k X P k λλ, 所以c > 0. 而k 为偶数, 所以λ可以为负. 所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y解. X ~⎩⎨⎧=01)(x ϕ 其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ 其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{max()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{min(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是(A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D) y arctan 1π 解. )2()2(}2{)()(yF y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B).21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案. 注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度:当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m i n (1))2,(m i n ()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m i n (1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m i n (1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m i n(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.13)()1(1===A P X P1331210)()|()()2(11212⋅====A P A A P A A P X P1331221110)()|()|()()3(11223321⋅⋅====P P A P A P X P1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii. 每次抽取后总以一个正品放回X 1 2 3 4p13101311133⋅ 1312132133⋅⋅ 1331321311⋅⋅⋅ 1310)()1(1===A P X P1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|a r c s i n 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dxX P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时⎰⎰∞--=-==xdt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x t d t dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x xϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞ 试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛c7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布. 解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2=54145-=⎰ππxdt x当 x > 9π时1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤= 当 z ≤ 0时0)(=z F Z 当 0 < z < 1时z z dxdy Xz Y P z X Y P z Z P z F D Z 219928181)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解.i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x。

随机变量及其分布

随机变量及其分布


p(xi)P{Xxi}, i1, 2,
(21)
则称{p(xi) i1 2 }为X的概率分布 有时也将p(xi)记为pi 用
下列表格形式来表示 并称之为X 的概率分布表
4
概率分布的性质
任何一个离散型随机变量的概率分布{p(xi)}必然满足下 列性质
1 p(xi)0 i1 2
(22)
((22))ii pp((xxi)i)11
事件的概率与密度函数的关系
(1)连续型随机变量X落于区间(a b]上的概率为
b
P{a X b} F(b) F(a)a f (x)dx
(2)连续型随机变量X落于点x上的概率为
P{Xx}0
(212)
(213)
19
例28 设X是在[a b]上等可能投点的位置 其分布函数为
0, F (x) bx1,aa ,
x
x
F(x) 0 F() lim F(x)1
若函数Fx)满足上述三
x
条性质 则它一定是某个随
(3)右连续性 F(x0)F(x) 机变量X的分布函数
10
三、分布函数
定义24(分布函数) 设X是一随机变量 则称函数
F(x)P{Xx} x( )
(29)
为随机变量X的分布函数 记作X ~F(x)
分布函数的性质 随机变量的分布函数必然满足下列性质
0 x1, x1.
14
四、离散型随机变量的分布函数
离散型随机变量的分布函数F(x)的共同特征是 F(x)是一 个阶梯形的函数 它在X的可能取值点处发生跳跃跳跃高度 等于相应点处的概率 而在两个相邻跳跃点之间分布函数值 保持不变
反过来 如果一个随机变量X的分布函数F(x)是阶梯型函 数 则X一定是一个离散型随机变量 其概率分布可由分布函 数F(x)惟一确定 F(x)的跳跃点全体构成X的所有可能取值 每 一跳跃点处的跳跃高度则是X在相应点处的概率

概率论2-5 (1)

概率论2-5 (1)

2
y
fY
( y)
1
y
e 2, y 0
2 y
0
其它
设X ~ N(0,1),其概率密度为:
x
1
x2 ,
e 2 x
2
则 Y X 2 概率密度函数为:
fY
y
1
2
1 y
y 2e 2 ,
0,
y0 y0
此时称Y服从自由度为1的 2分布,记作 Y ~ 2 1
结论:若 X ~ N 0,1 则 X 2 ~ 2 1
机变量。求Y的分布律.
例:已知
X -1 0
Pk
1 3
1 3
求:Y=X2的分布律
1
Y1 0
1 3
Pk
2 3
1 3
一般地
X
x1
x2 xk
Pk p1
p2 pk
Y=g(X) g(x1) g(x2 ) g(xk )
如果g( x i )与g( x j )相同,此时将两项合并,对应概率 相加.
例 设随机变量X的分布律为
1、一般方法
(1) 求Y的分布函数 FY(y)
根据分布函数的定义
FY ( y)
P{Y y} P{g(X ) y}
(2) 对FY(y) 求导,得到 fY(y)
f (x)dx
g ( x) y
fY ( y) (FY ( y)) '
设随机变量X的密度函数为
fX
(x)
x
8
,0
x
4
0, 其它
求随机变量Y=2X+8的概率密度。
2
pk 0.2 0.3 0.4 0.1
解 由题设可得如下表格

一元随机变量及分布-文档资料

一元随机变量及分布-文档资料
F ( x )F ( x (4) 右连续, 即 lim 0)
x x 0
(3) F ( ) F ( x ) 1 F ( ) F ( x ) 0 lim lim
x x

