2013陕西高考理科试题

合集下载

2013年普通高等学校统一招生考试数学题目(陕西理)

2013年普通高等学校统一招生考试数学题目(陕西理)

2013年普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题, 第二部分为非选择题.2. 考生领到试卷后, 须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.3. 所有解答必须填写在答题卡上指定区域内. 考试结束后, 将本试卷和答题卡一并交回.第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R ,函数()f x =M , 则C M R 为 (A) [-1,1] (B) (-1,1)(C) ,1][1,)(∞-⋃+∞- (D) ,1)(1,)(∞-⋃+∞-2. 根据下列算法语句, 当输入x 为60时, 输出y 的值为 (A) 25 (B) 30 (C) 31 (D) 613. 设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的(A) 充分不必要条件 (B)(C) 充分必要条件 (D) 4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 (A) 11 (B) 12 (C) 13 (D) 145. 如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是(A)14π-(B)12π-(C) 22π- (D) 4π6. 设z 1, z 2是复数, 则下列命题中的假命题是(A) 若12||0z z -=, 则12z z = (B) 若12z z =, 则12z z =(C) 若12||z z =, 则2112··z z z z = (D) 若12||z z =, 则2122z z =7. 设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 (A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定8. 设函数41,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为 (A) -20 (B) 20 (C) -15 (D) 159. 在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x (单位m )的取值范围是1(A) [15,20] (B) [12,25] (C) [10,30] (D) [20,30]10. 设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有(A) [-x ] = -[x ] (B) [2x ] = 2[x ] (C) [x +y ]≤[x ]+[y ] (D) [x -y ]≤[x ]-[y ]二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分)11. 双曲线22116x y m -=的离心率为54, 则m 等于 .12. 某几何体的三视图如图所示, 则其体积为 .13. 若点(x , y )位于曲线|1|y x =-与y =2所围成的封闭区域, 则2x -y 的最小值为 . 14. 观察下列等式: 211=22123-=- 2221263+-=2222124310-+-=- …照此规律, 第n 个等式可为 .15. (考生请注意:请在下列三题中任选一题作答, 如果多做, 则按所做的第一题计分)A. (不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则(am +bn )(bm +an )的最小值为 .B. (几何证明选做题) 如图, 弦AB 与CD 相交于O 内一点E ,过E 作BC 的平行线与AD 的延长线相交于点P . 已知PD =2DA =2, 则PE = .C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为 .三、解答题: 解答应写出文字说明、证明过程及演算步骤(本大题共6小题,共75分)16. (本小题满分12分)已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b .(Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.17. (本小题满分12分)设{}n a 是公比为q 的等比数列. (Ⅰ) 推导{}n a 的前n 项和公式;(Ⅱ) 设q ≠1, 证明数列{1}n a +不是等比数列.18. (本小题满分12分)如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA ==x1A(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.19. (本小题满分12分)在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.20. (本小题满分13分)已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.(Ⅰ) 求动圆圆心的轨迹C的方程;(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是PBQ∠的角平分线, 证明直线l过定点.21. (本小题满分14分)已知函数()e,xf x x=∈R.(Ⅰ) 若直线y=kx+1与f (x)的反函数的图像相切, 求实数k的值;(Ⅱ) 设x>0, 讨论曲线y=f (x)与曲线2(0)y mx m=>公共点的个数.(Ⅲ) 设a<b, 比较()()2f a f b+与()()f b f ab a--的大小, 并说明理由.。

2013年全国高考数学理科试卷陕西卷(解析版)

2013年全国高考数学理科试卷陕西卷(解析版)

2013年普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题,第二部分为非选择题.。

2. 考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.。

3. 所有解答必须填写在答题卡上指定区域内。

考试结束后,将本试卷和答题卡一并交回。

第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R ,函数()f x M , 则C M R 为(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞-(D) ,1)(1,)(∞-⋃+∞-【答案】D【解析】),1()1,(],1,1[.11,0-12∞--∞=-=≤≤-∴≥ MR C M x x 即,所以选D2. 根据下列算法语句, 当输入x 为60时, 输出y 的值为 (A) 25 (B) 30 (C) 31 (D) 61 【答案】C【解析】31)50(6.025,60=-⋅+=∴=x y x ,所以选C3. 设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的 (A) 充分不必要条件(B) 必要不充分条件(C) 充分必要条件(D) 既不充分也不必要条件【答案】C【解析】。

θcos ||||⋅⋅=⋅若1cos ||||||±=⇒⋅=⋅θ,//0,即或与则向量π为真; 相反,若//,则||||||0⋅=⋅,即或的夹角为与向量π。

所以“||||||=a a b b ·”是“a //b ”的充分必要条件。

另:当或向量为零向量时,上述结论也成立。

所以选C4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 (A) 11 (B) 12 (C) 13 (D) 14 【答案】B【解析】使用系统抽样方法,从840人中抽取42人,即从20人抽取1人。

2013年全国普通高等学校招生统一考试理科数学(陕西卷)

2013年全国普通高等学校招生统一考试理科数学(陕西卷)

