求中点坐标的公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求中点坐标的公式
中点坐标的公式是一种衡量两点间位置的准确方式,经常被用来计算坐标系两点的中点坐标。

两点间的中点坐标可以使用以下公式计算:
1. 两点平均求中:中点坐标=(x1+x2)/ 2,(y1+y2)/ 2。

2. 三角形得中:中点坐标=(x1+x2+x3)/ 3,(y1+y2+y3)/ 3。

3. 四边形连线中:中点坐标=(x1+x2+x3+x4)/ 4,(y1+y2+y3+y4)/ 4。

4. 投影中点求中:中点坐标=(x1+x2+x3+x4)/ 2,(y1+y2+y3+y4)/ 2(以两个平面垂直平面的角点为例)。

5. 旋转中点求中:中点坐标= (x1 + x2) / 2 + (y2 - y1)/2*sin(α),(y1 + y2) / 2 - (x2 - x1)/2*sin(α)(以全部点构成的多边形为例,α表示多边形在坐标系中的旋转角度)
6. 球面中点求中:中点坐标= sin( β1 + β2)sin λ1 + cos( β1 + β2) cos λ1,cos( β1 + β2)sin λ1 –sin( β1 + β2) cos λ1(以两个坐标系统中点为例,β1和β2分别表示两个点对应纬度值,λ1和λ2分别表示两个点对应经度值)。

两点平均求中是最常见的计算两点中点坐标的方法,只要将两点的横坐标和纵坐标相加,然后再除以2就可以求出中点坐标。

三角形得中和四边形连线中可以类似于两点平均求中,只是将对应点的三点或四点的坐标位置除以三或四得出中点坐标。

投影中点求中和旋转中点求
中比较复杂,它们可以分别用于以角点为例的投影计算和旋转多边形的中点计算,都要计算两个或三个点的坐标,并将角度和正弦值等参数结合其中。

球面中点求中比较特殊,它可以用于计算坐标系任何两点间的中点坐标,只要知道这两个点的纬度值和经度值,就可以计算出它们之间的中点坐标。

相关文档
最新文档