9
下列四个函数中,不能作为随机变量分布函数的是_
x 0 0 2 x (A ) F ( x ) 0 x 1 1 2 x 1 1
1 C ( 1 )解: P { X 1 } 3 1 C 8
1 1 C C 5 P {X 1 } 3 1 1 C C 8 7
1 1 1 C C C 5 2 P { X3 } 3 1 1 1 C C C 8 7 6
1 1 1 C C C 2 1 P { X4 } 3 1 1 1 1 C 8 C 7 C 6
1 2 3 4 X~ 5 15 5 1 8 56 56 56
3 5 ( 2 ) P { X k } 1 , 2 , 3 , k 8 8
k 1
几何分布
6
例6.一汽车沿一街道行驶,需要通过三个均设有红 绿信号灯的路口。每个信号灯为红或绿与其它信 号灯为红或绿独立,且红绿两种信号显示时间相 等。以X表示汽车首次遇到红灯前已通过的路口 数,求X的概率分布。
一、随机变量及分布
1、随机变量:对于随机试验的每一个可能结果w (样本 点)∈ Ω,都有唯一的实数X(w)与之对应,则称X(w)是一 个随机变量,简记为R. V. X 注意: (1)随机变量X(w)实质是函数, X(w)取值是值 域. (2)实验结果是随机的, X(w)取值也是随机. (3)实验的各个结果的出现有一定概率, X(w)取值有一定概 率.
2、分类

离散型
连续型

第3.3节随机变量的函数及其分布(new)

第3.3节随机变量的函数及其分布(new)
−∞ −∞
pη ( y ) = ∫ p1 ( x) p2 ( y − x)dx
+∞
因此我们有如下定理: 定理:若 ξ1,ξ 2 相互独立,且有密度函 数, 则ξ1 + ξ 2也有密度函数,并且其 密度函数为 ξ1 与ξ 2密度函数的卷积。
例 设随机变数 ξ , η 独立,同服从 λ = 1的 指数分布,求 ξ + η 的密度函数。 解: ξ + η 的密度函数为 pξ+η ( y ) =
Fη ( y ) = P {η < y} = z1 = x1 令 z 2 = x1 + x 2 上式 = = (∫ ,则
2 x1 + x 2 < y
∫∫
p ( x 1 , x 2 ) dx 1 dx
2
∫ ∫
−∞ +∞ −∞
+∞
y −∞
p ( z 1 , z 2 − z 1 ) dz 1 dz
i =0 k
= ∑ P{ξ = i}P{η = k − i} = ∑ C p q C
i =0 i =0 i n i n −i
k
k
k −i m
p q
k −i
m− k +i
=p q
k
n+ m−k
∑C C
i =0 i n
k
k −i m
=C
k n+m
p q
k
n + m−k
, k = 0,L, n + m
则ξ + η ~ B(n + m, p)
故η的密度函数为 1 p( y) = F′( y) = 2 π(1+ y )
例2的解

随机变量及其分布习题

随机变量及其分布习题
随机变量离散型随机变量定义若随机变量x取值x分布律的性质几个常用的离散型分布一贝努里bernoulli概型与二项分布01分布若以x表示进行一次试验事件a发生的次数则称x服从01分布两点分布1p1k若以x表示n重贝努里试验事件a发生的次数则称x服从参数为np的二项分布
习题课
第二、三章 随机变量及其概率分布
C P{X k} k pk (1 p)nk ,(k 0,1,...,n) n
(二. ) 泊松(Poisson)分布P()
X~P{X=k}= k e , k=0, 1, 2, …
k!
(0)
泊松定理表明,泊松分布是二项分布的极限分布,
当n很大,p很小时,二项分布就可近似地 看成是参数=np的泊松分布
dF(x) f (x) dx
(4) 对任意实数b,若X~ f(x),
(-<x<),则P{X=b}=0。
于是
P{a X b}=P{a X b}
=P{a X b}= b f (x)dx a
例2.3.2.已知随机变量X的概率密度为
x 0 x1
f (x) 2 x 1 x 2
联合密度为非负可积的函数f(x,y)
边缘密度


f X (x)
f ( x, y)dy

fY ( y)
f ( x, y)dx

联合分布函数:
xy
F(x, y)
f (u, v)dudv

边缘分布函数 :
x
FX ( x) f X ( x)dx ,
其密度函数表示为
(x)
1
x2
e 2 , x .
2
分布函数表示为

一元统计基础知识

一元统计基础知识

❖ 与均值不同,中位数在理论上总是存在的。当随机 变量的分布对称时,中位数与均值(如果存在)重叠 。
图1.1.6 中位数m在分布函数中的位置 图1.1.7 中位数m在密度函数中的位置
3.分位数
❖ 分位数(quantile)是反映随机变量取值相对位置的一 个量。
❖若
F
x1 p
f x1 p
F(a)=P(x≤a)
❖ 分布函数F(x)具有下述性质:
(1)F(x)是非降函数,即若x1<x2,则F(x1)≤F(x2);
(2) lim F x 0, lim F x 1;
x
x
(3)F(x)是右连续函数,即F(x+0)=F(x)。
二、概率分布的类型
❖ 1.离散型分布 ❖ 2.连续型分布
1.离散型分布
为x的(概率)密度函数。对f(x)的连续点必有F′(x)=f(x)