2021年全国普通高等学校招生统一考试理科数学(陕西卷)学校:___________姓名:___________班级:___________考号:___________一、单选题1.设全集为R, 函数()f x =M, 则C M R 为 ( )A .[-1,1]B .(-1,1)C .(,1][1,)-∞-⋃+∞D .(,1)(1,)-∞-⋃+∞2.根据下列算法语句, 当输入x 为60时, 输出y 的值为 ( )A .25B .30C .31D .613.设a, b 为向量, 则“||||||=a a b b ·”是“a//b”的 ( )(A) 充分不必要条件(B) 必要不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件4.某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 ( ) A .11 B .12 C .13 D .145.如图, 在矩形区域ABCD 的A, C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF(该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无信号的概率是 ( )A .14π-B .12π-C .22π- D .4π 6.设12,z z 是复数,则下列命题中的假命题是()A .若120z z -=,则12z z =B .若12z z =,则12z z =C .若12=z z ,则1122z z z z ⋅=⋅D .若12=z z ,则2212z z =7.设在ABC ∆中,角,A B C ,所对的边分别为,a b c ,, 若cos cos sin b C c B a A +=, 则ABC ∆的形状为 ( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定8.设函数41,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x>0时, [()]f f x 表达式的展开式中常数项为 ( )(A) -20 (B) 20 (C) -15 (D) 159.在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )A .[15,20]B .[12,25]C .[10,30]D .[20,30]10.设[x]表示不大于x 的最大整数, 则对任意实数x, y, 有 ( )A .[-x] = -[x]B .[2x] = 2[x]C .[x +y]≤[x]+[y]D .[x -y]≤[x]-[y]二、填空题11.双曲线x 216−y 2m =1的离心率为54, 则m 等于 . 12.某几何体的三视图如图所示, 则其体积为.13.若点(,)x y 位于曲线|1|y x =-与2y =所围成的封闭区域,则2x y -的最小值为 .14.观察下列等式:211=22123-=-2221236-+=2222123410-+-=-…照此规律, 第n 个等式可为 .15.已知a, b, m, n 均为正数, 且a +b =1, mn =2, 则(am +bn)(bm +an)的最小值为 . 16.如图, 弦AB 与CD 相交于O 内一点E, 过E 作BC 的平行线与AD 的延长线相交于点P. 已知PD =2DA =2, 则PE = .17.(坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为 .三、解答题18.已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()?f x =a b . (Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值. 19.设{}n a 是公比为q 的等比数列.(Ⅰ) 推导{}n a 的前n 项和公式;(Ⅱ) 设q≠1, 证明数列{}1n a +不是等比数列.20.如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA ==(Ⅰ) 证明: A 1C ⊥平面BB 1D 1D;(Ⅱ) 求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.21.在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ) X 表示3号歌手得到观众甲、乙、丙的票数之和, 求X 的分布列和数学期望. 22.已知动圆过定点A(4,0), 且在y 轴上截得的弦MN 的长为8.(Ⅰ) 求动圆圆心的轨迹C 的方程;(Ⅱ) 已知点B(-1,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P, Q, 若x 轴是PBQ ∠的角平分线, 证明直线l 过定点.23.已知函数f(x)=e x ,x ∈R .(Ⅰ) 若直线y =kx +1与f (x)的反函数的图像相切, 求实数k 的值;(Ⅱ) 设x>0, 讨论曲线y =f (x) 与曲线y =mx 2(m >0)公共点的个数.(Ⅲ) 设a<b, 比较f(a)+f(b)2与f(b)−f(a)b−a 的大小, 并说明理由.参考答案1.D【解析】[]()()()-1,1,11,R f x M C M ==-∞-⋃+∞的定义域为,故,选D.要注意避免出现1x ±及求补集时区间端点的取舍错误.【考点定位】本题考查函数的定义域、一元二次不等式的解法、集合运算等知识.属于容易题.2.C【解析】试题分析:输入60x =,判断50?x ≤,否,250.6(6050)31y =+⨯-= ,输出31y =故选C .考点:算法语句.3.C【解析】a, b 为向量, cos ,a b a b a b a b ==向量a 、b 的夹角为0︒或180︒则“||||||a b a b =”是“//a b ”的充分必要条件.此类问题解答要注意掌握好命题条件和向量共线的基本知识.【考点定位】本题考查向量的数量积、向量夹角、向量模长和充要条件等知识. 属于容易题. 4.B【解析】试题分析:使用系统抽样方法,从840人中抽取42人,即从20人抽取1人.∴从编号1~480的人中,恰好抽取480/20=24人,接着从编号481~720共240人中抽取240/20=12人考点:系统抽样5.A【解析】试题分析:由图形知,无信号的区域面积212121242S ππ=⨯-⨯⨯=-,所以由几何概型知,所求事件概率22124P ππ-==-,故选A .考点:几何概型.6.D【解析】试题分析:对(A ),若120z z -=,则12120,z z z z -==,所以为真; 对(B )若12z z =,则1z 和2z 互为共轭复数,所以12z z =为真;对(C )设111222,z a b z a i b i =+=+,若12=z z = 222211112222,z z a b z z a b ⋅=+⋅=+,所以1122z z z z ⋅=⋅为真;对(D )若121,z z i ==,则12=z z 为真,而22121,1z z ==-,所以2212z z =为假.故选D .考点:1.复数求模;2.命题的真假判断与应用.7.B【分析】利用正弦定理可得()2sin sin B C A +=,结合三角形内角和定理与诱导公式可得sin 1,2A A π==,从而可得结果.【详解】 因为cos cos sin b C c B a A +=,所以由正弦定理可得2sin cos sin cos sin B C C B A +=,()22sin sin sin sin B C A A A +=⇒=,所以sin 1,2A A π==,所以是直角三角形.【点睛】本题主要考查正弦定理的应用,属于基础题. 弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.8.A【解析】6[()]f f x=-,所以33346(20T C==-. 准确运用二项式定理是解题关键.【考点定位】本题考查分段函数和二项式定理.属于中档题.9.C【详解】如图△ADE∽△ABC,设矩形的另一边长为y,则22404040ADEABCxS yS∆∆-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭=,所以40y x=-,又300xy,所以(40)300x x-,即2403000x x-+,解得1030x. 【考点定位】本题考查平面几何知识和一元二次不等式的解法,对考生的阅读理解能力、分析问题和解决问题的能力以及探究创新能力都有一定的要求.属于中档题.10.D【解析】取 2.5x=,则[][ 2.5]3,[][2.5]2x x-=-=--=-=-,所以A项错误;[2][5]5,2[]2[2.5]4x x====,所以B项错误;再取 2.8y=,则[][5.3]5,[][][2.5][2.8]224x y x y+==+=+=+=,所以C项错误.【考点定位】本题考查取整函数(即高斯函数),分段函数思想.属于难题.11.9【解析】试题分析:由双曲线方程可知其实半轴长为,根据双曲线离心率公式有.考点:双曲线的离心率.12.3π 【解析】由三视图还原几何体为半个圆锥,高为2,底面半圆的半径r =1. ∴体积V =12×13(π×12×2)=3π.13.. 4-【详解】如图,封闭区域为三角形.令|1|2x -=,解得11x =-,23x =,所以三角形三个顶点坐标分别为(1,0,),(1,2)-,(3,2),把2z x y =-变形为2y x z =-,则直线经过点(1,2)-时z 取得最小值; 所以2(1)24min z =⨯--=-,故2x y -在点(1,2)-取最小值4-.故答案为:4-.14.2222121(1)1234(1)(1)()2n n n n n n N ++*+-+-+⋅⋅⋅+-=-⋅∈, 【解析】观察上式等号左边的规律发现:左边的项数依次加1,故第n 个等式左边有n 项,每项所含的底数的绝对值也增加1,依次为1,2,3,n ⋅⋅⋅指数都是2,符号成正负交替出现可以用1(1)n +-表示;等式的右边数的绝对值是左边项的底数的和,故等式的右边可以表示为,所以第n 个式子可为:2222121(1)1234(1)(1)()2n n n n n n N ++*+-+-+⋅⋅⋅+-=-⋅∈.解题的关键在于:1.通过四个已知等式的比较发现隐藏在等式中的规律; 2.符号成正负交替出现可以用1(1)n +-表示;3.表达的完整性,不要遗漏了n N *∈.【考点定位】本题考查观察和归纳推理能力.属于中等题. 15.2 【解析】 由柯西不等式可得 (am+bn )(bm+an )≥16【详解】易知BCE PED BAP ∠∠=∠=PDE PEA ∴∆~∆PE PDPA PE∴= 而PD DA =2=2PA ∴=3,•PE PA PD 2==6故PE 【考点定位】本题考查平面几何证明,利用三角形相似即可求解,属于容易题.17.2cos x θ=,sin cos y θθ=,0.θπ≤<【解析】2222110,(),24x y x x y +-=-+=以(12,0)为圆心,12为半径,且过原点的圆它的标准参数方程为111, ,02222x cos y sina ααπ=+=≤<,,由已知,以过原点的直线倾斜角θ为参数,则0,θπ≤< 所以022θπ≤< .所以所求圆的参数方程为2cos x θ=,sin cos y θθ=,0.θπ≤<【考点定位】本题考查与圆的参数方程有关的问题,涉及圆的标准方程和参数方程等知识,属于容易题. 18.(Ⅰ)22T ππ==(Ⅱ)max ()1f x =min 1()2f x =- 【分析】先求出f (x),然后根据三角函数的性质求解即可. 【详解】()f x a b =⋅1cos cos 22x x x -12cos 222x x =- πsin(2)6x =-(Ⅰ)()f x 的最小正周期为22T ππ==. (Ⅱ)[0,]2x π∈,52[,]666x πππ∴-∈-,1sin(2)[,1]62x π∴-∈-故当2=62x ππ-即3x π=时,max ()1f x =当2=66x ππ--即0x =时,min 1()2f x =-本题主要考察的是向量的数量积运算和三角函数的周期,最值问题.正确运用公式11221212(,),(,),,x y x y x b x x y y ==∈⋅=+a b R a 若则()2sin T y A x πωφω==+以及函数图像性质的熟练运用是解答关键.本题属于高考的常考类型,需要多加练习,关注三角函数和定积分的结合也是热点之一. 【考点定位】本题考查三角恒等变形、三角函数的性质等基础知识.简单题.19.(Ⅰ)见解析;(Ⅱ)见解析 【解析】(Ⅰ)设等比数列{}n a 的公比为q ,其前n 项和为1111...n n S a a q a q -=+++(1)将(1)式两边分别乘以q 得2111...n n qS a q a q a q =+++(2)(1)-(2)得11(1)nn q S a a q -=-当0q ≠时1(1)1n n a q S q-=-或11n n a a q S q -=- 当1q =时,12...n a a a ===,所以1n S na = (Ⅱ)方法一:{}2n 2131,a +1a +1=a +1?a +1q ≠假设数列为等比数列,那么()()()2211111a q+1=a +1?a q +1(1)001,a q a q ⇒-=⇒==即()()()或均与题设矛盾,故数列{}n a +1不可能为等比数列.方法二:{}2n k 111,a +1a +1=a +1?a +1k k q -+≠假设数列为等比数列,那么()()()1221111111?1(1)001,k k k a q a q a q a q a q --+=++⇒-=⇒==即()()()或均与题设矛盾,故数列{}n a +1不可能为等比数列.本题考查了等比数列前项和公式的推导,涉及参数q 分类讨论及错位相减法,体现高考题型源于教材的基本理念.而在第二问中要求证明数列不是等比数列,既考查了对等比数列概念的理解,又涉及到了反证法的应用;知识有机结合,考查综合能力.问中对数列的证明可以采取特殊代替一般的方法,也可以通行通法的解题思想.判断一个数列是否是等比数列一定要关注首项的验证,负责容易错误.【考点定位】本题考查等比数列的前n 项和公式推导和有关等比数列的证明. 突出对教材重要内容的考查,引导回归教材,重视教材.属于容易题.20.(Ⅰ) 见解析(Ⅱ) 所求夹角的大小为60 【解析】(1)证明 法一:由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立如图所示的空间直角坐标系.∵AB =AA 1, ∴OA =OB =OA 1=1,∴A(1,0,0),B(0,1,0),C(-1,0,0),D(0,-1,0),A 1(0,0,1). 由11A B =AB ,易得B 1(-1,1,1). ∵1AC =(-1,0,-1),BD =(0,-2,0),1BB =(-1,0,1), ∴1AC ·BD =0,1AC ·1BB =0, ∴A 1C ⊥BD ,A 1C ⊥BB 1,又BD∩BB 1=B ,A 1C ⊄平面BB 1D 1D , ∴A 1C ⊥平面BB 1D 1D.法二:∵A 1O ⊥平面ABCD ,∴A 1O ⊥BD.又∵ABCD 是正方形,∴BD ⊥AC ,∴BD ⊥平面A 1OC ,∴BD ⊥A 1C. 又OA 1是AC 的中垂线,∴A 1A =A 1CAC =2, ∴AC 2=21AA +A 1C 2,∴△AA 1C 是直角三角形,∴AA 1⊥A 1C. 又BB 1∥AA 1,∴A 1C ⊥BB 1, ∴A 1C ⊥平面BB 1D 1D.(2)设平面OCB 1的法向量n =(x ,y ,z). ∵OC =(-1,0,0),1OB =(-1,1,1),∴10{0n OC x n OB x y z ⋅=-=⋅=-++=∴0{x y z==-取n =(0,1,-1),由(1)知,1AC =(-1,0,-1)是平面BB 1D 1D 的法向量, ∴cos θ=|cos 〈n ,1AC 〉|12.又∵0≤θ≤2π,∴θ=3π.21.(Ⅰ)415;(Ⅱ) 2815.【详解】(Ⅰ) 由于观众甲必选1,不选2,则观众甲选中3号歌手的概率为C 11⋅C 21C 32=23,观众乙未选中3号歌手的概率为C 43C 53=25,甲乙选票彼此独立,故观众甲选中3号歌手且观众乙未选中3号歌手的概率为23×25=415.(Ⅱ)X 的所有可能取值为0,1,2,3.由(Ⅰ)知,观众甲选中3号歌手的概率为23,观众乙选中3号歌手的概率为1−25=35,则观众丙选中3号歌手的概率也为1−25=35,则P(X =0)=(1−23)×(1−35)2=475,P(X =1)=23×(1−35)2+(1−23)×C 21×35×(1−35)=2075=415,P(X =2)=23×C 21×35×(1−35)+(1−23)×(35)2=3375=1125,P(X =3)=23×(35)2=1875=625.则X 的分布列如下:EX =0×475+1×415+2×1125+3×625=2815.22.(Ⅰ)2=8y x ; (Ⅱ)见解析 【详解】(Ⅰ)设动圆圆心C 的坐标为( x , y )则222224)0)4,=8.x y x y x -+-=+((整理得所以,所求动圆圆心的轨迹C 的方程为2=8y x (Ⅱ)证明:设直线l 方程为y kx b =+,联立得22222228(82)0k x kbx b x k x kb x b ++=⇒--+=(其中32640kb ∆=-+>)设1122(,),(,)P x kx b Q x kx b ++,若x 轴是PBQ ∠的角平分线,则()1212121221121212()2·1+?(1)11(1)1(1)1QB PB kx x k b x x bkx b kx b kx b x kx b x k k x x x x x x +++++++++++=+==++++++()()()()()()()2128()011k b k x x +==++,即k b =-故直线l 方程为(1)y k x =-,直线l 过定点.(1,0)本题考查轨迹方程求法、直线方程、圆方程、直线与圆的位置关系及直线过定点问题.第一问曲线轨迹方程的求解问题是高考的热点题型之一,准确去除不满足条件的0x ≠点是关键.第二问对角平分线的性质运用是关键,对求定值问题的解决要控制好运算量,同时注意好判别式32640kb ∆=-+>的条件,以防多出结果.圆锥曲线问题经常与向量、三角函数结合,在训练中要注意.本题无论是求圆心的轨迹方程,还是求证直线过定点,计算量都不太大,对思维的要求挺高;设计问题背景,彰显应用魅力. 【考点定位】本题考查迹曲线方程求法、直线方程、圆方程、直线与圆的位置关系及直线过定点问题,属于中档题.23.(Ⅰ)k =1e 2 (Ⅱ)(1)m >e 24时,两曲线有2个交点;(2)m =e 24时,两曲线有1个交点; (3)m <e 24时,两曲线没有交点。

