八年级数学下册 2.1.分解因式教案 北师大版

合集下载

数学北师大版八年级下册因式分解教学设计

数学北师大版八年级下册因式分解教学设计

教学目标1、知识与技能:使学生了解因式分解的概念,以及因式分解与整式乘法的关系.会用提取公因式的方法分解因式.2、过程与方法:在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法..3、情感态度:通过综合运用提公因式法分解因式,进一步培养学生的观察和联想能力.通过知识结构图培养学生归纳总结的能力.教学重难点◆重点:会用提公因式法分解因式◆难点:如何确定公因式以及提出公因式后的另外一个因式教学过程一.提出问题,创设情境[师]请同学们完成下列计算,看谁算得又准又快.(出示投影片)[师]在上述运算中,大家或将数字分解成两个数的乘积,或者逆用乘法公式使运算变得简单易行,类似地,在式的变形中,•有时也需要将一个多项式写成几个整式的乘积形式,这就是我们从今天开始要探究的内容──因式分解.二.导入新课1.分析讨论,探究新知.把下列多项式写成整式的乘积的形式出示投影片[生]根据整式乘法和逆向思维原理,可以做如下计算:[师]像这种把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.可以看出因式分解是整式乘法的相反方向的变形,所以需要逆向思维.再观察上面的第(1)题和第(3)题,你能发现什么特点.[生]我发现(1)中各项都有一个公共的因式x,(2)中各项都有一个公共因式m,是不是可以叫这些公共因式为各自多项式的公因式呢?[师]你分析得合情合理.因为ma+mb+mc=m(a+b+c).于是就把ma+mb+mc分解成两个因式乘积的形式,•其中一个因式是各项的公因式m,另一个因式a+b+c是ma+mb+mc除以m所得的商,•像这种分解因式的方法叫做提公因式法.2.例题教学,运用新知.出示投影片:把6(x-2)+x(2-x)分解因式.(让学生利用提公因式法的定义尝试独立完成,然后与同伴交流解题心得,•教师深入到学生中去发现问题,并对有困难的学生进行适时的引导和启发,最后师生共同评析、总结)总结:提取公因式后,要满足另一个因式不再有公因式才行.[例]分析:(b+c)是这两个式子的公因式,可以直接提出.这就是说,公因式可以是单项式,也可以是多项式,是多项式时应整体考虑直接提出.解:2a(b+c)-3(b+c)=(b+c)(2a-3).注意:如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.在提出“-”号时,多项式的各项都要变号.可以用一句话概括:首项有负常提负.[例]分析:先找6(x-2)与x(2-x)的公因式,再提取公因式.因为2-x=-(x-2),•所以x-2即公因式.解:6(x-2)+x(2-x)=6(x-2)-x(x-2) =(x-2)(6-x).总结:有时多项式的各项从表面上看没有公因式,但将其中一些项变形后,•但可以发现公因式,然后再提取公因式.三.随堂练习 1.课本练习1、2.四.作业必做题:作业本(2)15.4.1提公因式法选做题:自己出3道因式分解的题目做一做板书◆板书设计◆提公因式法1、因式分解的概念2、因式分解与整式乘法的关系.3、提取公因式的方法。

北师大版八年级数学《因式分解》说课稿

北师大版八年级数学《因式分解》说课稿

《因式分解》说课稿一、说教材1、关于地位与作用。

说课的内容:北师大版八年级数学下册第二章《分解因式》的第一课。

就本节课而言,它是整式乘法的逆向变形,与整式乘法运算有着密切的联系.着重阐述了两个方面,一是分解因式的概念,二是与整式乘法的相互关系。

它是继整式乘法的基础上来讨论分解因式概念,从而通过探究与整式乘法的关系,来寻求分解因式的原理。

这一思想实质贯穿后继学习的各种分解因式方法。

通过这节课的学习,不仅使学生掌握分解因式的概念和原理,而且又为后面学习分式化简,解方程等作好了充分的准备。

因此,它起到了承上启下的作用。

2、关于教学目标。

(一)知识与技能目标:①了解因式分解的必要性;②深刻理解因式分解的概念;③掌握从整式乘法得出分解因式的方法。

(二)过程与方法利用小学学过的分解因数知识与七年级的整式乘法的知识,采用类比方法进行教学.让学生体验分解因式的必要性;促进学生对分解因式概念的理解.感受整式乘法与因式分解的互逆关系;发展学生观察,发现,归纳,概括等能力以及有条理的思考与语言表达能力.学生采用独立思考与合作交流相结合的方法.(三)情感态度价值观:分解因式是代数式的一种重要变形方法,它不仅用于计算,化简,求值,解方程和不等式的代数内容,而且在几何,三角等解题与记忆中扮演着重要角色,它是学生开发智力,磨练思维的有效方法和手段,学生的品质和意志在此可以充分得到锻炼和升华.3、关于教学重点与难点。

