满洲里市实验中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
满洲里市实验中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 下列图象中,不能作为函数y=f (x )的图象的是( )
A .
B .
C .
D .
2. 设集合( )
A .
B .
C .
D .
3. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88%
4. 已知i 是虚数单位,则复数等于( )
A .﹣ +i
B .﹣ +i
C .﹣i
D .﹣i
5. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01
()sin ,12
x x x f x x x ì-#ï=íp <?ïî,则
1741
()()46
f f +=( )
A .
716 B .916 C .1116 D .1316
【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.
6. 已知等差数列的公差且
成等比数列,则( )
A .
B .
C .
D .
7. 《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )
A .钱
B .钱
C .钱
D .钱
8. 已知双曲线)0,0(122
22>>=-b a b
y a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且
1PF PQ ⊥,若||||1PF PQ λ=,3
4
125≤≤λ,则双曲线离心率e 的取值范围为( ).
A. ]210,1(
B. ]537,1(
C. ]2
10,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)
9. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为( )
A .560m 3
B .540m 3
C .520m 3
D .500m 3
10.已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列
{}n a 的前n 项和为( )
A .22n
- B .1
2
2n +- C .21n - D .121n +-
11.已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )
A .x y z <<
B .z x y <<
C .z y z <<
D .y x z <<
12.设双曲线焦点在y 轴上,两条渐近线为,则该双曲线离心率e=( )
A .5
B .
C .
D .
二、填空题
13.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12
n n n S λ-+<+|对一切n N *
∈恒成立,则λ的取值范围是___________.
【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力. 14.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.
15.【徐州市2018届高三上学期期中】已知函数
(为自然对数的底数),若
,则实数 的取值范围为______.
16.设函数3
2
()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .
17.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .
18.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .
三、解答题
19.已知函数()2
ln f x x bx a x =+-.
(1)当函数()f x 在点()()
1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*
0,1,x n n n N ∈+∈,求的值;
(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且12
02
x x x +=,求证:()00f x '>.
20.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;
(2)若点Q 为PC 中点,120BAD ∠=︒,PA =1AB =,求三棱锥A QCD -的体积.
21.如图,在四棱锥P ﹣ABCD 中,AD ∥BC ,AB ⊥AD ,AB ⊥PA ,BC=2AB=2AD=4BE ,平面PAB ⊥平面ABCD ,
(Ⅰ)求证:平面PED ⊥平面PAC ;
(Ⅱ)若直线PE 与平面PAC 所成的角的正弦值为
,求二面角A ﹣PC ﹣D 的平面角的余弦值.
22.已知函数f(x)=2x2﹣4x+a,g(x)=log a x(a>0且a≠1).
(1)若函数f(x)在[﹣1,3m]上不具有单调性,求实数m的取值范围;
(2)若f(1)=g(1)
①求实数a的值;
②设t1=f(x),t2=g(x),t3=2x,当x∈(0,1)时,试比较t1,t2,t3的大小.
23.在△ABC中,D为BC边上的动点,且AD=3,B=.
(1)若cos∠ADC=,求AB的值;
(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?
24.已知{}n a 是等差数列,{}n b 是等比数列,n S 为数列{}n a 的前项和,111a b ==,且3336b S =,
228b S =(*n N ∈).
(1)求n a 和n b ; (2)若1n n a a +<,求数列11n n a a +⎧
⎫
⎨⎬⎩⎭
的前项和n T .
满洲里市实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】B
【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x >0时,有两个不同的y和x对应,所以不满足y值的唯一性.
所以B不能作为函数图象.
故选B.
【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性.
2.【答案】B
【解析】解:集合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,
集合B中的解集为x>,
则A∩B=(,+∞).
故选B
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
3.【答案】B
【解析】
4.【答案】A
【解析】解:复数===,
故选:A.
【点评】本题考查了复数的运算法则,属于基础题.
5.【答案】C
6. 【答案】A
【解析】 由已知,,成等比数列,所以,即
所以
,故选A
答案:A
7. 【答案】B
【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a ﹣2d ,a ﹣d ,a ,a+d ,a+2d , 则由题意可知,a ﹣2d+a ﹣d=a+a+d+a+2d ,即a=﹣6d , 又a ﹣2d+a ﹣d+a+a+d+a+2d=5a=5,∴a=1,
则a ﹣2d=a ﹣2×=.