2013年陕西高考理科数学试题及答案

2013年陕西高考理科数学试题及答案

20XX XX 高考理科数学试题与答案注意事项:1. 本试卷分为两部分, 第一部分为选择题,第二部分为非选择题.。

2. 考生领到试卷后,须按规定在试卷上填写XX 、XX 号,并在答题卡上填涂对应的试卷类型信息.。

3. 所有解答必须填写在答题卡上指定区域内。

考试结束后,将本试卷和答题卡一并交回。

第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求〔本大题共10小题,每小题5分,共50分〕1. 设全集为R ,函数()f x =M , 则C M R 为(A) [-1,1] (B) (-1,1)(C),1][1,)(∞-⋃+∞-(D),1)(1,)(∞-⋃+∞-[答案]D[解析]),1()1,(],1,1[.11,0-12∞--∞=-=≤≤-∴≥ MR C M x x 即,所以选D2. 根据下列算法语句, 当输入x 为60时, 输出y 的值为 (A)25 (B) 30 (C) 31 (D) 61 [答案]C[解析]31)50(6.025,60=-⋅+=∴=x y x ,所以选C3. 设a , b 为向量, 则“||||||=a a b b ·〞是“a //b 〞的 (A) 充分不必要条件 (B) 必要不充分条件(C) 充分必要条件(D) 既不充分也不必要条件[答案]C[解析]。

θcos ||||⋅⋅=⋅b a b a若1cos ||||||±=⇒⋅=⋅θb a b a ,b //a 0,即或的夹角为与则向量πb a 为真; 相反,若b a //,则||||||0b a b a b a ⋅=⋅,即或的夹角为与向量π。

所以“||||||=a a b b ·〞是“a //b 〞的充分必要条件。

另:当b a 或向量为零向量时,上述结论也成立。

所以选C4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为(A) 11 (B) 12 (C) 13 (D) 14 [答案]B[解析]使用系统抽样方法,从840人中抽取42人,即从20人抽取1人。

[VIP专享]2013年高考真题——理科数学(陕西卷)解析版

[VIP专享]2013年高考真题——理科数学(陕西卷)解析版
2013 年普通高等学校招生全国统一考试(陕西卷)
理科数学
注意事项: 1. 本试卷分为两部分, 第一部分为选择题, 第二部分为非选择题. 2. 考生领到试卷后, 须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的 试卷类型信息. 3. 所有解答必须填写在答题卡上指定区域内. 考试结束后, 将本试卷和答题卡一并交回.
【解析】显然本题考查几何概型,必须看清楚题目中加点字!!所以
1 £ 2 ¡ 1¼
【解析】由1 ¡ x2 ¸ 0得¡ 1 · x · ¡ 1,故CR M = f xjx < ¡ 1or x > 1g选 D
2. 根据下列算法语句, 当输入x为 60 时, 输出y的值为 (A) x If x≤50 Then
y=0.5 * x Else
y=25+0.6*(x-50) End If 输出 y
(D) 61
( 0:5x
【解析】由算法语句可得y = f (x) = 25 + 0:6(x ¡ 50)
x · 50
x
>
故f 50
(60)
=
31选 C
3. 设 a, b 为向量, 则“ | a·b || a || b | ”是“a//b”的
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充分必要条件
88.8918÷.12990.÷1=4214÷3922=.0034=1÷15251371=8.535.78208÷.0232173c0*0÷1=m920.30392.2c=1÷203m=2÷1202.52=3535=42314)c*5232m40341*.31252=3.*1.153.5*03134.2*920522..104455=+21*3*50202.2.0285.4850.13*50+5c8*125*12m0.2+050.+0*014.852*0051000+0+/038.T+0÷+=55*+1011+010+91÷0145405*00010200+5+0+080+40*04+***115.103910*-%*C%6(+÷*M==5M÷5)0*3*0(31÷3110**5*+*÷414.m2371e=%7)8n08%.=s8.5=77.93cc60.mc*m4*m13,101w9.9o.k24mc-.cem5nm2csp2665m*9..03-4.50c60*5.pc3m85,9cm0.5g.i50mr0l-.p.s85p/6c50bc.0om7m.yp.cs6pc5m+;c0m..m7.ckm; 1+1k+12+1+k2234=1c+m1++4+4+2

