人教版八年级数学第二学期3月份月考测试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.如图,ABC 是等边三角形,点D .E 分别为边BC .AC 上的点,且CD AE =,点F 是BE 和AD 的交点,BG AD ⊥,垂足为点G ,已知75∠=︒BEC ,1FG =,则2AB 为( )
A .4
B .5
C .6
D .7
2.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S ;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S ,其中116S =,245S =,511S =,614S =,则43S S +=( ).
A .86
B .61
C .54
D .48 3.△ABC 的三边的长a 、b 、c 满足:2(1)250a b c --=,则△ABC 的形状为
( ).
A .等腰三角形
B .等边三角形
C .钝角三角形
D .直角三角形 4.△ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( ) ①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B -∠C; ④∠A ∶∠B ∶∠C =
1∶2∶3 ;⑤111,,345a b c =
==;⑥10,a = 24,b = 26c = A .2个 B .3个 C .4个 D .5个
5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形。

若正方形A 、B 、C 、D 的边长是3、5、2、3,则最大正方形E 的面积是
A .13
B .225+
C .47
D .13
6.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()
A .22
B .32
C .62
D .82
7.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,
直角三角形的短直角边为a ,较长直角边为b ,那么2a b ()
+的值为( )
A .13
B .19
C .25
D .169
8.如图,在△ABC 中,AB=8,BC=10,AC=6,则BC 边上的高AD 为( )
A .8
B .9
C .245
D .10
9.以下列各组数为边长,能组成直角三角形的是( )
A .1,2,3
B .2,3,4
C .3,4,6
D .13,2
10.有下列的判断:
①△ABC 中,如果a 2+b 2≠c 2,那么△ABC 不是直角三角形
②△ABC 中,如果a 2-b 2=c 2,那么△ABC 是直角三角形
③如果△ABC 是直角三角形,那么a 2+b 2=c 2
以下说法正确的是( )
A .①②
B .②③
C .①③
D .② 二、填空题
11.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB =13,EF =7,那么AH 等于_____.
12.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.
13.如图,△ABC 中,∠ABC =45°,∠BCA =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则AB BD
的值为____________.
14.如图,正方体的底面边长分别为2cm 和3cm ,高为5cm .若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为_____cm .
15.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.
16.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边长为_____.
17.如图,在△ABC 中,AB =AC =10,BC =12,AD 是角平分线,P 、Q 分别是AD 、AB 边上的动点,则BP +PQ 的最小值为_______.
18.如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,若AD =4,DC =3,求BE 的长.
19.如图,把平面内一条数轴x 绕点O 逆时针旋转角θ(0°<θ<90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:已知点P 是平面斜坐标系中任意一点,过点P 作y 轴的平行线交x 轴于点A ,过点P 作x 轴的平行线交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P 的斜坐标.在平面斜坐标系中,若θ=45°,点P 的斜坐标为(1,22),点G 的斜坐标为(7,﹣22),连接PG ,则线段PG 的长度是_____.
20.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.
三、解答题
21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .
()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;
()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12
BE CF AB +=.
()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.
22.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.
(1)经过多少秒,△BMN 为等边三角形;
(2)经过多少秒,△BMN 为直角三角形.
23.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处.
(1)求BF 的长;
(2)求CE 的长.
24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°
(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF
①求证:△AED ≌△AFD ;
②当BE =3,CE =7时,求DE 的长;
(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.
25.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.
