人教版八年级数学第二学期第一次月考测试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.如图中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )
A .3cm
B .14cm
C .5cm
D .4cm
2.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2
a b +值为( )
A .25
B .9
C .13
D .169
3.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直
角三角形的两直角边分别是a 、b ,那么2()a b + 的值为( ).
A .49
B .25
C .13
D .1
4.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,
直角三角形的短直角边为a ,较长直角边为b ,那么2a b ()
+的值为( )
A .13
B .19
C .25
D .169 5.有一个直角三角形的两边长分别为3和4,则第三边的长为( )
A .5
B 7
C 5
D .57 6.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽
在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )
A .
B .
C .
D .
7.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,
C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交A
D 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )
A .22
B .4
C .3
D .10
8.在直角三角形ABC 中,90C ∠=︒,两直角边长及斜边上的高分别为,,a b h ,则下列关系式成立的是( )
A .222221a b h +=
B .222111a b h +=
C .2h ab =
D .222h a b =+
9.已知一个直角三角形的两边长分别为3和5,则第三边长是( )
A .5
B .4
C 34
D .43410.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25 B .111,4,5222 C .3,4,5 D .114,7,822
二、填空题
11.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.
12.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.
13.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.
14.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.
15.如图,正方体的底面边长分别为2cm 和3cm ,高为5cm .若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为_____cm .
16.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.
17.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.
18.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.
19.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB , 且3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD 的长是____________.
20.已知,在△ABC 中,BC=3,∠A=22.5°,将△ABC 翻折使得点B 与点A 重合,折痕与边AC 交于点P ,如果AP=4,那么AC 的长为_______
三、解答题
21.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE ,
(1)求证:ABD ACE ≅;
(2)若AF 平分DAE ∠交BC 于F ,
①探究线段BD ,DF ,FC 之间的数量关系,并证明;
②若3BD =,4CF =,求AD 的长,
22.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .
(1)判断AE 与BD 的数量关系和位置关系;并说明理由.
(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.
23.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°
(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF
①求证:△AED ≌△AFD ;
②当BE =3,CE =7时,求DE 的长;
(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.
24.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例
如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.
(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;
(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;
(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).
25.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.
(1)若∠A =35°,则∠CBD 的度数为________;
(2)若AC =8,BC =6,求AD 的长;
(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)
26.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .
(1)求证:CED ADB ∠=∠;
(2)若=8AB ,=6CE . 求BC 的长 .
27.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题
问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC ,其顶点A ,B ,C 都在格点上,同时构造长方形CDEF ,使它的顶点都在格点上,且它的边EF 经过点A ,ED 经过点B .同学们借助此图求出了△ABC 的面积.
(1)在图(1)中,△ABC 的三边长分别是AB = ,BC = ,AC = .△ABC 的面积是 .
(2)已知△PMN 中,PM =17,MN =25,NP =13.请你根据启航小组的思路,在图(2)中画出△PMN ,并直接写出△RMN 的面积 .
28.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…
(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;
(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.
29.已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.
(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是 .
(2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ; (3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.
30.(知识背景)
据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾
三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.
(应用举例)
观察3,4,5;5,12,13;7,24,25;…
可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且
勾为3时,股14(91)2=-,弦15(91)2
=+; 勾为5时,股112(251)2=
-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:
(1)如果勾为7,则股24= 弦25=
(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .
(解决问题)
观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:
(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
先求出S A 、S B 、S C 的值,再根据勾股定理的几何意义求出D 的面积,从而求出正方形D 的边长.
【详解】
解∵S A =6×6=36cm 2,S B =5×5=25cm 2,Sc=5×5=25cm 2,
又∵1010A B C D S S S S +++=⨯ ,
∴36+25+25+S D =100,
∴S D =14,
∴正方形D
故选:B.
【点睛】
本题考查了勾股定理,熟悉勾股定理的几何意义是解题的关键.
2.A
解析:A
【分析】
根据勾股定理可以求得22a b +等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值,然后根据()2222a b a ab b +=++即可求解.