2013年高考全国卷理科综合真题(陕西省)完美WORD版+各科答题纸

2013年高考全国卷理科综合真题(陕西省)完美WORD版+各科答题纸

2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科综合能力测试注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷可能用到的相对原子质量:H l C l2 N 14 O 16 Mg 24 S 32 K 39 Mn 55一、选择题:本题共l3小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.关于蛋白质生物合成的叙述,正确的是()A.一种tRNA可以携带多种氨基酸B.DNA聚合酶是在细胞核中合成的C.反密码子是位于mRNA上相邻的三个碱基D.线粒体中的DNA能控制某些蛋白质的合成2.关于同一个体中细胞有丝分裂和减数第一次分裂的叙述,正确的是()A.两者前期染色体数目相同,染色体行为和DNA分子数目不同B.两者中期染色体数目不同,染色体行为和DNA分子数目相同C.两者后期染色体行为和数目不同,DNA分子数目相同D.两者后期染色体行为和数目相同,DNA分子数目不同3.关于植物细胞主动运输方式吸收所需矿质元素离子的叙述,正确的是()A.吸收不同矿质元素离子的速率都相同B.低温不影响矿质元素离子的吸收速率C.主动运输矿质元素离子的过程只发生在活细胞中D.叶肉细胞不能以主动运输的方式吸收矿质元素离子4.示意图甲、乙、丙、丁为某实验动物感染HIV后的情况()A.从图甲可以看出,HIV感染过程中存在逆转录现象B.从图乙可以看出,HIV侵入后机体能产生体液免疫C.从图丙可以推测,HIV可能对实验药物a敏感D.从图丁可以看出,HIV对试验药物b敏感5.某农场面积为140hm2,农场丰富的植物资源为黑线姬鼠提供了很好的生存条件,鼠大量繁殖吸引鹰来捕食,某研究小组采用标志重捕法来研究黑线姬鼠的种群密度,第一次捕获100只,标记后全部放掉,第二次捕获280只,发现其中有两只带有标记,下列叙述错误..的是()A.鹰的迁入率增加会影响黑线姬鼠的种群密度B.该农场黑线姬鼠的种群密度约为100只/hm2C.黑线姬鼠种群数量下降说明农场群落的丰富度下降D.植物→鼠→鹰这条食物链,第三营养级含能量少6.若用玉米为实验材料,验证孟德尔分离定律,下列因素对得出正确实验结论,影响最小的是()A.所选实验材料是否为纯合子B.所选相对性状的显隐性是否易于区分C.所选相对性状是否受一对等位基因控制D .是否严格遵守实验操作流程和统计分析方法 7.化学无处不在,下列与化学有关的说法不正确的是 A .侯氏制碱法的工艺过程中应用了物质溶解度的差异 B .可用蘸浓盐酸的棉棒检验输送氨气的管道是否漏气 C .碘是人体必需微量元素,所以要多吃富含高碘酸的食物 D .黑火药由硫黄、硝石、木炭三种物质按一定比例混合制成8.香叶醇是合成玫瑰香油的主要原料,其结构简式如下:下列有关香叶醇的叙述正确的是A .香叶醇的分子式为C 10H 18OB .不能使溴的四氯化碳溶液褪色C .不能使酸性高锰酸钾溶液褪色D .能发生加成反应不能发生取代反应9.短周期元素W 、X 、Y 、Z 的原子序数依次增大,其简单离子都能破坏水的电离平衡的是 A .w 2-、X + B .X +、Y 3+ C .Y 3+、Z 2- D .X +、Z 2-10.银质器皿日久表面会逐渐变黑,这是生成了Ag 2S 的缘故。

2013年全国高考理科数学试题及答案-陕西卷

2013年全国高考理科数学试题及答案-陕西卷

2013年普通高等学校招生全国统一考试理科数学 注意事项:1. 本试卷分为两部分, 第一部分为选择题,第二部分为非选择题.。

2. 考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.。

3. 所有解答必须填写在答题卡上指定区域内。

考试结束后,将本试卷和答题卡一并交回。

第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分) 1. 设全集为R,函数()f x =M, 则C M R 为(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞- (D) ,1)(1,)(∞-⋃+∞- 【答案】D【解析】),1()1,(],1,1[.11,0-12∞--∞=-=≤≤-∴≥ MRC M x x 即,所以选D2. 根据下列算法语句, 当输入x 为60时输出y 的值为 (A) 25 (B) 30(C) 31 (D) 61 【答案】C【解析】31)50(6.025,60=-⋅+=∴=x y x ,所以选C3. 设a, b 为向量, 则“||||||=a a b b ·”是“a//b ”的 (A) 充分不必要条件(B) 必要不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件 【答案】C【解析】。

θcos ||||⋅⋅=⋅若1cos ||||||±=⇒⋅=⋅θb a b a ,b //a 0,即或的夹角为与则向量πb a 为真; 相反,若//,则||||||0b a b a b a ⋅=⋅,即或的夹角为与向量π。

所以“||||||=a a b b ·”是“a//b ”的充分必要条件。

另:当b a 或向量为零向量时,上述结论也成立。

所以选C4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 (A) 11 (B) 12(C) 13(D) 14【答案】B【解析】使用系统抽样方法,从840人中抽取42人,即从20人抽取1人。

2013陕西高考理数真题(文字版).doc

2013陕西高考理数真题(文字版).doc

2013陕西高考理数真题(文字版)1. 本试卷分为两部分, 第一部分为选择题, 第二部分为非选择题.2. 考生领到试卷后, 须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.3. 所有解答必须填写在答题卡上指定区域内. 考试结束后, 将本试卷和答题卡一并交回.第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R, 函数的定义域为M, 则为(A) [-1,1](B) (-1,1)(C) (D)2. 根据下列算法语句, 当输入x为60时, 输出y的值为(A) 25(B) 30(C) 31(D) 613. 设a, b为向量, 则是a//b 的(A) 充分不必要条件(B) 必要不充分条件(C) 充分必要条件(D) 既不充分也不必要条件4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为(A) 11(B) 12(C) 13(D) 145. 如图, 在矩形区域ABCD的A, C两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无信号的概率是(A) (B)(C) (D)6. 设z1, z2是复数, 则下列命题中的假命题是(A) 若, 则(B) 若, 则(C) 若, 则(D) 若, 则7. 设△ABC的内角A, B, C所对的边分别为a, b, c, 若, 则△ABC的形状为(A) 锐角三角形(B) 直角三角形(C) 钝角三角形(D) 不确定8. 设函数, 则当x 0时, 表达式的展开式中常数项为(A) -20(B) 20(C) -15(D) 159. 在如图所示的锐角三角形空地中, 欲建一个面积不小于300m2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是(A) [15,20](B) [12,25](C) [10,30](D) [20,30]10. 设[x]表示不大于x的最大整数, 则对任意实数x, y, 有(A) [-x] =-[x](B) [2x] =2[x](C) [x+y] [x]+[y](D) [x-y] [x]-[y]二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分)11. 双曲线的离心率为, 则m等于.12. 某几何体的三视图如图所示, 则其体积为.13. 若点(x, y)位于曲线与y=2所围成的封闭区域, 则2x-y的最小值为.14. 观察下列等式:True照此规律, 第n个等式可为.15. (考生请注意:请在下列三题中任选一题作答, 如果多做, 则按所做的第一题计分)A. (不等式选做题) 已知a, b, m, n均为正数, 且a+b=1, mn=2, 则(am+bn)(bm+an)的最小值为.B. (几何证明选做题) 如图, 弦AB与CD相交于内一点E, 过E 作BC的平行线与AD的延长线相交于点P. 已知PD=2DA=2, 则PE=.C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角为参数, 则圆的参数方程为.三、解答题: 解答应写出文字说明、证明过程及演算步骤(本大题共6小题,共75分)16. (本小题满分12分)已知向量, 设函数.(Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在上的最大值和最小值.17. (本小题满分12分)设是公比为q的等比数列.该文章转载自无忧考网:。

2013年普通高等学校招生全国统一考试(陕西理)

2013年普通高等学校招生全国统一考试(陕西理)