小明为解决上面的问题作了如下思考:
作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.
请根据小明的思考,写出该问题完整的证明过程.
(2)参照(1)中小明的思考方法,解答下列问题:
如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.
26.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .
(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.
27.(知识背景)
据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾
三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.
(应用举例)
观察3,4,5;5,12,13;7,24,25;…
可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且
勾为3时,股14(91)2=-,弦15(91)2
=+;
勾为5时,股112(251)2=-,弦113(251)2
=+; 请仿照上面两组样例,用发现的规律填空:
(1)如果勾为7,则股24= 弦25=
(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .
(解决问题)
观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:
(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.
28.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .
(1)如图1,求∠BGD 的度数;
(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;
(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =43,求菱形ABCD 的面积.
29.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .
(1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形.
(2)如图1,求AF 的长.
(3)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,点P 的速度为每秒1cm ,设运动时间为t 秒.
①问在运动的过程中,以A 、P 、C 、Q 四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t 和点Q 的速度;若不可能,请说明理由.
②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t 的值.
30.如图,在△ABC中,D是边AB的中点,E是边AC上一动点,连结DE,过点D作DF⊥DE交边BC于点F(点F与点B、C不重合),延长FD到点G,使DG=DF,连结EF、AG.已知
AB=10,BC=6,AC=8.
(1)求证:△ADG≌△BDF;
(2)请你连结EG,并求证:EF=EG;
(3)设AE=x,CF=y,求y关于x的函数关系式,并写出自变量x的取值范围;
(4)求线段EF长度的最小值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】
结合等边三角形得性质易证△ABE≌△CAD,可得∠FBG=30°,BF=2FG=2,再求解∠ABE =15°,进而两次利用勾股定理可求解.
【详解】
∵△ABC为等边三角形
∴∠BAE=∠C=60°,AB=AC,CD=AE
∴△ABE≌△CAD(SAS)
∴∠ABE=∠CAD
∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAF=∠BAC=60°,
∵BG⊥AD,
∴∠BGF=90°,
∴∠FBG=30°,
∵FG=1,
∴BF=2FG=2,
∵∠BEC =75°,∠BAE =60°,
∴∠ABE =∠BEC ﹣∠BAE =15°,
∴∠ABG =45°,
∵BG ⊥AD ,
∴∠AGB =90°,
∴=
AB 2=AG 2+BG 22)2=6.
故选C .
【点睛】
本题考查全等三角形的判定与性质,等边三角形的性质,勾股定理,证明△ABG 为等腰直角三角形是解题关键.
2.C
解析:C
【分析】
设1S ,2S ,3S 对应的边长为1L ,2L ,3L ,根据题意,通过等边三角形和勾股定理的性
质,得23L ,从而计算得到3S ;设4S ,5S ,6
S 对应的边长为4L ,5L ,6L ,通过圆形面积和勾股定理性质,得24L ,从而计算得到4S ,即可得到答案.
【详解】
分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S
则1S ,2S ,3S 对应的边长设为1L ,2L ,3L
根据题意得:211111162S L L ===
222454S L =
= ∴2
1L =,22L =∵222132L L L += ∴222
32129L L L =-=
∴2
33292944S L === 以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6
S 则4S ,5S ,6
S 对应的边长设为4L ,5L ,6L 根据题意得:2255511228L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭
2266614228
L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭ ∴25811L π=⨯,26814L π=⨯ ∵222564L L L += ∴()22245688111425L L L ππ=+=
⨯+=⨯ ∴2448S 252588L π
π
π==⨯⨯=
∴43292554S S +=+=
故选:C .
【点睛】
本题考查了勾股定理、等边三角形、圆形面积的知识;解题的关键是熟练掌握勾股定理、等边三角形面积计算的性质,从而完成求解.
3.D
解析:D
【分析】
由等式可分别得到关于a 、b 、c 的等式,从而分别计算得到a 、b 、c 的值,再由222+=a b c 的关系,可推导得到△ABC 为直角三角形.
【详解】
∵2
(1)0a c -= 又∵(
