北川羌族自治县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北川羌族自治县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题
1.某几何体的三视图如图所示,则该几何体的表面积为()
A.12π+15 B.13π+12 C.18π+12 D.21π+15
2.已知i是虚数单位,则复数等于()
A.﹣+i B.﹣+i C.﹣i D.﹣i
3.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()
A.i≥7?B.i>15?C.i≥15?D.i>31?
4.某程序框图如图所示,该程序运行输出的k值是()
A .4
B .5
C .6
D .7
5. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( )
A .1
B .2
C .3
D .4
6. 如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )
A .②④
B .③④
C .①②
D .①③
7. 下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .y=|x|(x ∈R ) B .y=(x ≠0) C .y=x (x ∈R ) D .y=﹣x 3(x ∈R ) 8. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )
A .4x+2y=5
B .4x ﹣2y=5
C .x+2y=5
D .x ﹣2y=5
9. 已知集合{| lg 0}A x x =≤,1
={|
3}2
B x x ≤≤,则A B =I ( ) A .(0,3] B .(1,2]
C .(1,3]
D .1
[,1]2
【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.
10.过点(2,﹣2)且与双曲线﹣y 2=1有公共渐近线的双曲线方程是( )
A .

=1
B .

=1
C .﹣=1
D .﹣=1
11.若当R x ∈时,函数|
|)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3
|
|log x x y a =的图象大致是 ( )
【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 12.某几何体的三视图如图所示,则它的表面积为( )
A .
B .
C .
D .
二、填空题
13.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= .
14.(文科)与直线310x -=垂直的直线的倾斜角为___________.
15.如图,是一回形图,其回形通道的宽和OB 1的长均为1,回形线与射线OA 交于A 1,A 2,A 3,…,若从点O 到点A 3的回形线为第1圈(长为7),从点A 3到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…依此类推,第8
圈的长为 .
16.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则
33sin cos()4
A B π
-+
的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.
17.已知关于的不等式2
0x ax b ++<的解集为(1,2),则关于的不等式2
10bx ax ++>的解集 为___________.
18.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a >0且a ≠1),+
=.若数列{}的前n 项和大于62,则n 的最小值
为 .
三、解答题
19.(本小题满分12分)
某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:
(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;
(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克
5060708090
1000.02
0.025a
频率组距
销售量/千克
时获利的平均值.
20.一艘客轮在航海中遇险,发出求救信号.在遇险地点A 南偏西45o
方向10海里的B 处有一艘海
难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东75o
,正以每小时9海里的速度向
一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.
(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间; (2)若最短时间内两船在C 处相遇,如图,在ABC ∆中,求角B 的正弦值.
21.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;
(2)求函数[()]f f x 的解析式并确定其定义域.
22.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方
程为⎩⎪⎨⎪⎧x =cos t y =1+sin t
(t 为参数),圆C 2的普通方程为x 2+y 2+23x =0.
(1)求C 1,C 2的极坐标方程;
(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.
23.已知椭圆x 2+4y 2=4,直线l :y=x+m (1)若l 与椭圆有一个公共点,求m 的值;
(2)若l 与椭圆相交于P 、Q 两点,且|PQ|等于椭圆的短轴长,求m 的值.
24.(本题满分12分)设向量))cos (sin 2
3
,
(sin x x x -=,)cos sin ,(cos x x x +=,R x ∈,记函数 x f ⋅=)(.
(1)求函数)(x f 的单调递增区间;
(2)在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,.若2
1
)(=A f ,2=a ,求ABC ∆面积的最大值.
北川羌族自治县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】C
【解析】解:由三视图知几何体为半个圆锥,圆锥的底面圆半径为1,高为2,
∴圆锥的母线长为5,
∴几何体的表面积S=×π×42+×π×4×5+×8×3=18π+12.
故选:C.
2.【答案】A
【解析】解:复数===,
故选:A.
【点评】本题考查了复数的运算法则,属于基础题.
3.【答案】C
【解析】解:模拟执行程序框图,可得
S=2,i=0
不满足条件,S=5,i=1
不满足条件,S=8,i=3
不满足条件,S=11,i=7
不满足条件,S=14,i=15
由题意,此时退出循环,输出S的值即为14,
结合选项可知判断框内应填的条件是:i≥15?
故选:C.
【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.
4.【答案】C
【解析】解:程序在运行过程中各变量的值如下表示:
S k 是否继续循环
循环前100 0/
第一圈100﹣20 1 是
第二圈100﹣20﹣21 2 是