全国统一考试(陕西卷)理科数学一、选择题(本大题共10小题,每小题5分,共50分) 1.设全集为R ,函数f (x )=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 2.根据下列算法语句,当输入x 为60时,输出y 的值为( ) 输入x If x ≤50 Then y =0.5]A .25B .30C .31D .613.设a ,b 为向量,则“|a·b |=|a ||b |”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .145.如图,在距形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该距形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是( )A .1-π4 B.π2-1 C .2-π2 D.π46.设z 1,z 2是复数,则下列命题中的假命题是( ) A .若|z 1-z 2|=0,则z 1=z 2 B .若z 1=z 2,则z 1=z 2 C .若|z 1|=|z 2|,则z 1·z 1=z 2·z 2D .若|z 1|=|z 2|,则z 21=z 227.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定8.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫x -1x 6,x <0,-x , x ≥0,则当x >0时,f [f (x )]表达式的展开式中常数项为( )A .-20B .20C .-15D .159.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( )A .[15,20]B .[12,25]C .[10,30]D .[20,30]10.设[x ]表示不大于x 的最大整数,则对任意实数x ,y 有( ) A .[-x ]=-[x ] B .[2x ]=2[x ] C .[x +y ]≤[x ]+[y ] D .[x -y ]≤[x ]-[y ]二、填空题(本大题共5小题,每小题5分,共25分) 11.双曲线x 216-y 2m =1的离心率为54,则m 等于________.12.某几何体的三视图如图所示,则其体积为________.13.若点(x,y)位于曲线y=|x-1|与y=2所围成的封闭区域,则2x-y的最小值为________.14.观察下列等式12=112-22=-312-23+32=612-22+32-42=-10…照此规律,第n个等式可为________.15.A.(不等式选做题)已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm +an)的最小值为________.B.(几何证明选做题)如图,弦AB与CD相交于⊙O内一点E,过E作BC的平行线与AD的延长线交于点P.已知PD=2DA=2,则PE=________.C.(坐标系与参数方程选做题)如图,以过原点的直线的倾斜角θ为参数,则圆x2+y2-x=0的参数方程为________.三、解答题(本大题共6小题,共75分)16.(本小题满分12分)已知向量a =(cos x ,-12),b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a ·b .(1)求f (x )的最小正周期.(2)求f (x )在⎣⎡⎦⎤0,π2上的最大值和最小值. 17.(本小题满分12分)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列.18.(本小题满分12分)如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2.(1)证明:A 1C ⊥平面BB 1D 1D ;(2)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.19.(本小题满分12分)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,求X 的分布列及数学期望. 20.(本小题满分13分)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明直线l 过定点.21.(本小题满分14分)已知函数f (x )=e x ,x ∈R .(1)若直线y =kx +1与f (x )的反函数的图像相切,求实数k 的值; (2)设x >0,讨论曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数; (3)设a <b ,比较f (a )+f (b )2与f (b )-f (a )b -a的大小,并说明理由.答案1.解析:选D 本题考查集合的概念和运算,涉及函数的定义域与不等式的求解.本题抓住集合元素是函数自变量,构建不等式并解一元二次不等式得到集合,然后利用补集的意义求解,使集合与函数有机结合,体现了转化化归思想的具体应用.从函数定义域切入,∵1-x 2≥0,∴-1≤x ≤1,依据补集的运算知所求集合为(-∞,-1)∪(1,+∞),选D.2.解析:选C 本题考查考生对算法语句的理解和分段函数的求值.阅读算法语句易知,本题是一个求解分段函数f (x )=⎩⎪⎨⎪⎧0.5x ,x ≤5025+0.6(x -50),x >50的值的算法,∴f (60)=25+0.6(60-50)=31.3.解析:选C 本题考查向量的数量积和向量共线的充要条件的判断,涉及向量的模及绝对值的概念.从数量积入手,设α为向量a ,b 的夹角,则|a·b |=|a ||b |·|cos α|=|a ||b |⇔|cos α|=1⇔cos α=±1⇔向量a ,b 共线.4.解析:选B 本题考查系统抽样的方法.依据系统抽样为等距抽样的特点,分42组,每组20人,区间[481,720]包含25组到36组,每组抽1人,则抽到的人数为12.5.解析:选A 本题考查几何概型的求解方法,涉及对立事件求解概率以及矩形和扇形面积的计算.由题意知,两个四分之一圆补成半圆其面积为12×π×12=π2,矩形面积为2,则所求概率为2-π22=1-π4.6.解析:选D 本题考查共轭复数、复数的模、复数的运算以及命题真假的判断,意在考查考生综合运用知识的能力和逻辑推理能力.依据复数概念和运算,逐一进行推理判断.对于A ,|z 1-z 2|=0⇒z 1=z 2⇒z 1=z 2,是真命题;对于B ,C 易判断是真命题;对于D ,若z 1=2,z 2=1+3i ,则|z 1|=|z 2|,但z 21=4,z 22=-2+23i ,是假命题.7.解析:选B 本题考查正弦定理和两角和的正弦公式的逆用.依据题设条件的特点,由正弦定理,得sin B cos C +cos B sin C =sin 2A ,有sin(B +C )=sin 2A ,从而sin(B +C )=sin A =sin 2A ,解得sin A =1,∴A =π2,故选B.8.解析:选A 本题考查分段函数和二项式定理的应用,解题关键是对复合函数的复合过程的理解.依据分段函数的解析式,得f [f (x )]=f (-x )=⎝⎛⎭⎫1x -x 6,∴T r +1=C r 6(-1)r x r -3,则常数项为C 36(-1)3=-20.9.解析:选C 本题考查三角形相似的性质,考查考生构建函数和不等式模型,利用解不等式求解实际应用题的能力.如图,过A 作AH ⊥BC 于H ,交DE 于F ,易知DE BC =x40=AD AB =AF AH =AF40,则有AF =x ,FH =40-x ,由题意知阴影部分的面积S =x (40-x )≥300,解得10≤x ≤30,即x ∈[10,30].10.解析:选D 本题考查新定义问题,把握取整函数的意义,取特殊值进行判断即可.取特殊值进行判断.当x =1.1时,[-x ]=-2,-[x ]=-1,故A 错;当x =1.9时,[2x ]=3,2[x ]=2,故B 错;当x =1.1,y =1.9时,[x +y ]=3,[x ]+[y ]=2,故C 错;由排除法知,选D.11.解析:本题考查双曲线的几何性质和方程思想的具体应用.⎩⎪⎨⎪⎧a 2=16,b 2=m ,e 2=2516,⇒2516=16+m16⇒m =9. 答案:912.解析:本题考查三视图和空间几何体之间的关系,涉及体积的计算方法,考查考生的空间想象能力及运算求解能力.易知原几何体是底面圆半经为1,高为2的圆锥体的一半,故所求体积为V =12×13×(π×12)×2=π3.答案:π313.解析:本题考查分段函数的图像和线性规划的应用,考查考生的数形结合能力.由题意知y =⎩⎪⎨⎪⎧x -1(x ≥1)1-x (x <1),作出曲线y =|x -1|与y =2所围成的封闭区域,如图中阴影部分所示,即得过点A (-1,2)时,2x -y 取最小值-4.答案:-414.解析:本题考查考生的观察、归纳、推理能力.观察规律可知,第n 个式子为12-22+32-42+…+(-1)n +1n 2=(-1)n+1n (n +1)2. 答案:12-22+32-42+…+(-1)n +1n 2=(-1)n+1n (n +1)215.A.解析:本题考查使用基本不等式求最值的技巧和方法,意在考查考生的转化化归能力和运算能力.(am +bn )(bm +an )=ab (m 2+n 2)+mn (a 2+b 2)≥2abmn +mn (a 2+b 2)=4ab +2(a 2+b 2)=2(2ab +a 2+b 2)=2(a +b )2=2(当且仅当m =n =2时取等号).答案:2B .解析:本小题图形背景新颖,具体涉及圆的性质以及相似三角形等内容,重点考查考生的逻辑推理能力.由PE ∥BC 知,∠A =∠C =∠PED .在△PDE 和△PEA 中,∠APE =∠EPD ,∠A =∠PED ,故△PDE ~△PEA ,则PD PE =PEP A ,于是PE 2=P A ·PD =3×2=6,所以PE = 6.答案: 6C .解析:本题考查圆的普通方程与参数方程的互化,涉及圆的方程和性质.由题意得圆的方程为⎝⎛⎭⎫x -122+y 2=14,圆心⎝⎛⎭⎫12,0在x 轴上,半径为12,则其圆的参数方程为⎩⎨⎧x =12+12cos αy =12 sin α(α为参数),注意α为圆心角,θ为同弧所对的圆周角,则有α=2θ,有⎩⎨⎧x =12+12cos 2θ,y =12sin 2θ,即⎩⎪⎨⎪⎧x =cos 2θy =sin θcos θ(θ为参数). 答案:⎩⎪⎨⎪⎧x =cos 2θy =sin θcos θ(θ为参数)16.解:本题主要考查向量的数量积和三角恒等变换的方法以及三角函数的有界性,意在考查考生应用向量和三角工具解决问题的能力.f (x )=(cos x ,-12)·( 3 sin x ,cos 2x )=3cos x sin x -12cos 2x=32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x=sin(2x -π6).(1)f (x )的最小正周期为T =2πω=2π2=π,即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6.由正弦函数的性质,知当2x -π6=π2,即x =π3时,f (x )取得最大值1.当2x -π6=-π6,即x =0时,f (0)=-12,当2x -π6=5π6,即x =π2时,f (π2)=12,∴f (x )的最小值为-12.因此,f (x )在[0,π2]上的最大值是1,最小值是-12.17.解:本题考查等比数列前n 项和公式推导所用的错位相减法以及用反证法研究问题,深度考查考生应用数列作工具进行逻辑推理的思维方法.(1)设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,② ①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n)1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1.(2)假设{a n +1}是等比数列,则对任意的k ∈N +, (a k +1+1)2=(a k +1)(a k +2+1), a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.18.解:本题考查证明线面垂直的两种思维方法,重在考查应用空间向量求解两平面夹角的方法.(1)证明法一由题设易知OA,OB,OA1两两垂直,以O为原点建立直角坐标系,如图.∵AB=AA1=2,∴OA=OB=OA1=1,∴A(1,0,0),B(0,1,0),C(-1,0,0),D(0,-1,0),A1(0,0,1).∴A1C⊥BD,A1C⊥BB1,∴A C⊥平面BB1D1D.解法二∵A1O⊥平面ABCD,∴A1O⊥BD.又底面ABCD是正方形,∴BD⊥AC,∴BD⊥平面A1OC,∴BD⊥A1C.又OA1是AC的中垂线,∴A1A=A1C=2,且AC=2,∴AC2=AA21+A1C2,∴△AA1C是直角三角形,∴AA1⊥A1C.又BB1∥AA1,∴A1C⊥BB1,∴A1C⊥平面BB1D1D.19.解:本题考查实际生活中的古典概型和相互独立事件的概率的计算,以及分布列和期望的计算.(1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”,则P (A )=C 12C 23=23,P (B )=C 24C 35=35.∵事件A 与B 相互独立,∴观众甲选中3号歌手且观众乙未选中3号歌手的概率为 P (AB )=P (A )·P (B )=P (A )·[1-P (B )]=23×25=415.(或P (AB )=C 12·C 34C 23·C 35=415.)(2)设C 表示事件“观众丙选中3号歌手”,则P (C )=C 24C 35=35.∵X 可能的取值为0,1,2,3,且取这些值的概率分别为 P (X =0)=P (A B C )=13×25×25=475,P (X =1)=P (A B C )P (X =1)=P (A B C )+P (A B C )+P (A B C )=23×25×25+13×35×25+13×25×35=2075, P (X =2)=P (AB C )+P (A B C )+P (A BC )=23×35×25+23×25×35+13×35×35=3375,P (X =3)=P (ABC )=23×35×35=1875,∴X 的分布列为X0 1 2 3 P 475 2075 3375 1875 ∴X 的数学期望EX =0×475+1×2075+2×3375+3×1875=14075=2815. 20解:本题考查圆的几何性质和轨迹方程的求解方法,探究直线恒过定点的问题,涉及平面几何性质的应用.(1)如图,设动圆圆心O 1(x ,y ),由题意,|O 1A |=|O 1M |,当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中点, ∴|O 1M |= x 2+42,又|O 1A |=(x -4)2+y 2, ∴(x -4)2+y 2=x 2+42, 化简得y 2=8x (x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x ,∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x 中,得k 2x 2+(2bk -8)x +b 2=0,其中Δ=-32kb +64>0.由根与系数的关系得,x 1+x 2=8-2bk k 2,① x 1x 2=b 2k2,② 因为x 轴是∠PBQ 的角平分线,所以y 1x 1+1=-y 2x 2+1, 即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0,2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③将①②代入③,得2kb 2+(k +b )(8-2bk )+2k 2b =0,∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),∴直线l 过定点(1,0).21.解:本题考查指数函数和对数函数互为反函数,函数导数的几何意义,利用导数研究两函数图像交点个数和比较大小的方法.(1)f (x )的反函数为g (x )=ln x .设直线y =kx +1与g (x )=ln x 的图像在P (x 0,y 0)处相切,则有y 0=kx 0+1=ln x 0,k =g ′(x 0)=1x 0, 解得x 0=e 2,k =1e 2. (2)曲线y =e x 与y =mx 2的公共点个数等于曲线y =e xx 2与y =m 的公共点个数.令φ(x )=e xx 2,则φ′(x )=e x (x -2)x 3,∴φ′(2)=0. 当x ∈(0,2)时,φ′(x )<0,φ(x )在(0,2)上单调递减;当x ∈(2,+∞)时,φ′(x )>0,φ(x )在(2,+∞)上单调递增,∴φ(x )在(0,+∞)上的最小值为φ(2)=e 24. 当0<m <e 24时,曲线y =e 2x 2与y =m 无公共点; 当m =e 24时,曲线y =e xx 2与y =m 恰有一个公共点; 当m >e 24时,在区间(0,2)内存在x 1=1m,使得φ(x 1)>m ,在(2,+∞)内存在x 2=m e 2,使得φ(x 2)>m .由φ(x )的单调性知,曲线y =e xx2与y =m 在(0,+∞)上恰有两个公共点. 综上所述,当x >0时,若0<m <e 24,曲线y =f (x )与y =mx 2没有公共点;若m =e 24,曲线y =f (x )与y =mx 2有一个公共点; 若m >e 24,曲线y =f (x )与y =mx 2有两个公共点. (3)法一:可以证明f (a )+f (b )2>f (b )-f (a )b -a.事实上, f (a )+f (b )2>f (b )-f (a )b -a ⇔e a +e b 2>e b -e ab -a⇔b -a 2>e b -e a e b +e a ⇔b -a 2>1-2e ae b +e a ⇔b -a 2>1-2e b -a +1(b >a ). (*) 令ψ(x )=x 2+2e x +1-1(x ≥0), 则ψ′(x )=12-2e x(e x +1)2=(e x +1)2-4e x 2(e x +1)2=(e x -1)22(e x +1)2≥0(仅当x =0时等号成立), ∴ψ(x )在[0,+∞)上单调递增,∴x >0时,ψ(x )>ψ(0)=0.令x =b -a ,即得(*)式,结论得证.法二:f (a )+f (b )2-f (b )-f (a )b -a=e b +e a 2-e b -e ab -a=b e b +b e a -a e b -a e a -2e b +2e a2(b -a )=e a2(b -a )[(b -a )e b -a +(b -a )-2e b -a +2], 设函数u (x )=x e x +x -2e x +2(x ≥0),则u ′(x )=e x +x e x +1-2e x ,令h (x )=u ′(x ),则h ′(x )=e x +e x +x e x -2e x =x e x ≥0(仅当x =0时等号成立), ∴u ′(x )单调递增,∴当x >0时,u ′(x )>u ′(0)=0,∴u (x )单调递增.当x >0时,u (x )>u (0)=0.令x =b -a ,则得(b -a )e b -a +(b -a )-2e b -a +2>0, ∴eb +e a 2-e b -e ab -a>0, 因此,f (a )+f (b )2>f (b )-f (a )b -a.。