)21000a c ⎧-≥≥-≥⎪⎩
∴(
)21=0a c ⎧-⎪⎪⎨⎪⎪⎩
∴12a b c ⎧=⎪=⎨⎪=⎩ ∴222+=a b c
∴△ABC 为直角三角形
故选:D .
【点睛】
本题考察了平方、二次根式、绝对值和勾股定理逆定理的知识;求解的关键是熟练掌握二次根式、绝对值和勾股定理逆定理,从而完成求解.
4.D
解析:D
【分析】
根据勾股定理的逆定理,三角形的内角和定理,分别对每个选项进行判断,即可得到答案.
【详解】
解:∵222a c b -=,得222a b c =+,符合勾股定理逆定理,则①正确;
∵2()()0a b a b c -++=,得到222a c b +=,符合勾股定理逆定理,则②正确; ∵∠A =∠B -∠C ,得∠B=∠A+∠C ,
∵∠A+∠B+∠C=180°,
∴∠B=90°,故③正确;
∵∠A ∶∠B ∶∠C =1∶2∶3,∠A+∠B+∠C=180°, ∴318090123
C ∠=︒⨯=︒++,故④正确; ∵222111
()()()45
3+≠,则⑤不能构成直角三角形,故⑤错误;
∵222102426+=,则⑥能构成直角三角形,故⑥正确;
∴能构成直角三角形的有5个;
故选择:D.
【点睛】
本题考查了勾股定理的逆定理,以及三角形的内角和定理,解题的关键是熟练掌握用勾股定理的逆定理和三角形内角和定理进行判断三角形是直角三角形. 5.C
解析:C
【分析】
根据勾股定理即可得到正方形A 的面积加上B 的面积加上C 的面积和D 的面积是E 的面积.即可求解.
【详解】
四个正方形的面积的和是正方形E 的面积:即222233=92549=47+5+2++++;故答案为C .
【点睛】
理解正方形A ,B ,C ,D 的面积的和是E 的面积是解决本题的关键.
6.B
解析:B
【解析】
由题可知(a-b )2+a 2=(a+b )2,解得a=4b ,所以直角三角形三边分别为3b ,4b ,5b ,当b=8时,4b=32,故选B .
7.C
解析:C 【解析】
试题分析:根据题意得:222
c a b
=+=13,4×1
2
ab=13﹣1=12,即2ab=12,则
2
()
a b
+=22
2
a a
b b
++=13+12=25,故选C.
考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.
8.C
解析:C
【分析】
本题根据所给的条件得知,△ABC是直角三角形,再根据三角形的面积相等即可求出BC边上的高.
【详解】
∵AB=8,BC=10,AC=6,
∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,
则由面积公式可知,S△ABC=1
2
AB⋅AC=
1
2
BC⋅AD,
∴AD=24
5
.故选C.
【点睛】
本题考查了勾股定理的逆定理,需要先证得三角形为直角三角形,再利用三角形的面积公式求得AD的值.
9.D
解析:D
【分析】
根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.【详解】
解:A、12+22=5≠32,故不符合题意;
B、22+32=13≠42,故不符合题意;
C、32+42=25≠62,故不符合题意;
D、12+2
=4=22,符合题意.
故选D.
【点睛】
本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,简便的方法是:判断两个较小的数的平方和是否等于最大数的平方即可.
10.D
解析:D
【分析】
欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.
【详解】
①c 不一定是斜边,故错误;
②正确;
③若△ABC 是直角三角形,c 不是斜边,则a 2+b 2≠c 2,故错误,
所以正确的只有②,
故选D.
【点睛】
本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.
二、填空题
11.【分析】
根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.
【详解】
∵AB =13,EF =7,
∴大正方形的面积是169,小正方形的面积是49,
∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202
ab ⨯
=, ∴2ab =120,a 2+b 2=169,
∴(a +b )2=a 2+b 2+2ab =169+120=289,
∴a +b =17,
∵a ﹣b =7,
解得:a =12,b =5,
∴AE =12,DE =5,
∴AH =12﹣7=5.
故答案为:5.
【点睛】
此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab 的值. 12.
103
. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,
CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()2
3S NG NF =-,12310S S S ++=,即可得出答案.
【详解】
∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形
∴CG=NG ,CF=DG=NF
∴()2
222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =
()2
2232S NG NF NG NF NG NF =-=+-
∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF =
故2103
S = 故答案为
103
. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质.
13【解析】
【分析】
过A 点作BC 的垂线,E 点作AC 的垂线,构造全等三角形,利用对应角相等计算得出∠DAM=15°,在AM 上截取AG=DG ,则∠DGM=30°,设DM=a,通过勾股定理可得到
DG=AG=2a ,2)a ,1)a ,1)a ,代入计算即可.
【详解】
过A 点作AM ⊥BC 于M 点,过E 点EN ⊥AC 于N 点.
∵∠BCA =30°,AE=EC
∴AM=
12AC ,AN=12
AC ∴AM=AN
又∵AD=AE
∴R t∆ADM ≅ R t∆AEN (HL)
∴∠DAM=∠EAN 又∵∠MAC=60°,AD ⊥AE
∴∠DAM=∠EAN=15°
在AM 上截取AG=DG ,则∠DGM=30°
设DM=a,则 DG=AG=2a ,
根据勾股定理得:
∵∠ABC =45°
∴2)a