重点:因式分解的概念以及与整式乘法的关系。

难点:理解因式分解与整式乘法的相互关系,以及它们之间的关系进行因式分解的思想。

二、说过程与方法。

一.创建问题情境,利用分解因数类比分解因式。

1.993-99能被100整除吗?你是怎样思考的?可能学生是用计算器按的结果,970200,然后说能被100整除.这时可以引导学生即9702×100.并板书.然后可以让学生想想还有其他方法吗?如果学生回答不到点子上,可以引导学生思考如果不用计算器该怎样解决这个问题.安排这一过程的意图是:引导学生把这个数式分解成几个数的积的形式,进而类比数式的分解因数引出多项式的分解因式.2.想一想993-99还能被那些正整数整除?3.怎样解决上述问题的关键是什么?安排这一过程的意图是:让学生体会把数式化成几个数的积的形式是解决这类问题的关键,从而为引出分解因式的概念奠定基础.4.议一议:你能尝试把a3-a化成几个整式的乘积的形式吗?鼓励学生类比数的分解将a3-a分解.二. 建立分解因式模型,理解与整式乘法的关系做一做:计算下列各式:(1)3x(x-1)=_____________(2)m(a+ b+c)=__________(3)(m+n)(m-n)=____________(4)(y-3)2=____________根据上面的算式填空:(1) 3x2- 3x=___________(2) m2-n2= __________(3)ma+ mb+mc= ____________(4)y2-6y+9 =___________安排这一过程的意图是:一是复习整式的乘法,激活学生原有整式乘法的认知结构,促使新旧认知结构的联结,满足“温故而知新”的教学原理。

八年级数学下册《2.1 分解因式》教学设计 北师大版

八年级数学下册《2.1 分解因式》教学设计 北师大版

第二章分解因式1.分解因式总体说明因式分解是进行代数恒等变形的重要手段之一,它在以后的代数学习中有着重要的应用,如:多项式除法的简便运算,分式的运算,解方程(组)以及二次函数的恒等变形等,因此学好因式分解对于代数知识的后继学习具有相当重要的意义.本节是因式分解的第1小节,占一个课时,它主要让学生经历从分解因数到分解因式的过程,让学生体会数学思想——类比思想,让学生了解分解因式与整式的乘法运算之间的互逆关系,感受分解因式在解决相关问题中的作用.一、学生知识状况分析学生的技能基础:学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,因此,对于因式分解的引入,学生不会感到陌生,它为今天学习分解因式打下了良好基础.学生活动经验基础:由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受起来还有一定的困难,再者本节还没有涉及因式分解的具体方法,所以对于学生来说,寻求因式分解的方法是一个难点.二、教学任务分析基于学生在小学已经接触过因数分解的经验,但对于因式分解的概念还完全陌生,因此,本课时在让学生重点理解因式分解概念的基础上,应有意识地培养学生知识迁移的数学能力,如:类比思想,逆向运算能力等。