2013年普通高等学校招生全国统一考试陕西卷(数学理)word版含答案

2013年普通高等学校招生全国统一考试陕西卷(数学理)word版含答案

2013年普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题, 第二部分为非选择题.2. 考生领到试卷后, 须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.3. 所有解答必须填写在答题卡上指定区域内. 考试结束后, 将本试卷和答题卡一并交回.第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分) 1. 设全集为R ,函数()f x =M , 则C M R 为(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞-(D) ,1)(1,)(∞-⋃+∞-2. 根据下列算法语句, 当输入x 为60时, 输出y 的值为 (A) 25 (B) 30 (C) 31(D) 613. 设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的 (A) 充分不必要条件 (B) 必要不充分条件(C) 充分必要条件(D) 既不充分也不必要条件4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为(A) 11(B) 12(C) 13(D) 145. 如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区1域内随机地选一地点, 则该地点无.信号的概率是 (A)14π-(B)12π-(C) 22π-(D)4π6. 设z 1, z 2是复数, 则下列命题中的假命题是 (A) 若12||0z z -=, 则12z z = (B) 若12z z =, 则12z z =(C) 若12||z z =, 则2112··z z z z = (D) 若12||z z =, 则2122z z =7. 设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形(B) 直角三角形(C) 钝角三角形(D) 不确定8.设函数41,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为 (A) -20 (B) 20 (C) -15 (D) 159. 在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x (单位m )的取值范围是(A) [15,20] (B) [12,25](C) [10,30](D) [20,30]10. 设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有 (A) [-x ] = -[x ] (B) [2x ] = 2[x ](C) [x +y ]≤[x ]+[y ](D) [x -y ]≤[x ]-[y ]二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分)11. 双曲线22116x y m -=的离心率为54, 则m 等于 .12. 某几何体的三视图如图所示, 则其体积为 .13. 若点(x , y )位于曲线|1|y x =-与y =2所围成的封闭区域, 则2x -y 的最小值为 . 14. 观察下列等式:…照此规律, 第n 个等式可为 .15. (考生请注意:请在下列三题中任选一题作答, 如果多做, 则按所做的第一题计分)A. (不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2,则(am +bn )(bm +an )的最小值为 .B. (几何证明选做题) 如图, 弦AB 与CD 相交于O 内一点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知PD =2DA =2, 则PE = .C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为 .三、解答题: 解答应写出文字说明、证明过程及演算步骤(本大题共6小题,共75分) 16. (本小题满分12分)已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b .(Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.17. (本小题满分12分) 设{}n a 是公比为q 的等比数列. (Ⅰ) 推导{}n a 的前n 项和公式;(Ⅱ) 设q ≠1, 证明数列{1}n a +不是等比数列.18. (本小题满分12分)如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA == (Ⅰ) 证明: A 1C ⊥平面BB 1D 1D ;(Ⅱ) 求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.19. (本小题满分12分)在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手. (Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ) X 表示3号歌手得到观众甲、乙、丙的票数之和, 求X 的分布列和数学期望.20. (本小题满分13分)已知动圆过定点A (4,0), 且在y 轴上截得的弦MN 的长为8. (Ⅰ) 求动圆圆心的轨迹C 的方程;(Ⅱ) 已知点B (-1,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P , Q , 若x 轴是PBQ ∠的角平分线,证明直线l 过定点. 21. (本小题满分14分) 已知函数()e ,x f x x =∈R . (Ⅰ) 若直线y =kx +1与f (x)的反函数的图像相切, 求实数k 的值; (Ⅱ) 设x >0, 讨论曲线y =f (x) 与曲线2(0)y mx m => 公共点的个数. (Ⅲ) 设a <b , 比较()()2f a f b +与()()f b f a b a--的大小, 并说明理由.。