BD=(31)a +,
AB=2(32)a +, ∴()()62262231a AB BD a
++==+ 故答案为:
622+
【点睛】
本题主要考查等于三角形的性质、含30°角的直角三角形的性质,勾股定理等知识,关键是能根据已知条件构建全等三角形及构建等腰三角形将15°角转化为30°角,本题有较大难度.
14.55
【解析】
【分析】
要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.
【详解】
展开图如图所示:
由题意,在Rt △APQ 中,PD=10cm ,DQ=5cm ,
∴蚂蚁爬行的最短路径长2222105PD QD +=+5cm ),
故答案为:5
【点睛】
本题考查了平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
152
【分析】
连接CE .根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠
的性质推知EG+CG=EG+GF=EF=BE ,
【详解】
解:(1)如图,连接CD 、CF.
∵Rt △ABC 中,∠ACB=90°,AC=BC ,D 为AB 边的中点,
∴BD=CD=1.2 ,
∵由翻折可知BD=DF ,
∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,
∴∠DCF=∠DFC ,
∴∠DCF-∠DCA=∠DFC-∠DFE ,即∠GCF=∠GFC ,
∴GC=GF ,
∴EG+CG=EG+GF=EF=BE ,
∴△ECG 的周长2, 2.
【点睛】
本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..
16.106232【解析】
【详解】
∵(x-6)2=9,
∴x-6=±3,
解得:x 1=9,x 2=3,
∵x ,y 为一个直角三角形的两边的长,y=3,
∴当x=3时,x 、y 223332+=;
当x=9时,x 、y 2293310+=;
当x=9时,x 为斜边、y 为直角边,则第三边为263922=-. 故答案为:310232
【点睛】
本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.
17.6
【解析】
∵AB=AC,AD是角平分线,
∴AD⊥BC,BD=CD,
∴B点,C点关于AD对称,
如图,过C作CQ⊥AB于Q,交AD于P,
则CQ=BP+PQ的最小值,
根据勾股定理得,AD=8,
利用等面积法得:AB⋅CQ=BC⋅AD,
∴CQ=BC AD
AB