第六圈100﹣20﹣21﹣22﹣23﹣24﹣25<0 6 是
则输出的结果为7.
故选C.
【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.
5.【答案】A
【解析】解:设等差数列{a n}的公差为d,
由a1+1,a3+2,a5+3构成等比数列,
得:(a3+2)2=(a1+1)(a5+3),
整理得:a32+4a3+4=a1a5+3a1+a5+3
即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.
化简得:(2d+1)2=0,即d=﹣.
∴q===1.
故选:A.
【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.
6.【答案】A
【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.
在①中:由异面直线的定义可知:EP与BD是异面直线,
不可能EP∥BD,因此不正确;
在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,
∴SO⊥AC.
∵SO∩BD=O,∴AC⊥平面SBD,
∵E,M,N分别是BC,CD,SC的中点,
∴EM∥BD,MN∥SD,而EM∩MN=M,
∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.
在③中:由①同理可得:EM⊥平面SAC,
若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,
因此当P 与M 不重合时,EP 与平面SAC 不垂直.即不正确.
在④中:由②可知平面EMN ∥平面SBD , ∴EP ∥平面SBD ,因此正确.
故选:A .
【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
7. 【答案】D
【解析】解:y=|x|(x ∈R )是偶函数,不满足条件,
y=(x ≠0)是奇函数,在定义域上不是单调函数,不满足条件, y=x (x ∈R )是奇函数,在定义域上是增函数,不满足条件, y=﹣x 3(x ∈R )奇函数,在定义域上是减函数,满足条件, 故选:D
8. 【答案】B
【解析】解:线段AB 的中点为,k AB ==﹣,
∴垂直平分线的斜率 k=
=2,
∴线段AB 的垂直平分线的方程是 y ﹣=2(x ﹣2)⇒4x ﹣2y ﹣5=0,
故选B .
【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.
9. 【答案】D
【解析】由已知得{}
=01A x x <?,故A B I 1[,1]2
,故选D .
10.【答案】A
【解析】解:设所求双曲线方程为﹣y2=λ,
把(2,﹣2)代入方程﹣y2=λ,
解得λ=﹣2.由此可求得所求双曲线的方程为.
故选A.
【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用.11.【答案】C
【解析】由||
)
(x a
x
f=始终满足1
)
(≥
x
f可知1
>
a.由函数
3|
| log
x x
y a
=是奇函数,排除B;当)1,0(

x时,
|
|
log<
x
a ,此时0
|
|
log
3
<
=
x
x
y a,排除A;当+∞

x时,0

y,排除D,因此选C.
12.【答案】A
【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,
∴母线长为,
圆锥的表面积S=S底面+S侧面=×π×12+×2×2+×π×=2+.
故选A.
【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.
二、填空题
13.【答案】﹣1054.
【解析】解:∵2a n,a n+1是方程x2﹣3x+b n=0的两根,
∴2a n+a n+1=3,2a n a n+1=b n,
∵a1=2,∴a2=﹣1,同理可得a3=5,a4=﹣7,a5=17,a6=﹣31.
则b5=2×17×(﹣31)=1054.
故答案为:﹣1054.
【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题.
14.【答案】
3
π
【解析】
试题分析:依题意可知所求直线的斜率为3,故倾斜角为3
π. 考点:直线方程与倾斜角.
15.【答案】 63 .
【解析】解:∵第一圈长为:1+1+2+2+1=7 第二圈长为:2+3+4+4+2=15
第三圈长为:3+5+6+6+3=23 …
第n 圈长为:n+(2n ﹣1)+2n+2n+n=8n ﹣1 故n=8时,第8圈的长为63, 故答案为:63.
【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形.
16.【答案】62
(1,)+ 【