❖ 密度函数f(x)具有如下两个性质:
(1)f(x)≥0;
(2) f xdx 1。
三、随机变量的数学期望和方差
❖ 离散型:
E x ak pk k 1
2 V x E x 2 ak 2 pk k 1
图1.1.9 偏度sk对分布形状的影响
7.峰度
❖ 峰度(kurtosis)是另一个反映随机变量分布形状的量 ,它度量了分布尾部的厚度。
❖称
ku
4 2 2
3
E x 4
4
3
为x的峰度系数,简称峰度。
❖ 若令 x* x ,则峰度
ku=E(x*4)−3
❖ 同偏度一样,峰度也是一个没有单位的数值。 ❖ 峰度ku的取值范围是[−2,∞]。 ❖ 正态分布的峰度为零。若ku>0,则说明随机变量x分

《概率论与数理统计》教学大纲

《概率论与数理统计》教学大纲

《概率论与数理统计》教学大纲第一章随机事件及其概率一、基本内容随机事件的概念及运算。

概率的统计定义、古典定义及公理化定义。

概率的基本性质、加法公式、条件概率与乘法公式、全概率公式、贝叶斯公式。

事件的独立性,独立随机试验、伯努利公式。

二、基本要求1、了解样本空间的概念,理解随机事件的概念,掌握事件间的关系及运算。

2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率;掌握概率的加法、乘法公式以及全概率公式、贝叶斯公式。

3、理解事件独立的概念,掌握用事件的独立性计算概率;理解重复独立试验的概念,掌握伯努利概型概率的计算。

三、建议课时安排本章讲课6学时,习题课2学时。

具体安排如下:1、随机事件及其运算,概率的定义和性质 2学时2、条件概率与乘法公式,全概率公式与贝叶斯公式 3学时3、事件的独立性,伯努利公式 1学时4、习题课 2学时第二章随机变量及其分布一、基本内容一元随机变量及其概率分布的概念。

随机变量的分布函数及其性质。

离散型随机变量的概率分布、连续型随机变量的概率密度以及它们的性质。

几种常见的离散型分布和连续型分布。

二元随机变量及其联合分布的概念。

二元随机变量的分布函数及其性质。

离散型随机变量的联合分布、边缘分布及条件分布,连续型随机变量的联合密度、边缘密度及条件密度,以及它们的性质。

随机变量的相互独立性。

随机变量函数的分布,两个连续型随机变量之和的分布。

二、基本要求1、理解随机变量及其分布的概念。

理解分布函数的概念。

会求与随机变量有关的事件的概率。

2、掌握概率分布、概率密度与分布函数之间的关系,会灵活运用它们的性质。

3、掌握0-1分布、二项分布、泊松分布和超几何分布。

掌握二项分布的近似计算(用泊松分布)。

掌握均匀分布、指数分布和正态分布。

4、理解二元随机变量、联合分布、边缘分布、条件分布的概念。

会求离散型随机变量的联合分布律。

已知联合分布,会求边缘分布和条件分布。

会利用二元分布求简单事件的概率。

第二章 一维随机变量及其分布

第二章 一维随机变量及其分布
x ® x0 - 0
公式。 由于上式中根本不可能出现 F ( x + 0 ) 的形式, F ( x + 0 ) = F ( x ) 对上述 5 种关系没有任何影响,即
F ( x ) 右连续,即 F ( x0 + 0 ) = F ( x0 ) ; F ( x0 - 0 ) ¹ F ( x0 ) 。当然,由于连续型在一点的概率恒为零,
ì P { x1 < ï P { x1 £ 当e ® 0 Þ ï í ï P { x1 £ ïP x < î { 1
X £ x2 } = P { X £ x2 } - P { X £ x1} X £ x2 } = P { X £ x2 } - P { X £ x1 - e } X < x2 } = P { X £ x2 - e } - P { X £ x1 - e } X < x2 } = P { X £ x2 - e } - P { X £ x1}
连续型的密度函数不一定连续,例如 X ~ ( a, b ) ,则 f ( x ) 在 x = a 或 b 两个端点处不连续,所以,
ì 1 ì 1 , a< x<b , a£ x£b ï ï 一般把均匀分布密度函数写成 f ( x ) = í b - a ,而不写成 f ( x ) = í b - a ,这一 ï ï other other î0, î0,
显然,我们只须定义一个 P { X £ x} 形式就可以了,其他区间形式都可以用它表示出来。 于是定义 F ( x ) = P { X £ x} 为 X 的普适分布函数。它就是 X 落在任意区间 ( -¥, x ] 上的概率,本质上 是一个累积函数,对于离散点,采用叠加,对于连续点,使用一元积分。 引入随机变量的目的是从数量上来研究随机现象的统计规律,即把随机试验的不同结果用一个变量 来表示,由于试验出现的结果是偶然的,因而随机变量的取值方式也是偶然的,试验前只能知道它的取 值范围 X £ x ,试验后才能确定它的具体值 x 。另外,对于随机变量 X ,我们不仅要知道它取各种可能 值的概率,更重要的是要知道 X 在任意区间 [ x1 , x2 ] 内的取值分布规律,这正是分布函数所反映的内容 -----求事件的概率。 随机变量和分布函数共同架起了随机现象和高等数学之间的桥梁。 2.2 分布函数的 4 个重要性质