=
128
10

=9.6
故答案为:9.6.
点睛:此题是轴对称-最短路径问题,主要考查了角平分线的性质,对称的性质,勾股定理,等面积法,用等面积法求出CQ是解本题的关键.
18.7 8
【解析】
试题分析:根据矩形性质得AB=DC=6,BC=AD=8,AD∥BC,∠B=90°,再根据折叠性质得∠DAC=∠D′AC,而∠DAC=∠ACB,则∠D′AC=∠ACB,所以AE=EC,设BE=x,则EC=4-x,AE=4-x,然后在Rt△ABE中利用勾股定理可计算出BE的长即可.
试题解析:∵四边形ABCD为矩形,
∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,
∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,
∴∠DAC=∠D′AC,
∵AD∥BC,∴∠DAC=∠ACB,
∴∠D′AC=∠ACB,∴AE=EC,
设BE=x,则EC=4﹣x,AE=4﹣x,
在Rt△ABE中,∵AB2+BE2=AE2,
∴32+x2=(4﹣x)2,解得x=7
8

即BE的长为7
8

19.5
【分析】
如图,作PA∥y轴交X轴于A,PH⊥x轴于H.GM∥y轴交x轴于M,连接PG交x轴于N,先证明△ANP≌△MNG(AAS),再根据勾股定理求出PN的值,即可得到线段PG的长度.
【详解】
如图,作PA∥y轴交X轴于A,PH⊥x轴于H.GM∥y轴交x轴于M,连接PG交x轴于N.
∵P(1,2),G(7.﹣2),
∴OA=1,PA=GM=2,OM=7,AM=6,
∵PA∥GM,
∴∠PAN=∠GMN,
∵∠ANP=∠MNG,
∴△ANP≌△MNG(AAS),
∴AN=MN=3,PN=NG,
∵∠PAH=45°,
∴PH=AH=2,
∴HN=1,
∴2222
=+=+=
PN PH NH
215
∴PG=2PN=5.
故答案为5
【点睛】
本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.
20.22
-
【分析】
根据已知条件,添加辅助线可得△EAC≌△DAM(SAS),进而得出当MD⊥BC时,CE 的值最小,转化成求DM的最小值,通过已知值计算即可.
【详解】
解:如图所示,在AB 上取AM=AC=2,
∵90ACB ∠=,2AC BC ==,
∴∠CAB=45°,
又∵45EAD ∠=,
∴∠EAC+∠CAD=∠DAB+∠CAD=45°,
∴∠EAC =∠DAB ,
∴在△EAC 与△DAB 中
AE=AD ,∠EAF =∠DAB ,AC =AM ,
∴△EAC ≌△DAM (SAS )
∴CE=MD ,
∴当MD ⊥BC 时,CE 的值最小,
∵AC=BC=2, 由勾股定理可得2222AB AC BC =
+=,
∴222=-BM ,
∵∠B=45°,
∴△BDM 为等腰直角三角形, ∴DM=BD ,
由勾股定理可得222+BD DM =BM
∴DM=BD=22-
∴CE=DM=22-
故答案为:22-
【点睛】
本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE 最小时的状态,化动为静.
三、解答题
21.(1)BE =1;(2)见解析;(3)(23y x =
【分析】
(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;
(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,
则有BM=CN,DM=DN,进而可根据ASA证明△EMD≌△FND,可得EM=FN,再根据线段的和差即可推出结论;
(3)过点D作DM⊥AB于M,如图3,同(2)的方法和已知条件可得DM=DN=FN=EM,然后根据线段的和差关系可得BE+CF=2DM,BE﹣CF=2BM,在Rt△BMD中,根据30°角的直角三角形的性质可得DM=3BM,进而可得BE+CF=3(BE﹣CF),代入x、y后整理即得结果.
【详解】
解:(1)如图1,∵△ABC是等边三角形,
∴∠B=∠C=60°,BC=AC=AB=4.
∵点D是线段BC的中点,
∴BD=DC=1
2
BC=2.
∵DF⊥AC,即∠AFD=90°,
∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,
∴BE=1
2
BD=1;
(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.
∵∠A=60°,
∴∠MDN=360°﹣60°﹣90°﹣90°=120°.
∵∠EDF=120°,
∴∠MDE=∠NDF.
在△MBD和△NCD中,
∵∠BMD=∠CND,∠B=∠C,BD=CD,
∴△MBD≌△NCD(AAS),
∴BM=CN,DM=DN.
在△EMD和△FND中,
∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,
∴△EMD≌△FND(ASA),
∴EM=FN,
∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=1
2
BC=
1
2
AB;
(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .
∵DN =FN ,
∴DM =DN =FN =EM ,
∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,
BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,
在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,
∴DM =22=3BD BM BM -,
∴()3x y x y +=-,整理,得()
23y x =-.
【点睛】
本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.
22.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.
【分析】
(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;
(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=
12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=
12
BN 列方程求解可得. 【详解】
解 (1)设经过x 秒,△BMN 为等边三角形,
则AM =x ,BN =2x ,
∴BM=AB-AM=30-x,
根据题意得30-x=2x,
解得x=10,
答:经过10秒,△BMN为等边三角形;
(2)经过x秒,△BMN是直角三角形,
①当∠BNM=90°时,
∵∠B=60°,
∴∠BMN=30°,
∴BN=1
2
BM,即2x=
1
2
(30-x),