【详解】
根据勾股定理可得2213a b +=, 四个直角三角形的面积是:
14131122ab ⨯=-=,即212ab =, 则()2222131225a b a ab b +=++=+=.
故选:A .
【点睛】
本题考查了勾股定理以及完全平方式,正确根据图形的关系求得22a b +和ab 的值是关键.
3.A
解析:A
【分析】
根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12,据此即可得结果.
【详解】
根据题意,结合勾股定理a 2+b 2=25,
四个三角形的面积=4×
12
ab=25-1=24, ∴2ab=24,
联立解得:(a+b )2=25+24=49.
故选A. 4.C
解析:C
【解析】
试题分析:根据题意得:222c a b =+=13,4×12
ab=13﹣1=12,即2ab=12,则
2()a b +=222a ab b ++=13+12=25,故选C .
考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形. 5.D
解析:D
【分析】
分4是直角边、4是斜边,根据勾股定理计算即可.
【详解】
当4是直角边时,斜边=2234+=5,
当4是斜边时,另一条直角边=22473-=,
故选:D .
【点睛】
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.
6.B
解析:B
【分析】
“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.
【详解】
“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:
故选B.
【点睛】
本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.
7.A
解析:A
【分析】
连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出=AF FC .再根据ASA 证明FOA BOC ∆≅∆,那么==3AF BC ,等量代换得到==3FC AF ,利用线段的和差关系求出==1FD AD AF -.然后在直角FDC ∆中利用勾股定理求出CD 的长.
【详解】
解:如图,连接FC ,则=AF FC .
AD BC ∵∥,
FAO BCO ∴∠=∠.
在FOA ∆与BOC ∆中,
FAO BCO OA OC
AOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ()FOA BOC ASA ∴∆≅∆,
3AF BC ∴==,
3FC AF ∴==,431FD AD AF =-=-=.
在FDC ∆中,90D ︒∠=,
222CD DF FC ∴+=,
22213CD ∴+=,
22CD ∴=.
故选A .
【点睛】
本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.
8.B
解析:B
【分析】
设斜边为c ,根据勾股定理得出22a b +
【详解】
解:设斜边为c ,根据勾股定理得出22a b + ∵12ab=12
ch , ∴22a b +,即a 2b 2=a 2h 2+b 2h 2, ∴22222a b a b h =22222a h a b h +22
222b h a b h
,
即
21a +21b =2
1h . 故选:B .
【点睛】 本题考查勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题关键.
9.D
解析:D
【详解】
解:∵一个直角三角形的两边长分别为3和5,
∴①当5是此直角三角形的斜边时,设另一直角边为x ,则由勾股定理得到:
x ;
②当5是此直角三角形的直角边时,设另一直角边为x ,则由勾股定理得到:
x 故选:D
10.B
解析:B
【分析】
根据勾股定理的逆定理分别计算各个选项,选出正确的答案.
【详解】
A 、22272425+=,能组成直角三角形,故正确;
B 、222
11145222⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
,不能组成直角三角形,故错误; C 、222345+=,能组成直角三角形,故正确; D 、22
21147822⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,能组成直角三角形,故正确; 故选:B .
【点睛】
本题考查了勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形.
二、填空题
11.【分析】
在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .
【详解】
∵90ACB ︒∠=,4,2AC BC ==, ∴25AB =, 情况一:当25AD AB ==时,作AE CE ⊥于E
∴ 1122BC AC AB AE ⋅=⋅,即455AE =,1455
DE = ∴22855CE AC AE =
-= ∴22213CD CE DE =+=
情况二:当25BD AB ==时,作BE CE ⊥于E ,
∴1122BC AC AB BE ⋅=⋅,即455BE =,1455
DE = ∴22255CE BC BE =
-= ∴22210CD CE DE =+=
情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E
∴1122
BC AC AB BE ⋅=⋅,
∴45BE = 355
CE ∴= ∵ABD △为等腰直角三角形 ∴152
BF DF AB === ∴955
DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-=-
= ∴2232CD CE E D ''=+=
故答案为:1021332【点睛】
本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键. 127
【分析】
连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO =∠DAO =30°,AB =AD =BD ,BO =OD ,通过证明△EDF 是等边三角形,可得DE =EF =DF ,由勾股定理可求OC ,BC 的长.