2.4随机变量函数的分布

2.4随机变量函数的分布

P( X
yb
y
a
b
)
a
f X ( x)dx
fY ( y)
1 a
fX (
y
a
b
)
11
(2)
a<0 FY ( y)
P( X
y b) a
yb f X ( x)dx
a
fY ( y)
1 a
f
X
(
y
a
b
)

fY
( y)
|
1 a
|
fX
(
y a
b)
…(*)
12
对于上例: y=g(x)=ax+b 注意到y=g(x)=ax+b与y=ex都是单 调函数
13
定理: 连续型随机变量X的概率密度为 fX(x), x(, +),若y=g(x)为严格单调 函数,其反函数x=h(y)连续可导,Y=g(X) 的概率密度为:
fY
(
y
)
f
X
0,
[h(
y)]
|
h(
y
)
|,
y
其它
其中=min{g(),g(+)} =max{g(),g(+)}
14
当fX(x)在有限区间[a,b]之外取值 为零时,只需假设在[a,b]上g(x)严格单 调,反函数在相应区间可导,则上述定
2.4 随机变量函数 的分布
讨论如何根据已知的 随机变量X的分布,去求它 的函数Y=g(X)的分布
一、离散型随机变量函数的 分布
二、连续型随机变量函数的 分布
1
问题的提出
在实际中,人们常常对随机变量的函数 更感兴趣. 例如,已知圆轴截面直径 d 的分布,

中班数学认识简单的随机变量

中班数学认识简单的随机变量

中班数学认识简单的随机变量数学是学习中班的重要内容之一,通过数学学习,幼儿可以培养逻辑思维和分析问题的能力。

在中班数学学习中,了解随机变量是一个重要的概念。

本文将介绍中班数学中简单的随机变量的认识。

一、随机变量的定义和特点随机变量是数学中的一个重要概念,它用来描述随机试验中的结果。

在中班数学中,我们可以以简单的游戏为例来认识随机变量。

比如,教师可以准备一些带有数字的纸牌,每个纸牌上写有1至6的数字,然后让幼儿们进行抽牌游戏。

每次抽到的纸牌上的数字就是一个随机变量。

随机变量有以下几个特点:1. 随机性:随机变量的取值是不确定的,我们无法预测具体的结果。

2. 取值范围:随机变量的取值范围是固定的,比如上述例子中的纸牌上的数字范围是1至6。

3. 概率分布:随机变量的每个取值都有一定的概率发生,概率之和等于1。

二、认识随机变量的意义了解随机变量的意义对幼儿的数学学习有着重要的作用。

通过认识随机变量,幼儿可以培养以下几个方面的能力:1. 观察力:通过观察随机试验的结果,幼儿可以学会仔细观察,发现规律。

2. 推理能力:随机变量的取值是不确定的,需要通过推理和预测来确定可能的结果。

3. 统计思维:通过了解随机变量的概率分布,幼儿可以培养统计思维,明白每个结果发生的可能性。

三、中班数学教学中的随机变量应用在中班数学教学中,教师可以运用随机变量来进行一些简单的游戏和实验,从而帮助幼儿们更好地理解和认识随机变量。

1. 抽牌游戏:可以通过抽牌游戏来让幼儿们认识随机变量,让他们自己体验随机性。

2. 掷骰子:可以使用骰子来进行实验,让幼儿们观察和记录每次实验的结果,了解随机变量的取值范围。

3. 排队游戏:可以让幼儿们进行排队游戏,观察每个幼儿排队的位置,通过统计每个位置出现的次数,了解随机变量的概率分布。

通过以上的教学活动,幼儿们可以在游戏中感受到数学的乐趣,同时也加深对随机变量的理解。

四、中班数学教学中的评价和展望通过在中班数学教学中引入随机变量的概念,幼儿们可以培养观察力、推理能力和统计思维。

第六章随机变量的函数及其分布

第六章随机变量的函数及其分布



定理1 正态分布的线性函数仍服从正态分布
设X ~ N ( , ), Y aX b(a 0), 则
2
Y ~ N (a b, (a ) )
2
推论 正态分布的标准化方法 X 2 若X ~ N ( , ), 则 ~ N (0, 1)
定理2 若随机变量X及其函数Y = g(X)的密度函 数分别为fX (x), fY (y), 且g(x)是严格单调 函数,则: fY ( y) f X [(G( y)] G( y) 其中x = G(y)为y = g(x)的反函数.
例:设(X, Y)的联合分布律为: Y 0 1 2 X 1 1 3 1 12 12 12 1 1 2 0 2 12 12 2 2 3 0 12 12 请求出:(1) X+Y的分布律; (2) X-Y的分布律; (3) X2+Y-2的分布律.
解:由(X, Y)的联合分布律可得如下表格
1 1 ( , 2) ( , 1) (3, 2) ( X , Y ) ( 1, 2) ( 1, 1) ( 1, 0) 2 2
概率 1/12 1/12 3/12 2/12 1/12 2/12 2/12 X-Y 1 0 -1 5/2 3/2 5 3
概率 1/12 1/12 3/12 2/12 1/12 2/12 2/12
X2+Y-2
-3
-2
-1
-15/4 -11/4
5
7
概率
1/12 1/12 3/12 2/12 1/12
2/12 2/12