2013年陕西高考理科数学试题及答案详解

2013年陕西高考理科数学试题及答案详解

2013年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)(陕西卷)第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分).1.(2013陕西,理1)设全集为R ,函数f (x )=21x -的定义域为M ,则R M 为().A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞)1)∪(1,+∞).2.(2013陕西,理2)根据下列算法语句,当输入x 为60时,输出y的值为( ).A .25B .30C .31D .613.(2013陕西,理3)设a ,b 为向量,则“|a·b |=|a ||b |”是“a ∥b "的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.(2013陕西,理4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ).A .11B .12C .13D .145.(2013陕西,理5)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是( ). A .π14-B .π12-C .π22-D .π4 6.(2013陕西,理6)设z 1,z 2是复数,则下列命题中的假.命题是( ). A .若|z1-z2|=0,则12z z = B .若12z z =,则12z z =C .若|z1|=|z2|,则1122z z z z⋅=⋅ D .若|z1|=|z2|,则z12=z22 7.(2013陕西,理7)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ).A .锐角三角形B .直角三角形C .钝角三角形D .不确定8.(2013陕西,理8)设函数f (x )=610,0,x x x x x ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪-≥⎩,,则当x >0时,f [f (x )]表达式的展开式中常数项为A .-20B .20C .-15D .159.(2013陕西,理9)在如图所示的锐角三角形空地中,欲建一个面积不小于300m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( ).A.[15,20] B.[12,25]C.[10,30] D.[20,30]10.(2013陕西,理10)设[x]表示不大于x的最大整数,则对任意实数x,y,有().A.[-x]=-[x] B.[2x]=2[x]C.[x+y]≤[x]+[y] D.[x-y]≤[x]-[y]第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.(2013陕西,理11)双曲线22116x ym-=的离心率为54,则m等于__________.12.(2013陕西,理12)某几何体的三视图如图所示,则其体积为__________.13.(2013陕西,理13)若点(x,y)位于曲线y=|x-1|与y=2所围成的封闭区域,则2x-y的最小值为__________.14.(2013陕西,理14)观察下列等式12=112-22=-312-22+32=612-22+32-42=-10……照此规律,第n个等式可为__________.15.(2013陕西,理15)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为__________.B.(几何证明选做题)如图,弦AB与CD相交于O内一点E,过E作BC的平行线与AD的延长线交于点P,已知PD=2DA=2,则PE=__________.C.(坐标系与参数方程选做题)如图,以过原点的直线的倾斜角θ为参数,则圆x2+y2-x=0的参数方程为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).16.(2013陕西,理16)(本小题满分12分)已知向量a =1cos ,2x ⎛⎫-⎪⎝⎭,b sin x ,cos 2x ),x ∈R ,设函数f (x )=a·b .(1)求f (x )的最小正周期;(2)求f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.17.(2013陕西,理17)(本小题满分12分)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列.18.(2013陕西,理18)(本小题满分12分)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1.(1)证明:A1C⊥平面BB1D1D;(2)求平面OCB1与平面BB1D1D的夹角θ的大小.19.(2013陕西,理19)(本小题满分12分)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列及数学期望.20.(2013陕西,理20)(本小题满分13分)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8. (1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.21.(2013陕西,理21)(本小题满分14分)已知函数f (x )=e x ,x ∈R 。

(完整word版)2013年全国高考理科数学试题及答案、解析-陕西卷

(完整word版)2013年全国高考理科数学试题及答案、解析-陕西卷

试题及答案、解析2013年普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分为两部分,第一部分为选择题,第二部分为非选择题 .。

2. 考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷 类型信息.。

3. 所有解答必须填写在答题卡上指定区域内。

考试结束后,将本试卷和答题卡一并交回。

第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共 分,共50分) 1.设全集为R,函数f(x)乞1 -x 2的定义域为 M,则C R M 为 (A) [ - 1,1] (B) (- 1,1)(C) ( J :,-1] -•[1, (D) ( -::, -〔)_. (1, ■::)【答案】D2. 根据下列算法语句,当输入x 为60时, 输出y 的值为(A) 25 (B) 30 (C) 31 (D) 61 【答案】C【解析】 x =60,. y =25 0.6 (x-50) =31 ,所以选 C3.设 a, b 为向量,贝U “ab |=|a || b |”是 a // b”的 (A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件(D)既不充分也不必要条件【答案】C10小题,每小题5【解析】1-X 2 _0,. 一1 乞 x 叮.即 M =[-1,1],c M—(—cQ , 一 1)U (1&),所以选D:输入xI:If x < 50 ThenI:y=0.5 * x :Else; y=25+0.6*( x-50) :End If i 输出y【解析】a b a | |b | COST若| a b|=| a | |b| : cos)- -1,则向量a与b的夹角为0或二,即a//b为真;相反,若a//b,则向量0与b的夹角为0或二,即|a 6鬥2| |b|。

所以“ab 旧a || b |”是a // b”的充分必要条件。

另:当向量a 或b 为零向量时,上述结论也成立。

2013年高考理科综合全国卷1(附答案)

2013年高考理科综合全国卷1(附答案)

绝密★启用前2013普通高等学校招生全国统一考试(全国新课标卷1)理科综合能力测试使用地区:陕西、山西、河南、河北、湖南、湖北、江西注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至6页,第二卷7至18页。

2. 答卷前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束后,将本试题和答题卡一并交回。

可能用到的相对原子质量:H —1C —12 N —14 O —16Mg —24 S —32K —39 Mn —55第Ⅰ卷(选择题 共126分)一、选择题:本题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 关于蛋白质生物合成的叙述,正确的是( )A. 一种tRNA 可以携带多种氨基酸B. DNA 聚合酶是在细胞核内合成的C. 反密码子是位于mRNA 上相邻的三个碱基D. 线粒体中的DNA 能控制某些蛋白质的合成2. 关于同一个体中细胞有丝分裂和减数第一次分裂的叙述,正确的是( )A. 两者前期染色体数目相同,染色体行为和DNA 分子数目不同B. 两者中期染色体数目不同,染色体行为和DNA 分子数目相同C. 两者后期染色体数目和染色体行为不同,DNA 分子数目相同D. 两者末期染色体数目和染色体行为相同,DNA 分子数目不同3. 关于植物细胞通过主动运输方式吸收所需矿质元素离子的叙述,正确的是 ( ) A. 吸收不同矿质元素离子的速率都相同 B. 低温不影响矿质元素离子的吸收速率C. 主动运输矿质元素离子的过程只发生在活细胞中D. 叶肉细胞不能以主动运输方式吸收矿质元素离子4. 示意图甲、乙、丙、丁为某实验动物感染HIV 后的情况甲乙丙丁 下列叙述错误的是( ) A. 从图甲可以看出,HIV 感染过程中存在逆转录现象 B. 从图乙可以看出,HIV 侵入后机体能产生体液免疫 C. 从图丙可以推测,HIV 可能对实验药物a 敏感D. 从图丁可以看出,HIV 对试验药物b 敏感5. 某农场面积为2140hm ,农场丰富的植物资源为黑线姬鼠提供了很好的生存条件,鼠大量繁殖吸引鹰来捕食。

2013年高考真题——理科数学(陕西卷)word版

2013年高考真题——理科数学(陕西卷)word版

2013年普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题,第二部分为非选择题.。

2. 考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.。

3. 所有解答必须填写在答题卡上指定区域内。

考试结束后,将本试卷和答题卡一并交回。

第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R , 函数2()1f x x =-的定义域为M , 则C M R 为(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞-(D) ,1)(1,)(∞-⋃+∞-【答案】D【解析】()f x 的定义域为M=[-1,1],故C R M=(,1)(1,)-∞-⋃+∞,选D 2. 根据下列算法语句, 当输入x 为60时, 输出y 的值为 (A) 25 (B) 30 (C) 31 (D) 61【答案】C【解析】故选择C3. 设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的 (A) 充分不必要条件 (B) 必要不充分条件(C) 充分必要条件(D) 既不充分也不必要条件【答案】A 【解析】4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 (A) 11 (B) 12 (C) 13 (D) 14 【答案】B【解析】由题设可知区间[481,720]长度为240,落在区间内的人数为12人。