故选:B .
8. 【答案】C
【解析】如图,由双曲线的定义知,a PF PF
2||||21=-,a QF QF 2||||21=-,两式相加得 a PQ QF PF 4||||||11=-+,又||||1PF PQ λ=,1PF PQ ⊥,
||1||12
1PF QF λ+=∴, a PF PQ QF PF 4||)11(||||||1211=-++=-+∴λλ,
λλ-++=2
1114||a
PF ①,
λ
λλλ-+++-+=
∴22211)11(2||a PF ②,在12PF F ∆中,2
212221||||||F F PF PF =+,将①②代入得
+-++2
2
)114(λ
λa
2
2224)11)
11(2(
c a =-+++-+λλλλ,化简得:+
-++2
2
)
11(4
λλ
2
2
22
2)
11()11(e =-+++-+λλλλ,令t =-++λλ2
11,易知λλ-++=2
11y 在
]34
,125[
上单调递减,故
]35,34[∈t ,2
22222
84)2(4t t t t t t e +-=-+=∴]25,2537[21)411(82∈+-=t ,]210,537[∈e ,故答案 选
C.
9. 【答案】A
【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y 轴建立直角坐标系,易得抛物线过点(3,
﹣1),其方程为y=﹣,那么正(主)视图上部分抛物线与矩形围成的部分面积
S 1=
=2
=4,
下部分矩形面积S 2=24,
故挖掘的总土方数为V=(S 1+S 2)h=28×20=560m 3
.
故选:A .
【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题.
10.【答案】C
【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n
-,选C .
11.【答案】A 【解析】
考
点:对数函数,指数函数性质. 12.【答案】C
【解析】解:∵双曲线焦点在y 轴上,故两条渐近线为 y=±x ,
又已知渐近线为,∴ =,b=2a ,
故双曲线离心率e==
=
=
,
故选C .
【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键.
二、填空题
13.【答案】31λ-<<
【解析】由221111
1123(1)22
22n n n S n n
--=+⨯
+⨯++-⋅
+,2
111
12222n
S =⨯+⨯+…111(1)22n n n n -+-⋅+⋅,两式相减,得2111111212222222n n n n n S n -+=++++-⋅=-,所以12
42
n n n S -+=-,
于是由不等式12
|1
42
n λ-+<-|对一切N n *∈恒成立,得|12λ+<|,解得31λ-<<. 14.【答案】 6
【解析】解:过A 作AO ⊥BD 于O ,AO 是棱锥的高,所以AO==
,
所以四棱锥A ﹣BB 1D 1D 的体积为V==6.
故答案为:6.
15.【答案】
【解析】令,则
所以为奇函数且单调递增,因此
即
点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性
去掉“”,转化为具体的不等式(组),此时要注意与
的取值应在外层函数的定义域内
16.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦
【解析】
试题分析:因为12()()0f x f x +≤,故得不等式()()
()3322
12121210x x a x x a x x ++++++≤,即
()()
()()()2
2
1212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦
,由于
()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故
()12122133x x a a x x ⎧
+=-+⎪⎪⎨
⎪=⎪⎩
,代入前面不等式,并化简得()1a +()2
2520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤
-∞-⎢⎥⎣⎦
.
考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.
【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数()f x 的到函数,令()'0f x =考虑判别式大于零,根据韦达定理求出1212,x x x x +的值,代入不等式12()()0f x f x +≤,得到关于的高次不等式,再利用“穿针引线”即可求得实
数的取值范围.111]
17.【答案】 3 .
【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,
∴直线与坐标轴的交点为(
0,﹣2)和(﹣3,0),
故三角形的面积S=×2×3=3,
故答案为:3.
【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.
18.【答案】 114 .
【解析】解:根据题目要求得出:
当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114. 故答案为:114
【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.