两个独立随机变量的和的分布 如果X与Y相互独立,则: X P (1 ) (1) X Y P (1 2 ) Y P ( 2 )

概率论3_1随机向量的分布

概率论3_1随机向量的分布

D
边缘密度函数
由性质(3) 边缘分布函数FX(x)可表示为
FX(x)P{Xx}P{Xx Y}
x
f (s, t)dsdt
x
[ f (s, t)dt]ds
由(313)知 X是连续型随机变量 且其密度函数为
(313)
fX (x) f (x, y)dy
同理 Y是连续型随机变量 其密度函数为
(316)
例34(1) 设随机向量(X1 Y1)的密度函数f(x y)为
f (x, y)k10x,y,
0 x1, 0 y 1, 其他.
求参数k1的值及(X1 Y1)的边缘密度函数
解 由密度函数的性质 有
11
f (x, y)dxdy 0 0k1xydxdy 1
由此易得k14 (X1 Y1)的边缘密度函数为
第三章随机向量随机向量的分布一随机向量及其分布函数二离散型随机向量的概率分布三连续型随机向量的概率密度函数四二元正态分布一随机向量及其分布函数定义31随机向量p上的一个n维随机向量定义32联合分布函数的联合分布函数说明的交事件二维随机向量xy的分布函数fxsy的概率说明的概率可用分布函数表示为边缘分布函数如果xy的分布函数fxy已知则由fxy可导出x和y各自的分布函数fy为联合分布函数fxy的边缘分布函数二离散型随机向量的概率分布定义33二维离散型随机向量如果二维随机向量xy只取有限个或可数个值y为二维离散型随机向量定义34联合概率分布设随机向量xy的所有可能取值为x则称36为随机向量xy的概率分布或x和y的联合概率分联合概率分布表随机向量xy概率分布可用表格形式表示如下表并称之为联合概率分布表的联合概率的分布可以求出x通常称3738为联合概率分布pxx2号邮筒中信的数求x和y的联合概率分布及边缘概率分y取各种可能值的概率例如311三连续型随机向量的概率密度函数定义35二维连续型随机向量y为二维随机向量分布函数为fxy为二维连续型随机向量并称fxy的概率密度函数简称密度函数或x与y的联合密度函数联合密度函数的性质边缘密度函数由性质3边缘分布函数f由313知x是连续型随机变量且其密度函数为同理y是连续型随机变量其密度函数为通常称314315中的f例33均匀分布设g是平面上的一个有界区域其面积记作sg二维连续的随机向量xy的密度函数按题意可设xy的密度函数为由密度函数的性质可得316说明如果一个二维随机向量xy服从区域g上的均匀分布的边缘密度函数由密度函数的性质的边缘密度函数由密度函数的性质四二元正态分布二元正态分布二元正态分布以为中心在中心附近具有较高的密度离中心越远密度越小设随机向量xy的密度函数为318其中的二元正态分布记作对称地可知比较联合密度函数xy和边缘密度函数对称地可知二元正态分布的边缘分布是一元正态分布它们的参数对应于二元正态分布的前4个参数不同的二元正态分布比如不同的可以有相同的边缘分布因而由边缘分布不能惟一确定联合分布为了确定一个二元正态分布的密度函数除了知道边缘分布以外还须知道参数的值特别地如果0

《概率论与数理统计》习题随机变量及其分布

《概率论与数理统计》习题随机变量及其分布

第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ? 1) =95, 则P(Y ? 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:P(X ? a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ? x 2) = ________.解. P(X ? a) = F(a) P(X = a) = P(X ? a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ? x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ?-1或k ? 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k= 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216?, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z P α723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以 ⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时 0)(=x X ϕ 当1 ? x ? e 2时 ⎰⎰===∞+∞-x X x dy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ. 8. 若X 1, X 2, …, X n 是正态总体N(?, ?2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则? = ______, ? = _______.解.21/3 ? ?213161)1(,181)3(,91)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______.iii. U= X 2+ Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=2210)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+?) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. ),4,2,0(!/)( ===-k k ec k X P kλλ是随机变量X 的概率分布, 则?, c 一定满足(A) ? > 0 (B) c > 0 (C) c ? > 0 (D) c > 0, 且 ? > 0 解. 因为),4,2,0(!/)( ===-k k ec k X P kλλ, 所以c > 0. 而k 为偶数, 所以?可以为负. 所以(B)是答案.3. X ~N(1, 1), 概率密度为?(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = ? = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2(D) X -Y 解. X ~⎩⎨⎧=01)(x ϕ其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ 其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X,Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{m ax ()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{m in(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是(A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D) y arctan 1π解. )2()2(}2{)()(yF y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是 (A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B). 21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案.注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度: 当z < 0时0)(=z F Z当z ? 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ? 0} = 1/2 (B) P{X + Y ? 1} = 1/2 (C) P{X -Y ? 0} = 1/2 (D) P{X -Y ? 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ? 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点解. 分布函数:))2,(m in(1))2,(m in()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ? 2时101))2,(m in(1)(=-=>-=y X P y F Y 当0 ? y < 2时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-=0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度. i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.13)()1(1===A P X P 1331210)()|()()2(11212⋅====A P A A P A A P X P1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P XPii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii. 每次抽取后总以一个正品放回13)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|arcsin 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dx X P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ? 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ? 1时 ⎰⎰∞--=-==x dt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x x x F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ? x < 1时 ⎰⎰∞-===x x x tdt dt t x F 2)()(2ϕ当1 ? x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x x ϕ当2 ? x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -? < x < +? 试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -? < x < +?, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== .(其中?(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30)=88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少 ii. 三只电子元件全损坏的概率是多少 iii. 只有一个电子元件损坏的概率是多少解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ? 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛c 7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布.解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ 其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ? 0时, F(x) = 0当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 =54145-=⎰ππxdt x当 x > 9?时 1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx Fππππ99425425>≤≤<x x x 密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ? 1时, 关于X 的条件分布.解. X(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y XP1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P 所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=当 z ? 0时0)(=z F Z 当 0 < z < 1时z z dxdy Xz Y P z X Y P z Z P z F D Z 219928181)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ? 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z D 210. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解. i. ⎰∞+∞-=dy y x x X ),()(ϕϕ当x ? 0 或 x ? 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii. ⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ? 0 或 y ? 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x。