输入xIf x ≤50 Then y =0.5 * x Elsey =25+0.6*(x -50) End If 输出y5. 如图, 在矩形区域ABCD的A, C两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是(A)14π-(B)12π-(C) 22π-(D)4π【答案】A【解析】由题设可知矩形ABCD面积为2,曲边形DEBF的面积为22π-故所求概率为22124ππ-=-,选A.6. 设z1, z2是复数, 则下列命题中的假命题是(A) 若12||0zz-=, 则12z z=(B) 若12z z=, 则12z z=(C) 若12||z z=, 则2112··z zz z=(D) 若12||||z z=, 则2122z z=【答案】D【解析】设12,,z a bi z c di=+=+若12||0z z-=,则12||()()z z a c b d i-=-+-,,a cb d==,所以12z z=,故A项正确;若12z z=,则,a cb d==-,所以12z z=,故B项正确;若12||||z z=,则2222a b c d+=+,所以1122..z z z z=,故C项正确;7. 设△ABC的内角A, B, C所对的边分别为a, b, c, 若cos cos sinb Cc B a A+=, 则△ABC的形状为(A) 锐角三角形(B) 直角三角形(C) 钝角三角形(D) 不确定【答案】B【解析】因为cos cos sinb Cc B a A+=,所以由正弦定理得2sin cos sin cos sinB C C B A+=,所以2sin()sinB C A+=,所以2sin sinA A=,所以sin1A=,所以△ABC是直角三角形。

(陕西卷)2013年高考试卷(理综)物理

(陕西卷)2013年高考试卷(理综)物理

2013年普通高等学校招生全国统一考试(陕西卷)理 综14、右图是伽利略1604年做斜面实验时的一页手稿照片,照片左上角的三列数据如下表。

表中第二列是时间,第三列是物体沿斜面运动的距离.第一列是伽利略在分析实验数据时添加的。

撤据表中的数据,伽利略可以得出的结论是A 物体具有惯性B 斜面倾角一定时,加速度与质量无关C 物体运动的距离与时间的平方成正比D 物体运动的加速度与重力加速度成正比答案:C解析:分析表中数据,发现物体运动的距离之比近似等于时间平方之比,所以C 选项正确。

15、如图,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、b 、d 三个点,a 和b 、b 和c 、c 和d 间的距离均为R ,在a 点处有一电荷量为q 的固定点电荷。

已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)A.23R q kB. 2910R q kC. 2R q Q kD. k答案:B16、一水平放置的平行板电容器的两极扳间距为d ,极扳分别与电池两极相连.上极扳中心有一小孔(小孔对电场的影响可忽略不计)。

小孔正上方d/2处的P 点有一带电粒子,该粒子从静止开始下落.经过小孔进入电容器,井在下极扳处(未与极扳接触、返回。

若将下极板向上平移d/3,则从P 点开始下落的相同粒子将A 打到下极扳上B 在下极板处返回C 在距上极板d/2处返回D 在距上极扳2d/5处返回答案:D17、如图,在水平面(纸面)内有三根相同的均匀金属棒ab 、Ac 和MN 其中ab 、ac 在a 点接触,构成“v ”字型导轨。

空间存在垂直于纸面的均匀碰场。

用力使MN 向右匀速运动,从图示位置开始计时.运动中MN 始终与bac 的平分线垂直且和导轨保持良好接触。

下列关于回路中电流i 与时间t 的关系图线.可能正确的是答案:A18、如图,半径为 R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外。

2013学年高考理科数学年陕西卷答案

2013学年高考理科数学年陕西卷答案

2013年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)答案解析A B=,所以(){4}{1,2,3A B=.故选U求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.()())0()0cf b f b f<<,,所以该函数在数,最多有两个零点,即可判断出.log(k k⨯⨯【提示】根据程序框图,写出运行结果,根据程序输出的结果是3s=,可得判断框内应填入的条件.D【解析】因为12AB AB ⊥,所以可以为原点,分别以1AB ,2AB 所在直线为,则12(,AP AB AB a b =+=12||||1OB OB ==,得()x a -20x ≥.1||2OP <,得(x -||OA 的取值范围是【考点】向量在几何中的应用,平面向量的基本定理及其意义DE DB,可求得,BD.再利用切割线定理可得DE DB,即可得出3 3 3 711 3105 =3 337223105 =1 4 3112 3105C==【解析】(Ⅰ)如图,连接BD交AC于O,因为BC CD=,故AC垂直BD以OB OC AP,,的方向分别为又(0,2,2AF =,(3,3,PB =故0AF PB =,即因此,(3,3,)PA z =-||23PA =(Ⅱ)由(Ⅰ)知(3,3,0)AD =-,(3,3,0)AB =,(0,2,AF =FAD 的法向量为11(,,n x y z =的法向量为22(,n x y =由10n AD =,10n AF =,得302y +=⎪⎩,因此可取1(3,n =由20n AB =,20n AF =,得,因此可取2(3,n =-从而法向量1n 2n 的夹角的余弦值为1212121,8||||n n n n n n ==.轴建立空间直角坐标系如图所示.结合题意算出A B C 、、、从而得到(3,3,PA =得(3,3,0)AD =-,(3,3,0)AB =,(0,2,3)AF =.利用垂直向量数量积为零的解出1(3,n =和2(3,n =-量的夹角公式算出1n 2n 夹角的余弦,结合同角三角函数的平方关系即可算出二面角【考点】用空间向量求平面间的夹角,点线面间的距离计算,二面角的平面角及求法因为PQ P Q '⊥,且所以101101(,)(,)0QP QP x x y x x y '=---=,即由椭圆方程及102x x =得181416x --= ⎪⎝⎭n AB P =⊇,即3B ∈. 为稀疏集矛盾.1114=B I .14I ⎫∈⎬⎭中除整数外剩下的数组成集合13,,2⎫⎬⎭,可分解为下面两稀疏集的3⎧1314,,,33⎫⎬⎭14⎫⎬.123A A C ,123B B B =.是不相交的稀疏集,且14AB P =.的最大值为14.(注:对14P 的分拆方法不是唯一的)(Ⅰ)对于集合7P ,当4k =时,根据n P 中有3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高等学校招生全国统一考试(理科)
第一部分(共50分)
一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)
1. 设全集为R ,
函数()f x M , 则C M R 为 (A) [-1,1] (B) (-1,1)
(C) ,1][1,)(∞-⋃+∞- (D) ,1)(1,)(∞-⋃+∞- 2. 根据下列算法语句, 当输入x 为60时, 输出y 的值为 (A) 25 (B) 30 (C) 31 (D) 61
3. 设a , b 为向量, 则“||||||=a a b b ·
”是“a //b ”的 (A) 充分不必要条件 (B)
(C) 充分必要条件 (D) 4. 某单位有840名职工, 现采用系统抽样方法, 抽取42
ADE 和, 则该 ABC 的形状为
8. 设函数,00.,
()x x f x x x -<⎪ ⎪=⎝
≥⎭⎨⎪
⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为 (A) -20 (B) 20 (C) -15 (D) 15
9. 在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2
的内接矩形花园(阴影部分), 则其边长x (单位m )的取值范围是
(A) [15,20] (B) [12,25] (C) [10,30] (D) [20,30]
10. 设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有 (A) [-x ] = -[x ] (B) [2x ] = 2[x ] (C) [x +y ]≤[x ]+[y ] (D) [x -y ]≤[x ]-[y ]
二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分)
11. 双曲线22116x y m
-=的离心率为5
4, 则m 等于 .
12. 某几何体的三视图如图所示, 则其体积为 .
13. 若点(x , y )位于曲线|1|y x =-与y =2所围成的封闭区域,
值为 . 14. 观察下列等式:
211=
221
23-=- 2221263+-=
2222124310-+-=-

照此规律, 第n 个等式可为 .
15. (考生请注意:请在下列三题中任选一题作答, 如果多做, 则按所做的第一题计分)
A. (不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则(am +bn )(bm +an )的最小值为 .
B. (几何证明选做题) 如图, 弦AB 与CD 相交于O 内一点E , 过E 已知PD =2DA =2, 则PE θ为参数, 则圆
x 6小题,共∈R , 设函数()·
f x =a b . 在0,2π⎡⎤
⎢⎥⎣⎦
上的最大值和最小值.
x
17. (本小题满分12分) 设{}n a 是公比为q 的等比数列.
(Ⅰ) 推导{}n a 的前n 项和公式; (Ⅱ) 设q ≠1, 证明数列{1}n a +不是等比数列.
18. (本小题满分12分)
如图, 四棱柱ABCD -A 1B 1C 1D 1的底面
1AB AA =A
(Ⅰ) 证明: A 1C ⊥平面BB 1D 1D ;
(Ⅱ) 求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.
19. (本小题满分12分)
在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手. (Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(Ⅱ) X 表示3号歌手得到观众甲、乙、丙的票数之和, 求X 的分布列和数学期望.
20. (本小题满分13分)
已知动圆过定点A (4,0), 且在y 轴上截得的弦MN 的长为8. (Ⅰ) 求动圆圆心的轨迹C 的方程;
(Ⅱ) 已知点B (-1,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P , Q , 若x 轴是PBQ ∠的角平分线, 证明直线l 过定点.
21. (本小题满分14分) 已知函数()e ,x f x x =∈R .
(Ⅰ) 若直线y =kx +1与f (x)k 的值;
(Ⅱ) 设x >0, 讨论曲线y =. (Ⅲ) 设a <b , 比较()()2f a f b +.。

相关文档
最新文档