【详解】
连接AC ,交BD 于点O ,
∵AB =AD ,BC =DC ,∠A =60°,
∴AC 垂直平分BD ,△ABD 是等边三角形,
∴∠BAO =∠DAO =30°,AB =AD =BD =4,BO =OD =2,
∵CE ∥AB ,
∴∠BAO =∠ACE =30°,∠CED =∠BAD =60°,
∴∠DAO =∠ACE =30°,
∴AE =CE =3,
∴DE =AD−AE =1,
∵∠CED =∠ADB =60°,
∴△EDF 是等边三角形,
∴DE =EF =DF =1,
∴CF =CE−EF =2,OF =OD−DF =1,
22OC CF OF 3∴-=
22BC=OB +OC =7∴ 7
【点睛】
本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.
13.1或
78
【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.
【详解】
解:分为3种情况:
①当PB PQ =时,
4=OA ,3OB =, ∴22435BC AB ==+=, C 点与A 点关于直线OB 对称,
BAO BCO ∴∠=∠,
BPQ BAO ∠=∠,
BPQ BCO ∴∠=∠,
APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,
APQ CBP ∴∠=∠,
在APQ 和CBP 中,
BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩
, ()APQ CBP AAS ∴△≌△,
∴5AP BC ==,
1OP AP OA ∴=-=;
②当BQ BP =时,
BPQ BQP ∠=∠,
BPQ BAO ∠=∠,
BAO BQP ∴∠=∠,
根据三角形外角性质得:BQP BAO ∠>∠,
∴这种情况不存在;
③当QB QP =时,
QBP BPQ BAO ∠=∠=∠,
PB PA ∴=,
设OP x =,则4PB PA x ==-
在Rt OBP △中,222PB OP OB =+,
222(4)3x x ∴-=+, 解得:78
x =; ∴当PQB △为等腰三角形时,1OP =或
78; 【点睛】
本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.
14.2
【分析】
先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.
【详解】
在Rt ABC 中,90,30,2C A BC ∠=∠==,
∴AB=2BC=4,
∴22224223AC AB BC =-=-=,
当AC 为腰时,则该三角形的腰长为23;
当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,
设DE=x ,则AD=2x , ∵222AE DE AD +=,
∴222(3)(2)x x +=
∴x=1(负值舍去),
∴腰长AD=2x=2,
故答案为:23或2
【点睛】
此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.
15.55
【解析】
【分析】
要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.
【详解】
展开图如图所示:
由题意,在Rt △APQ 中,PD=10cm ,DQ=5cm ,
∴蚂蚁爬行的最短路径长2222105PD QD +=+5cm ),
故答案为:5
【点睛】
本题考查了平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平
面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
16.5
【分析】
根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.
【详解】
解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,
∴得出1
8S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y
, 154=53
x y , 所以2
45S x y , 故答案为:5.
【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.
17.9或9
【分析】
通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG S
S S =-即可求解.
【详解】
①当点D 在H 点上方时,
过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,
12AB = ,点E 是AB 中点,
162
AE AB ∴== . ∵EH AC ⊥,
90AHE ∴∠=︒ .
30,6A AE ∠=︒=,
132EH AE ∴=
= , 22226333AH AE EH ∴=-=-=. 32DE =,
2222(32)33DH DE EH ∴=-=-= ,
DH EH ∴=,333AD AH DH =-=,
45EDH ∴∠=︒,
15AED EDH A ∴∠=∠-∠=︒ .
由折叠的性质可知,15DEF AED ∠=∠=︒,
230AEG AED ∴∠=∠=︒ ,
AEG A ∴∠=∠,
AG GE ∴= . 又GQ AE ⊥ ,
132
AQ AE ∴== . 30A ∠=︒ ,
12GQ AG ∴=. 222GQ AQ AG += , 即2
223(2)GQ GQ +=, 3GQ ∴= .