一元随机变量求概率分布,概率密度例题

一元随机变量求概率分布,概率密度例题

一元随机变量求概率分布,概率密度例题
一元随机变量是指其取值只有一个元素的随机变量,例如自然数、整数、分数等。

下面是一些一元随机变量的概率分布和概率密度例题:
1. 一元随机变量 X 的概率密度函数为 f(x),其概率分布为:
a. 离散型概率密度函数:f(x) = 1/x
b. 连续型概率密度函数:f(x) = C(n, x) 1/x^n,其中 n 是整数,C(n, x) 表示第 n 个数取值在 x 范围内的集合。

c. 混合型概率密度函数:f(x) = 1/x(1-1/x),其中 x 是正整数。

2. 假设有随机变量 X 的取值范围是 [a, b],则 X 的概率分布为:
a. 概率密度函数为 f(x) = (b-a)/(b-a)(b+a)
b. 概率密度函数为 f(x) = (a-b)/(a-b)(a+b)
c. 概率密度函数为 f(x) = 1/(x-a)(x-b)。

3. 假设有随机变量 X 的取值范围是 [a, b],则 X 的概率密度
函数为:
a. 概率密度函数为 f(x) = 1/(b-a)
b. 概率密度函数为 f(x) = 1/(b-a)(b+a)
c. 概率密度函数为 f(x) = 1/(x-a)(x-b)。

4. 假设有随机变量 X 的取值范围是 [a, b],则 X 的概率密度
函数为:
a. 概率密度函数为 f(x) = (b-a)/(b-a)(b+a)
b. 概率密度函数为 f(x) = (a-b)/(a-b)(a+b)
c. 概率密度函数为 f(x) = 1/(x-a)(x-b),其中 x 是正整数。

这些例题展示了如何计算一元随机变量的概率分布和概率密度函数。

随机变量及其分布典型题型及解题策略

随机变量及其分布典型题型及解题策略

随机变量及其分布典型题型及解题策略
钦彦;张启兆
【期刊名称】《中学生数理化(高二数学、高考数学)》
【年(卷),期】2024()8
【摘要】随机变量及其分布是高中数学的重要内容,也是高考的热点之一,既有选择、填空题又有解答题,难度中等偏上,现将随机变量及其分布典型题型及解题策略总结
如下。

【总页数】4页(P19-22)
【作者】钦彦;张启兆
【作者单位】江苏省无锡市青山高级中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.离散型随机变量的分布列的题型及解法
2.一元二次方程实根分布问题的常见题型与解题策略
3.新课程背景下英语七选五题型的命题方向及解题策略--以近三年全国皿卷七选五题型为例
4.随机变量及其分布的重点题型及解题策略
5.高考英语阅读
理解题型典型错因分析及应对策略探究——以2020—2022年高考英语全国卷为

因版权原因,仅展示原文概要,查看原文内容请购买。

一元正态分布定义

一元正态分布定义

一元正态分布定义一元正态分布(Univariate Normal Distribution)是概率论与统计学中的重要概念之一,它是统计学中最常见的连续概率分布之一。

在本文中,将从定义、性质、应用等多个方面对一元正态分布进行详细介绍。

一元正态分布是以钟形曲线为特征的概率分布,也被称为高斯分布(Gaussian Distribution)。

它的数学表达式可以用一个参数来描述,即均值μ和标准差σ。

一元正态分布的概率密度函数为:f(x) = (1 / (σ√(2π))) * exp(-(x-μ)² / (2σ²))其中,exp()表示以e为底的指数函数,x为随机变量的取值,μ为均值,σ为标准差。