解得x=6;
②当∠BMN=90°时,∵∠B=60°,
∴∠BNM=30°,
∴BM=1
2
BN,即30-x=
1
2
×2x,
解得x=15,
答:经过6秒或15秒,△BMN是直角三角形.
【点睛】
本题考查勾股定理的逆定理,等边三角形的判定.
23.(1)BF长为6;(2)CE长为3,详细过程见解析.
【分析】
(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt△ABF中,可由勾股定理求出BF的长;
(2)设CE=x,根据翻折可知,EF=DE=8-x,由(1)可知BF=6,则CF=4,在Rt△CEF中,可由勾股定理求出CE的长.
【详解】
解:(1)∵四边形ABCD为矩形,
∴∠B=90°,且AD=BC=10,
又∵AFE是由ADE沿AE翻折得到的,
∴AF=AD=10,
又∵AB=8,
在Rt△ABF中,由勾股定理得:,
故BF的长为6.
(2)设CE=x ,
∵四边形ABCD为矩形,
∴CD=AB=8,∠C=90°,DE=CD-CE=8-x,
又∵△AFE是由△ADE沿AE翻折得到的,
∴FE=DE=8-x,
由(1)知:BF=6,故CF=BC-BF=10-6=4,
在Rt △CEF 中,由勾股定理得:222CF +CE =EF ,
∴2224+x =(8-x),解得:x=3,
故CE 的长为3.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.
24.(1)①见解析;②DE =
297;(2)DE 的值为 【分析】
(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;
(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.
【详解】
(1)①如图1中,
∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,
∴△BAE ≌△CAF ,
∴AE =AF ,∠BAE =∠CAF ,
∵∠BAC =90°,∠EAD =45°,
∴∠CAD +∠BAE =∠CAD +∠CAF =45°,
∴∠DAE =∠DAF ,
∵DA =DA ,AE =AF ,
∴△AED ≌△AFD (SAS );
②如图1中,设DE =x ,则CD =7﹣x .
∵AB =AC ,∠BAC =90°,
∴∠B =∠ACB =45°,
∵∠ABE =∠ACF =45°,
∴∠DCF =90°,
∵△AED ≌△AFD (SAS ),
∴DE =DF =x ,
∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,
∴x 2=(7﹣x )2+32,
∴x =297
, ∴DE =
297;
(2)∵BD =3,BC =9,
∴分两种情况如下:
①当点E 在线段BC 上时,如图2中,连接BE .
∵∠BAC =∠EAD =90°,
∴∠EAB =∠DAC ,
∵AE =AD ,AB =AC ,
∴△EAB ≌△DAC (SAS ),
∴∠ABE =∠C =∠ABC =45°,EB =CD =9-3=6,
∴∠EBD =90°,
∴DE 2=BE 2+BD 2=62+32=45,
∴DE =35; ②当点D 在CB 的延长线上时,如图3中,连接BE .
同理可证△DBE 是直角三角形,EB =CD =3+9=12,DB =3,
∴DE 2=EB 2+BD 2=144+9=153,
∴DE =317,
综上所述,DE 的值为35或317.
【点睛】
本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.
25.(1)证明见解析;(2)21.
【分析】
(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;
(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.
【详解】
解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,
∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,
∵CD平分∠ACB,
∴A′点落在CB上
∵∠ACB=90°,
∴∠B=90°-∠A=30°,
∴∠A′DB=∠CA′D-∠B=30°,即∠A′DB=∠B,
∴A′D=A′B,
∴CA+AD=CA′+A′D=CA′+A′B=CB.
(2)如图,作△ADC关于AC的对称图形△AD′C.
∴D′A=DA=9,D′C=DC=10,
∵AC平分∠BAD,
∴D′点落在AB上,
∵BC=10,
∴D′C=BC,
过点C作CE⊥AB于点E,则D′E=BE,
设D′E=BE=x,
在Rt△CEB中,CE2=CB2-BE2=102-x2,
在Rt△CEA中,CE2=AC2-AE2=172-(9+x)2.
∴102-x2=172-(9+x)2,
解得:x=6,
∴AB=AD′+D′E+EB=9+6+6=21.
【点睛】
本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.
=,证明见解析;(2)依然成立,点E与点C之间的距离为26.(1)CF FH
333.理由见解析.
【分析】
(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.
(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.
【详解】
(1)CF FH =
证明:延长DF 交AB 于点G
∵在ABC △中,90ACB ∠=︒,6AC BC ==,
∴45A B ∠=∠=︒
∵DF DE ⊥于点D ,且DE DF =,
∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.
∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,
∴135CEF FGH ∠=∠=︒,
∵点D 是AC 的中点,∴132
CD AD AC ===,∴CD DG = ∴CE FG =
∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒
∴DCF GFH ∠=∠
∴CEF FGH ≌
∴CF FH =;
(2)依然成立
理由:设AH ,DF 交于点G ,
由题意可得出:DF=DE ,
∴∠DFE=∠DEF=45°,
∵AC=BC ,
∴∠A=∠CBA=45°,
∵DF ∥BC ,
∴∠CBA=∠FGB=45°,
∴∠FGH=∠CEF=45°,
∵点D为AC的中点,DF∥BC,
∴DG=1
2
BC,DC=
1
2
AC,
∴DG=DC,
∴EC=GF,
∵∠DFC=∠FCB,
∴∠GFH=∠FCE,
在△FCE和△HFG中
CEF FGH
EC GF
ECF GFH
∠=∠