2DGF AED AEG S S S =- ,
112(333)36363922
DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,
过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,
12AB = ,点E 是AB 中点,
162
AE AB ∴== . ∵EH AC ⊥,
90AHE ∴∠=︒.
30,6A AE ∠=︒= ,
132EH AE ∴=
= , 22226333AH AE EH ∴=-=-=.
32DE =,
2222(32)33DH DE EH ∴=-=-= ,
DH EH ∴=,3AD AH DH =+=,
45DEH ∴∠=︒ ,
90105AED A DEH ∴∠=︒-∠+∠=︒ .
由折叠的性质可知,105DEF AED ∠=∠=︒,
218030AEG AED ∴∠=∠-︒=︒ ,
AEG A ∴∠=∠,
AG GE ∴= .
又GQ AE ⊥ ,
132
AQ AE ∴== . 30A ∠=︒,
12
GQ AG ∴= . 222GQ AQ AG += , 即2
223(2)GQ GQ +=,
GQ ∴= .
2DGF AED AEG S S S =- ,
11
23)36922
DGF S ∴=⨯⨯⨯-⨯=,
综上所述,DGF △的面积为9或9.
故答案为:9或9.
【点睛】
本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键. 18.4913
【解析】
【分析】
如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.
【详解】
如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==
,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线
1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=
123223B ∠=∠+∠+∠=∠+∠∴
CE AB ⊥,即90BFC ∠=︒
390B ∴∠+∠=︒
230239+∴∠∠=∠+︒,即2345∠+∠=︒
CDG ∴∆是等腰直角三角形,且5DG CG ==
7512AG AD DG ∴=+=+=
在Rt ACG ∆中,222251213AC CG AG =+=+=
13CE AB AC ==∴=
由三角形的面积公式得1122ABC S BC AG AB CF ∆=
⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013
CF = 12049131313EF CE CF ∴=-=-
= 故答案为:4913
.
【点睛】
本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.
19.3315【分析】
根据直角三角形的性质求出BC ,勾股定理求出AB ,根据直角三角形的性质列式计算即可.
【详解】
解:如图
∵∠B=90°,∠A=30°,
∴BC=12AC=12
×8=4, 由勾股定理得,22228443AC BC -=-=
43333AD ∴==
当点P 在AC 上时,∠A=30°,AP=2PD ,
∴∠ADP=90°,
则AD 2+PD 2=AP 2,即(32=(2PD )2-PD 2,
解得,PD=3,
当点P 在AB 上时,AP=2PD ,3
∴3
当点P 在BC 上时,AP=2PD ,
设PD=x ,则AP=2x ,
由勾股定理得,BP 2=PD 2-BD 2=x 2-3,
()(22223
3x x ∴-=-
解得,15 故答案为:3315
【点睛】
本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.
20.522,32++
【分析】
过B 作BF ⊥CA 于F ,构造直角三角形,分两种情况讨论,利用勾股定理以及等腰直角三角形的性质,即可得到AC 的长.
【详解】
分两种情况:
①当∠C 为锐角时,如图所示,过B 作BF ⊥AC 于F ,
由折叠可得,折痕PE 垂直平分AB ,
∴AP=BP=4,
∴∠BPC=2∠A=45°,
∴△BFP 是等腰直角三角形,
∴BF=DF=22,
又∵BC=3,
∴Rt △BFC 中,CF=221BC BF -=,
∴AC=AP+PF+CF=5+22;
②当∠ACB 为钝角时,如图所示,过B 作BF ⊥AC 于F ,
同理可得,△BFP 是等腰直角三角形,
∴BF=FP=22
又∵BC=3,
∴Rt △BCF 中,221BC BF -=,
∴AC=AF-CF=3+22
故答案为:5+223+22
【点睛】
本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是分两种情况画出图形进行求解.解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
三、解答题
21.(1)见详解(2)①结论:2
22BD FC DF +=,证明见详解②35
【分析】
(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;
(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.