17.【答案】),1()2
1,(+∞-∞Y 【




点:一元二次不等式的解法.
18.【答案】 1 .
【解析】解:∵x 为实数,[x]表示不超过x 的最大整数, ∴如图,当x ∈[0,1)时,画出函数f (x )=x ﹣[x]的图象,
再左右扩展知f (x )为周期函数. 结合图象得到函数f (x )=x ﹣[x]的最小正周期是1.
故答案为:1.
【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.
三、解答题
19.【答案】(本小题满分12分)
解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数. (Ⅰ)由(0.0050.0150.020.025)101a ++++⨯=得0.035a = (3分)
每天销售量的中位数为0.15
701074.30.35
+
⨯=千克 (6分) (Ⅱ)若当天的销售量为[50,60),则超市获利554202180⨯-⨯=元; 若当天的销售量为[60,70),则超市获利654102240⨯-⨯=元;
若当天的销售量为[70,100),则超市获利754300⨯=元, (10分) ∴获利的平均值为0.151800.22400.65300270⨯+⨯+⨯=元. (12分) 20.【答案】(1)
2
3
小时;(2)3314.
【解析】

题解析:(1)设搜救艇追上客轮所需时间为小时,两船在C 处相遇. 在ABC ∆中,4575120BAC ∠=+=o
o
o
,10AB =,9AC t =,21BC t =.
由余弦定理得:222
2cos BC AB AC AB AC BAC =+-∠g g , 所以2
2
2
1
(21)10(9)2109()2
t t t =+-⨯⨯⨯-,
化简得2
369100t t --=,解得23t =
或5
12t =-(舍去). 所以,海难搜救艇追上客轮所需时间为2
3
小时.
(2)由2963AC =⨯=,2
21143
BC =⨯=.
在ABC ∆中,由正弦定理得3
6sin 6sin120
332sin 14
14AC BAC B BC ⨯
∠===
=o
g g . 所以角B 的正弦值为
33
14
. 考点:三角形的实际应用.
【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,AC BC ,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键.
21.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-. 【




题解析:
(1)设()(0)f x kx b k =+>,111] 由题意有:32,27,k b k b -+=⎧⎨
+=⎩解得1,
5,
k b =⎧⎨=⎩
∴()5f x x =+,[]3,2x ∈-. (2)(())(5)10f f x f x x =+=+,{}3x ∈-.
考点:待定系数法. 22.【答案】
【解析】解:(1)由C 1:⎩
⎪⎨⎪⎧x =cos t
y =1+sin t (t 为参数)得
x 2+(y -1)2=1, 即x 2+y 2-2y =0,
∴ρ2-2ρsin θ=0,即ρ=2sin θ为C 1的极坐标方程, 由圆C 2:x 2+y 2+23x =0得
ρ2+23ρcos θ=0,即ρ=-23cos θ为C 2的极坐标方程.
(2)由题意得A ,B 的极坐标分别为 A (2sin α,α),B (-23cos α,α). ∴|AB |=|2sin α+23cos α| =4|sin (α+π
3
)|,α∈[0,π),
由|AB |=2得|sin (α+π3)|=1
2

∴α=π2或α=5π
6
.
当α=π2时,B 点极坐标(0,π2)与ρ≠0矛盾,∴α=5π6

此时l 的方程为y =x ·tan 5π
6
(x <0),
即3x +3y =0,由圆C 2:x 2+y 2+23x =0知圆心C 2的直角坐标为(-3,0), ∴C 2到l 的距离d =|3×(-3)|(3)2+32=3
2

∴△ABC 2的面积为S =1
2
|AB |·d
=12×2×32=32
. 即△ABC 2的面积为3
2
.
23.【答案】
【解析】解:(1)把直线y=x+m 代入椭圆方程得:x 2+4(x+m )2=4,即:5x 2+8mx+4m 2﹣4=0, △=(8m )2﹣4×5×(4m 2﹣4)=﹣16m 2+80=0 解得:m=

(2)设该直线与椭圆相交于两点A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程5x 2+8mx+4m 2﹣4=0的两根, 由韦达定理可得:x1+x 2=﹣,x 1•x 2=

∴|AB|=
==
=2;
∴m=±

【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题.
24.【答案】
【解析】【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,难度为中等.。

相关文档
最新文档