=

⎪∠=∠


∴△FCE≌△HFG(ASA),
∴HF=FC.
由(1)可知ABC
△和CFH
△均为等腰直角三角形
当他们面积相等时,6
CF AC
==.
∴2233
DE DF CF CD
==-=
∴333
CE DE DC
=-=-
∴点E与点C之间的距离为333
-.
【点睛】
本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.
27.(1)
1
(491)
2
-;
1
(491)
2
+;(2)2
1
(1)
2
n-;2
1
(1)
2
n+;(3)21
m-;
21
m+;(4)10;26; 12;35;
【解析】
【分析】
(1)依据规律可得,如果勾为7,则股24=
1
(491)
2
-,
弦25=
1
(491)
2
+;
(2)如果勾用n (n≥3,且n 为奇数)表示时,则股=
21(1)2n -, 弦=21(1)2
n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;
(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35.
【详解】
解:(1)依据规律可得,如果勾为7,则股24=
1(491)2-, 弦25=1(491)2
+; 故答案为:1(491)2-;1(491)2
+; (2)如果勾用n (n≥3,且n 为奇数)表示时,则股=
21(1)2n -, 弦=21(1)2
n +; 故答案为:
21(1)2n -;21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;
故答案为:m 2-1,m 2+1;
(4)依据柏拉图公式,
若m 2-1=24,则m=5,2m=10,m 2+1=26;
若m 2+1=37,则m=6,2m=12,m 2-1=35;
故答案为:10、26;12、35.
【点睛】
此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形.
28.(1)∠BGD =120°;(2)见解析;(3)S 四边形ABCD =
【解析】
【分析】
(1)只要证明△DAE ≌△BDF ,推出∠ADE=∠DBF ,由
∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;
(2)如图3中,延长GE 到M ,使得GM=GB ,连接BD 、CG .由△MBD ≌△GBC ,推出DM=GC ,∠M=∠CGB=60°,由CH ⊥BG ,推出∠GCH=30°,推出CG=2GH ,由
CG=DM=DG+GM=DG+GB ,即可证明2GH=DG+GB ;
(3)解直角三角形求出BC 即可解决问题;
【详解】
(1)解:如图1﹣1中,
∵四边形ABCD 是菱形,
∴AD =AB ,
∵∠A =60°,
∴△ABD 是等边三角形,
∴AB =DB ,∠A =∠FDB =60°,
在△DAE 和△BDF 中,
AD BD A BDF AE DF =⎧⎪∠=∠⎨⎪=⎩