【详解】
解:(1)∵AE AD ⊥
∴90DAC CAE ∠+∠=︒
∵90BAC ∠=︒
∴90DAC BAD ∠+∠=︒
∴BAD CAE ∠=∠
∴在ABD △和ACE △中
AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩
∴ABD △≌ACE △()SAS
(2)①结论:2
22BD FC DF +=
证明:连接EF ,如图:
∵ABD △≌ACE △
∴B ACE ∠=∠,BD CE =
∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒
∴222FC CE EF +=
∴222FC BD EF +=
∵AF 平分DAE ∠
∴DAF EAF ∠=∠
∴在DAF △和EAF △中
AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩
∴DAF △≌EAF △()SAS
∴DF EF =
∴222FC BD DF +=
即2
22BD FC DF +=
②过点A 作AG BC ⊥于点G ,如图:
∵由①可知222223425DF BD FC =+=+=
∴5DF =
∴35412BC BD DF FC =++=++=
∵AB AC =,AG BC ⊥ ∴1112622
BG AG BC ===⨯= ∴633DG BG BD =-=-=
∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】
本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.
22.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析
【分析】
(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.
【详解】
解:(1)AE=BD ,AE ⊥BD ,
理由如下:∵△ABC ,△ECD 都是等腰直角三角形,
∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,
∴△ACE ≌△BCD (SAS )
∴AE=BD ,∠EAC=∠DBC=45°,
∴∠EAC+∠CAB=90°,
∴AE ⊥BD ;
(2)∵PE=EQ ,AE ⊥BD ,
∴PA=AQ ,
∵EP=EQ=5,AE=BD=4,
∴22=2516=3EQ AE --,
∴PQ=2AQ=6;
(3)如图3,若点D 在AB 的延长线上,
∵△ABC ,△ECD 都是等腰直角三角形,
∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,
∴△ACE ≌△BCD (SAS )
∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°,
∴∠EAB=90°,
∵PE=EQ ,AE ⊥BD ,
∴PA=AQ ,
∵EP=EQ=5,AE=BD=4,
∴AQ=22=2516=3EQ AE --,
∴PQ=2AQ=6;
如图4,若点D 在BA 的延长线上,
∵△ABC ,△ECD 都是等腰直角三角形,
∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,
∴△ACE ≌△BCD (SAS )
∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,
∴∠EAB=90°,
∵PE=EQ ,AE ⊥BD , ∴PA=AQ ,
∵EP=EQ=5,AE=BD=4,
∴22=2516=3EQ AE --,
∴PQ=2AQ=6.
【点睛】
本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE⊥BD是本题的关键.
23.(1)①见解析;②DE=29
7
;(2)DE的值为517
【分析】
(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;
(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.
【详解】
(1)①如图1中,
∵将△ABE绕点A逆时针旋转90°后,得到△AFC,
∴△BAE≌△CAF,
∴AE=AF,∠BAE=∠CAF,
∵∠BAC=90°,∠EAD=45°,
∴∠CAD+∠BAE=∠CAD+∠CAF=45°,
∴∠DAE=∠DAF,
∵DA=DA,AE=AF,
∴△AED≌△AFD(SAS);
②如图1中,设DE=x,则CD=7﹣x.
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∵∠ABE=∠ACF=45°,
∴∠DCF=90°,
∵△AED≌△AFD(SAS),
∴DE=DF=x,
∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,
∴x 2=(7﹣x )2+32,
∴x =297, ∴DE =
297; (2)∵BD =3,BC =9,
∴分两种情况如下:
①当点E 在线段BC 上时,如图2中,连接BE .
∵∠BAC =∠EAD =90°, ∴∠EAB =∠DAC ,
∵AE =AD ,AB =AC ,
∴△EAB ≌△DAC (SAS ),
∴∠ABE =∠C =∠ABC =45°,EB =CD =9-3=6,
∴∠EBD =90°,
∴DE 2=BE 2+BD 2=62+32=45,
∴DE =35;
②当点D 在CB 的延长线上时,如图3中,连接BE .
同理可证△DBE 是直角三角形,EB =CD =3+9=12,DB =3,
∴DE 2=EB 2+BD 2=144+9=153,
∴DE =317,
综上所述,DE 的值为35或317.