一元正态分布的均值决定了其钟形曲线的中心位置,标准差则决定了曲线的宽窄程度。

一元正态分布具有以下几个重要的性质:1. 对称性:一元正态分布的概率密度函数在均值μ处取得最大值,两侧对称。

2. 峰度和偏度:一元正态分布的峰度(kurtosis)为3,表示其曲线相对于标准正态分布的陡峭程度;偏度(skewness)为0,表示其曲线的对称性。

3. 中心极限定理:当样本量足够大时,一元正态分布可以近似地描述许多自然现象和随机事件的分布情况。

一元正态分布在各个领域都有广泛的应用,下面将介绍几个常见的应用场景。

1. 统计推断:一元正态分布在统计推断中扮演着重要的角色。

在参数估计中,可以使用最大似然估计法来估计均值和方差;在假设检验中,可以使用一元正态分布来构建检验统计量,进行假设的验证。

2. 风险分析:一元正态分布常被用于金融领域的风险分析。

例如,在投资组合管理中,可以使用一元正态分布来估计资产收益的分布情况,从而进行风险评估和资产配置。

3. 质量控制:一元正态分布在质量控制中也有广泛的应用。

例如,在生产过程中,可以使用一元正态分布来描述产品的尺寸、重量等特征的分布情况,从而进行产品质量的控制和改进。

一元正态分布还被广泛应用于机器学习、信号处理、生物统计学等领域。

2019年中国科学技术大学812 概率论与数理统计考研初试大纲

2019年中国科学技术大学812 概率论与数理统计考研初试大纲

中国科学技术大学
2018年硕士研究生入学考试复习大纲
科目名称 概率论与数理统计 编号 812 一、考试范围及要点
一. 概率部分
1. 随机变量及其分布(一元与多维随机变量, 边际分布, 联合分布,函数的分布)
2. 数字特征(期望, 方差, 相关系数)
3. 条件分布条件(条件分布, 条件期望, 条件方差)
4. 极限定理(依概率收敛, 分布收敛,大数律,中心极限定理)
二数理统计部分
1. 参数估计(矩估计, 似然估计, 最小方差无偏估计, 置信区间)
2. 假设检验(两类错误, 显著性检验, 拟合优度检验,列联表独立性检验)
3. 回归模型的参数的最小二乘估计、假设检验,方差分析。

二、考试形式与试卷结构
一. 试卷满分及考试时间
试卷满分150分,考试时间180分钟
二. 答题方式
答题方式为闭卷、笔试。

不使用计算器
三. 题型结构
题型结构为证明计算题, 共8道大题共150分
其中概率部分约50%,数理统计部分约50%
参考书目名称作者出版社版次年份概率论与数理统计 陈希孺 中国科学技术大学出版社2009年。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 arctgb 0.5
arctgb
4
b 1
书P68 6
22
A
x0
例4.若C .R. V X的分布函数是
求(1)待定参数A,B,C。
F
(
x)
Cx
Bx2 1x
2 1
2
1
0 x 1 1 x 2
x2
(2)求P{1<X<3}
(1)解: lim f (x) 0 A
x
又 lim f (x) 1,lim f (x) 2C 3
1
x5
P{1 X 4} F (4) F (1)
10
P{4 X 5} 3 10
P(4 X 5) P( X 4) P( X 5)
36
436
F (5) F (4) 1
10 10
10 10 10
15
五、连续型随机变量及概率密度
1、定义:设随机变量X的分布函数为F(x),如
解:(1) f (x) 0, g(x) 0且 b f (x)dX
b
f (x)dx 1
a
a