∴△DAE ≌△BDF ,
∴∠ADE =∠DBF ,
∵∠EGB =∠GDB+∠GBD =∠GDB+∠ADE =60°,
∴∠BGD =180°﹣∠BGE =120°.
(2)证明:如图1﹣2中,延长GE 到M ,使得GM =GB ,连接CG .
∵∠MGB =60°,GM =GB ,
∴△GMB 是等边三角形,
∴∠MBG =∠DBC =60°,
∴∠MBD =∠GBC ,
在△MBD 和△GBC 中,
MB GB MBD GBC BD BC =⎧⎪∠=∠⎨⎪=⎩,
∴△MBD≌△GBC,
∴DM=GC,∠M=∠CGB=60°,
∵CH⊥BG,
∴∠GCH=30°,
∴CG=2GH,
∵CG=DM=DG+GM=DG+GB,
∴2GH=DG+GB.
(3)如图1﹣2中,由(2)可知,在Rt△CGH中,CH=GCH=30°,
∴tan30°=GH CH

∴GH=4,
∵BG=6,
∴BH=2,
在Rt△BCH中,BC=
∵△ABD,△BDC都是等边三角形,
∴S四边形ABCD=2•S△BCD=2×
4
×(2=.
【点睛】
本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质,直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
29.(1)证明见解析;(2)AF=5cm;(3)①有可能是矩形,P点运动的时间是8,Q
的速度是0.5cm/s;②t=20
3

【解析】
【分析】
(1)证△AEO≌△CFO,推出OE=OF,根据平行四边形和菱形的判定推出即可;
(2)设AF=CF=a,根据勾股定理得出关于a的方程,求出即可;
(3)①只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,求出时间t,即可求出答案;②分为三种情况,P在AF上,P在BF上,P在AB 上,根据平行四边形的性质求出即可.
【详解】
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠AEO=∠CFO,
∵AC的垂直平分线EF,
∴AO=OC,AC⊥EF,
在△AEO和△CFO中

AEO CFO
AOE COF AO OC
∠∠


∠∠







∴△AEO≌△CFO(AAS),
∴OE=OF,
∵OA=OC,
∴四边形AECF是平行四边形,
∵AC⊥EF,
∴平行四边形AECF是菱形;
(2)解:设AF=acm,
∵四边形AECF是菱形,
∴AF=CF=acm,
∵BC=8cm,
∴BF=(8﹣a)cm,
在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,
a=5,
即AF=5cm;
(3)解:①在运动过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形,
只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,
P点运动的时间是:(5+3)÷1=8,
Q的速度是:4÷8=0.5,
即Q的速度是0.5cm/s;
②分为三种情况:第一、P在AF上,
∵P的速度是1cm/s,而Q的速度是0.8cm/s,
∴Q只能再CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;
第二、当P在BF上时,Q在CD或DE上,只有当Q在DE上时,当A、P、C、Q四点为顶点的四边形才有可能是平行四边形,如图,
∵AQ=8﹣(0.8t﹣4),CP=5+(t﹣5),
∴8﹣(0.8t﹣4)=5+(t﹣5),
t=20
3

第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;
即t=20
3
.。

相关文档
最新文档