三、解答题
19.【答案】(1)()26ln f x x x x =--;(2)3n =;(3)证明见解析. 【解析】
试
题解析: (1)()2a
f'x x b x =+-,所以(1)251(1)106f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨
=+==⎩⎩
, ∴函数()f x 的解析式为2()6ln (0)f x x x x x =-->;
(2)22
626
()6ln '()21x x f x x x x f x x x x
--=--⇒=--=,
因为函数()f x 的定义域为0x >,
令(23)(2)3
'()02
x x f x x x +-=
=⇒=-或2x =, 当(0,2)x ∈时,'()0f x <,()f x 单调递减,
当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增, 且函数()f x 的定义域为0x >,
(3)当1a =时,函数2
()ln f x x bx x =+-,
21111()ln 0f x x bx x =+-=,2
2222()ln 0f x x bx x =+-=,
两式相减可得22
121212()ln ln 0x x b x x x x -+--+=,121212ln ln ()x x b x x x x -=
-+-. 1'()2f x x b x =+-,0001
'()2f x x b x =+-,因为1202x x x +=,
所以12120121212
ln ln 2
'()2()2x x x x f x x x x x x x +-=⋅+-+-
-+ 212121221221122112211
1
21ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤
⎛⎫-⎢⎥ ⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦
设21
1x
t x =>,2(1)()ln 1t h t t t -=-+,
∴22
222
14(1)4(1)'()0(1)(1)(1)
t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =,
∴()0h t >,又
21
1
0x x >-,所以0'()0f x >.
考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.
【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 20.【答案】(1)证明见解析;(2)1
8
. 【解析】
试题解析:(1)证明:取PD 中点R ,连结MR ,RC , ∵//MR AD ,//NC AD ,1
2
MR NC AD ==, ∴//MR NC ,MR AC =, ∴四边形MNCR 为平行四边形,
∴//MN RC ,又∵RC ⊂平面PCD ,MN ⊄平面PCD , ∴//MN 平面PCD .
(2)由已知条件得1AC AD CD ===,所以ACD S ∆=, 所以111328
A QCD Q ACD ACD V V S PA --∆==
⨯⨯=.
考点:1、直线与平面平行的判定;2、等积变换及棱锥的体积公式. 21.【答案】
【解析】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA
∴PA⊥平面ABCD
结合AB⊥AD,可得
分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示…
可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),
P(0,0,λ)(λ>0)
∴,,
得,,
∴DE⊥AC且DE⊥AP,
∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.
∵ED⊂平面PED∴平面PED⊥平面PAC
(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,
设直线PE与平面PAC所成的角为θ,
则,解之
得λ=±2
∵λ>0,∴λ=2,可得P的坐标为(0,0,2)
设平面PCD的一个法向量为=(x0,y0,z0),,
由,,得到,
令x0=1,可得y0=z0=﹣1,得=(1,﹣1,﹣1)
∴cos<,
由图形可得二面角A﹣PC﹣D的平面角是锐角,
∴二面角A﹣PC﹣D的平面角的余弦值为.
【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A﹣PC﹣D的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.
22.【答案】
【解析】解:(1)因为抛物线y=2x2﹣4x+a开口向上,对称轴为x=1,
所以函数f(x)在(﹣∞,1]上单调递减,在[1,+∞)上单调递增,
因为函数f(x)在[﹣1,3m]上不单调,
所以3m>1,…(2分)
得,…(3分)
(2)①因为f(1)=g(1),所以﹣2+a=0,…(4分)
所以实数a的值为2.…
②因为t1=f(x)=x2﹣2x+1=(x﹣1)2,
t2=g(x)=log2x,
t3=2x,
所以当x∈(0,1)时,t1∈(0,1),…(7分)
t2∈(﹣∞,0),…(9分)
t3∈(1,2),…(11分)
所以t2<t1<t3.…(12分)
【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.23.【答案】
【解析】(本小题满分12分)
解:(1)∵,
∴,
∴…2分(注:先算∴sin∠ADC给1分)
∵,…3分
∴,…5分
(2)∵∠BAD=θ,
∴
, (6)
由正弦定理有,…7分
∴,…8分
∴,…10分
=,…11分
当
,即
时f (θ)取到最大值9.…12分
【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.
24.【答案】(1)21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=;(2)21
n n +. 【解析】
试题解析:(1)设{}n a 的公差为d ,{}n b 的公比为,
由题意得2(33)36,(2)8,
q d q d ⎧+=⎨+=⎩解得2,2,d q =⎧⎨=⎩或2,
36.d q ⎧
=-⎪⎨⎪=⎩
∴21n a n =-,12n n b -=或1
(52)3
n a n =-,16n n b -=.
(2)若+1n n a a <,由(1)知21n a n =-,
∴111111()(21)(21)22121
n n a a n n n n +==--+-+, ∴111111(1)2335212121
n n
T n n n =-+-++-=-++….
考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用.。