b
a [ f (x) g(x)]dx 2
故 f(x)+g(x)不是这区间上的概率密度函数
b
(2) a [f (x) (1 )g(x)]dx (1 ) 1
故 β f(x)+(1﹣ β) g(x)是 这个区间上的概率密度函数.
概率分布或分布列.
X
x1
x2
x3
xi
P
p1
p2
p3
pi
3、分布列的性质
(1) pi 0 i 1,2,(2)
pi 1
4、求分布列的步骤: (1)明确X的i含义及一切可能取
值。(2)利用概率的计算方法,计算X取各值的概率。 3
由已知条件求随机变量分布列的例题
例1.设某项试验的成功率是失败率的2倍,试用一个 随机变量描述该项一次试验的结果,求分布列。
3
(
x)
sin
x
x [ , ] 22
0
其它
(B)
f
2
(x)
sin
x
x [0, 3 ] 2
0
其它
(D)
f4
(x)
sin
x
x [0, ]
2
0
其它
解:(A)
0
f1(x)dx
0dx sin xdx
0
0dx 2
1
1
0.5 -0.5
12 34
0.5
(B),(C)中的函数不是非负函数
可以取区间内一切值的随机变量. 2
二、离散型随机变量及分布
1、离散型随机变量定义:设X是一个随机变量,如果X
的所有可能取的值为有限个或可数个,则称X为离散型随 机变量,记为 D.R.V X.
2、离散型随机变量的概率分布:设X是离散型随机变 量,可能取的值为 x1, x2 ,,则称P{X xi} pi i 1,2, 为X的
(1)试确定常数
a
的值
0
a x 其它
(2)如果概率 P{a X b} 0.5 试确定常数b 的值。
(1).解:1
f (x)dx
2
dx 2 arctgx 1 2 arctga
a (1 x2 )
a
arctga 0 a 0
(2).P{a X b} 2
b1
2
b
0 1 x2 dx arctg 0
第二章 随机变量及数字特征
• 一元随机变量及分布 • 随机变量数字特征 • 常用分布 • 一元随机变量及分布
一、随机变量及分布 二、离散型随机变量及分布 三、分布函数 四、离散型随机变量的分布函数 五、连续型随机变量及概率密度 六、一元随机变量函数的分布
1
一、随机变量及分布
1、随机变量:对于随机试验的每一个可能结果w (样本
19
已知某连续随机变量的密度函数或分布函数求其中的未知 参数并利用密度函数或分布函数求事件的概率
例1.若C. R .V X的概率密度是,
B
求待定参数B及P{0<X<0.5}
f
(
x)
1 x2
0
解:1
f (x)dx
1
B
dx
0 1 x2
0 x 1 其它
1
B
1
dx
B arcsin
x1
B
0 1 x2
(2)求子弹剩余数Y的分布列
Y=5-X
Y
0
1
2
34
Y ~ p 0.25 0.24 0.8 0.23 0.8 0.22 0.8 0.20.8 0.8
6
例5.一袋中有5个新球,3个旧球。每次从中任取一 个,有下述两种方式进行抽样,X表示直到取得新 球为止所进行的抽样次数:(1)不放回地抽取; (2)有放回地抽取。求X的分布列。
0
2
B 2
0.5
P{0 X 0.5} 0 f (x)dx
2 0.5 1 dx
0 2 1
0 6 3
b
P{a X b} a f (x)dx
20
例2.设连续型随机变量X的概率密度为
ln x 1 x b
f (x)
0
其它
试确定常数b的值及P{X<2}
X01 解:设X为一次试验的成功次数 P 1/3 2/3
例2、袋中有5只同样大小的球,编号为1、2、 3、4、5从中同时取出3只球,以X表示取 出的球的最大号码,求X的概率分布.
解:设X取出的球的最大号码
P{ X
3}
C3 3
C3 5
P{X
4}
C11C32 C53
P{X
5}
C11C42 C53
P{X 1} 1 F(1)
P{0 X 1} 0.4 F (1) F (0)
14
例2.若X的概率分布如下,分别求其分布函数
X0
1
P 1/3 2/3
0
F (x)
1 13
x0 0 x 1
x 1
0
x3
X3
4
5
1 F ( x) 140
3 x4 4 x5
P 1/10 3/10 6/10
10
4
(4)P{X a} 0
(5)在f (x)的连续点处,有F(x) f (x) 16
3、密度函数和分布函数与事件概率的关系
(1)P{a X b}
b
f (x)dx F(b) F(a)
a
(2)P{X a} a f (x)dx F (a)
(3)P{X a}
f (x)dx 1 F(a)
点)∈ Ω,都有唯一的实数X(w)与之对应,则称X(w)是一 个随机变量,简记为R. V. X
注意:
(1)随机变量X(w)实质是函数, X(w)取值是值 域. (2)实验结果是随机的, X(w)取值也是随机. (3)实验的各个结果的出现有一定概率, X(w)取值有一定概
率.
离散型
2、分类 连续型
取值为有限个和至多可列个的 随机变量.
a
4、密度函数和分布函数的关系
x
f
(x) F(x)
f (x)dx
F ( x)
F(x) f (x)
F(x) f (x) 17
判断函数是否为某连续随机变量的密度函数
例1下列函数可以作为某一连续型随机变量的概率密度的
是___
sin x x [0, ]
( A)
f1(x)
0
其它
(C)
f
2 F(x) P{X x} 1
F(x) P{X x}
xx
x
0
1
分布函数为
0
F (x)
1
2 1
x0 0 x 1
x 1
F(x) P{X x} pi xi x 12
四、离散型随机变量的分布函数
1、分布列与分布函数的关系:
F(x) pi xi x
2.分布列
F (x) pi
xix

limF(x)
x
F ( x0
)
xx0

10
下列四个函数中,不能作为随机变量分布函数的是_
0
x2
( A)
F1( x)
2 1
x0 0 x1
x1
0
1
(B)
F2
(
x)
3 1
2 1
x0 0 x1
1 x 2 x2
(C )
F3
(
x
)
ln(1 x 1 x
)
x0
0 x 0
1 ex
(D) F4(x)
x2
而 lim
x2
f (x) B,lim
f (x) 1
x1
x1
2
0
x0
F(x)
2x
1 x2 2 1 x2
F(x) P{X x} ------
解:当 x 0 F(x) P{X x} 0
则其分布函数
x 1 F(x) P{X x} 0.6
0 x 1 F(x) P{X x} 1
分布函数为
0 F ( x) 0.6
1
x0 0 x 1
x 1
P{X 0} 0.6 F (0)
记 q=1-p, 则X的概率分布为: P{X=n}=qn-1p, (n=1,2,...)
几何分布
5
例4.某射手有五发子弹,每次射击命中目标的概
率为0.8,如果命中就停止射击,不命中就一直射
到子弹用尽。(1)射击次数X的分布列
解:(1)
X
相关文档
最新文档