【点睛】
本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.
24.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452
α︒-,或α=45°时45°<∠BAC <90°.
【分析】
(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;
(2)可以画出∠A=35°的三角形;
(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.
【详解】
解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;
故答案为:20°;
(2)如图所示:∠BAC=35°;
(3)设BD 为△ABC 的二分割线,分以下两种情况.
第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.
当∠A =90°时,△ABC 存在二分分割线;
当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;
当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°;
第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,
当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时
1809014522
A αα︒-︒-∠==︒-; 当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°,
综上,∠A =45°或90°或90°-2α或1452α︒-,或α=45°时,45°<∠BAC <90°.
【点睛】
本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.
25.(1)∠CBD=20°;(2)AD=16
4;(3) △BCD 的周长为m+2 【分析】
(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而
得到∠CBD=20°;
(2)根据折叠可得AD=DB,设CD=x,则AD=BD=8-x,再在Rt△CDB中利用勾股定理可得x2+62=(8-x)2,再解方程可得x的值,进而得到AD的长;
(3)根据三角形ACB的面积可得1
1 2
AC CB m
=+,
进而得到AC•BC=2m+2,再在Rt△CAB中,CA2+CB2=BA2,再把左边配成完全平方可得CA+CB的长,进而得到△BCD的周长.
【详解】
(1)
∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,
∴∠1=∠A=35°,
∵∠C=90°,
∴∠ABC=180°-90°-35°=55°,
∴∠2=55°-35°=20°,
即∠CBD=20°;
(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,
∴AD=DB,
设CD=x,则AD=BD=8-x,
在Rt△CDB中,CD2+CB2=BD2,
x2+62=(8-x)2,
解得:x= 7
4
,
AD=8-7
4
=
1
6
4
;
(3)∵△ABC 的面积为m+1,
∴1
2
AC•BC=m+1,
∴AC•BC=2m+2,
∵在Rt△CAB中,CA2+CB2=BA2,
∴CA2+CB2+2AC•BC=BA2+2AC•BC,∴(CA+BC)2=m2+4m+4=(m+2)2,∴CA+CB=m+2,
∵AD=DB,
∴CD+DB+BC=m+2.
即△BCD的周长为m+2.
【点睛】
此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.
26.(1)见解析;(2)27BC =.
【分析】
(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.
(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.
【详解】
(1)证明:∵AB AD =,=60A ∠︒,
∴△ABD 是等边三角形.
∴60ADB ∠=︒.
∵CE ∥AB ,
∴60CED A ∠=∠=︒.
∴CED ADB ∠=∠.
(2)解:连接AC 交BD 于点O ,
∵AB AD =,BC DC =,
∴AC 垂直平分BD .
∴30BAO DAO ∠=∠=︒.
∵△ABD 是等边三角形,8AB =
∴8AD BD AB ===,
∴4BO OD ==.
∵CE ∥AB ,
∴ACE BAO ∠=∠.
∴6AE CE ==, 2DE AD AE =-=.
∵60CED ADB ∠=∠=︒.
∴60EFD ∠=︒.
∴△EDF 是等边三角形.
∴2EF DF DE ===,
∴4CF CE EF =-=,2OF OD DF =-=.
在Rt △COF 中, ∴2223OC CF OF =-=. 在Rt △BOC 中, ∴22224(23)27BC BO OC =
+=+=. 【点睛】
本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.
27.(1)13,17,10,
112;(2)图见解析;7. 【分析】
(1)利用勾股定理求出AB ,BC ,AC ,理由分割法求出△ABC 的面积.
(2)模仿(1)中方法,画出△PMN ,利用分割法求解即可.
【详解】
解:(1)如图1中,AB =22AE BE +=2232+=13,BC =22BD CD +=2214+=17,AC =22AF CF +=2213+=10,
S △ABC =S 矩形DEFC ﹣S △AEB ﹣S △AFC ﹣S △BDC =12﹣3﹣
32﹣2=112, 故答案为13,17,10,
112
. (2)△PMN 如图所示.。