因此,本课时的教学目标是:知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念.(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法.数学能力:(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想.(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力.(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力.情感与态度:让学生初步感受对立统一的辨证观点以及实事求是的科学态度.三、教学过程分析本节课设计了六个教学环节:看谁算得快——看谁想得快——看谁算得准——学生讨论——反馈练习——学生反思.第一环节 看谁算得快活动内容:用简便方法计算:(1)2976971397⨯+⨯-⨯= (2)-2.67×132+25×2.67+7×2.67= (3)992–1= .活动目的:如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式.第二环节 看谁想得快活动内容:993–99能被哪些数整除?你是怎么得出来的?学生思考:从以上问题的解决中,你知道解决这些问题的关键是什么?活动目的:引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备.注意事项:由于有了第一环节的铺垫,学生对于本环节问题的理解则显得比较轻松,学生能回答出993–99能被100、99、98整除,有的同学还回答出能被33、50、200等整除,此时,教师应有意识地引导,使学生逐渐明白解决这些问题的关键是——把一个多项式化为积的形式.第三环节 看谁算得准活动内容:计算下列式子:(1)3x (x -1)= ;(2)m (a+b+c )= ;(3)(m +4)(m -4)= ;(4)(y-3)2= ;(5)a(a+1)(a-1)= .根据上面的算式填空:(1)ma+mb+mc= ;(2)3x2-3x= ;(3)m2-16= ;(4)a3-a= ;(5)y2-6y+9= .活动目的:在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力.注意事项:由于整式的乘法运算是学生在七年级已经学习过的内容,因此,学生能很快得出第一组式子的结果,并能很快发现第一组式子与第二组式子之间的联系,从而得出第二组式子的结果.第四环节学生讨论活动内容:比较以下两种运算的联系与区别:(1)a(a+1)(a-1)= a3-a(2)a3-a= a(a+1)(a-1)在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?结论:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.辨一辨:下列变形是因式分解吗?为什么?(1)a+b=b+a(2)4x2y–8xy2+1=4xy(x–y)+1(3)a(a–b)=a2–ab(4)a2–2ab+b2=(a–b)2活动目的:通过学生的讨论,使学生更清楚以下事实:(1)分解因式与整式的乘法是一种互逆关系;(2)分解因式的结果要以积的形式表示;(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;(4)必须分解到每个多项式不能再分解为止.注意事项:学生通过讨论,能找出分解因式与整式的乘法的联系与区别,基本清楚了“分解因式与整式的乘法是一种互逆关系”以及“分解因式的结果要以积的形式表示”这两种事实,后两种事实是在老师的引导与启发下才能完成.第五环节反馈练习活动内容:1、看谁连得准x2-y2 . (x+1)29-25 x 2 y(x -y)x 2+2x+1 (3-5 x)(3+5 x)xy-y2 (x+y)(x-y)2、下列哪些变形是因式分解,为什么?(1)(a+3)(a -3)= a 2-9(2)a 2-4=( a +2)( a -2)(3)a 2-b2+1=( a +b)( a -b)+1(4)2πR+2πr=2π(R+r)活动目的:通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏.注意事项:从学生的反馈情况来看,学生对因式分解意义的理解基本到位.第六环节学生反思活动内容:从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?活动目的:通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解,对矛盾对立统一的观点有一个初步认识.注意事项:从学生的反思来看,学生掌握了新的知识,提高了逆向思维的能力,对于类比的数学思想有了一定的理解,对于矛盾对立统一的哲学观点也有了一个初步认识.巩固练习:课本第45页习题2.1第1,2,3题思考题:课本第45页习题2.1第4题(给学有余力的同学做)四、教学反思传统教学中,总是先介绍因式分解的定义,然后通过大量的模仿练习来强化巩固学生对因式分解概念的记忆与理解,其本质上是对因式分解的概念进行强化记忆.在新课程的教学中,对因式分解的记忆退到了次要的位置,它把因式分解作为培养学生逆向思维、全面思考、灵活解决矛盾的载体.在教师的指导下,学生通过因数分解类比出因式分解,对学生进行类比的数学思想培养,由整式的乘法与因式分解的对比,对学生的逆向思维能力进行培养,也使得学生对于因式分解概念的引入不至于茫然.尽管新旧两种教法的对比上,新课程的教学不一定马上显露出强劲的优势,甚至可能因为强化练习较少,在短时间内,学生的成绩比不上传统教法的学生成绩,但从长远目标看来,这种对数学本质的训练会有效地提高学生的数学素养,培养出学生对数学本质的理解,而不仅仅是停留在对数学的机械模仿记忆的层面上.总之,教学的着眼点,不是熟练技能,而是发展思维,使学生在学习的情感态度与价值观上发生深刻的变化.。

北师大版数学八下因式分解教案

北师大版数学八下因式分解教案

北师大版数学八下因式分解教案北师大版八年级下册数学教材中,因式分解是一个重要的内容。

因式分解可以帮助我们简化复杂的算式,提高计算的效率。

以下是一份关于北师大版八下因式分解教案的示例,供参考:一、教学目标:1.理解因式分解的概念,能够正确运用因式分解法则解决实际问题;2.掌握常见的因式分解方法,如提公因式法、公式法和配方法;3.培养学生的逻辑思维能力和抽象思维能力。

二、教学重难点:1.抽象概念的理解和应用;2.真实问题的转化和解决。

三、教学内容:1.提公因式法a.教师引导学生归纳“同一元素相乘”的法则;b.教师提供一些简单的例子,让学生通过观察发现规律;c.学生找出规律后,进行总结归纳并写出提公因式法的定义;d.练习题:在黑板上写一些算式,让学生用提公因式法简化。

2.公式法a.教师引导学生认识公式法的概念;b.通过一个实际问题引出公式法的运用场景;c.学生运用公式法解决实际问题,并总结公式法的步骤;d.练习题:提供一些需要用到公式法的练习题,让学生独立解决。

3.配方法a.教师简要介绍配方法的概念;b.提供一个简单的例子,并引导学生按照配方法的步骤解决问题;c.学生自主练习配方法,并总结配方法的规律;d.练习题:提供一些需要用到配方法的练习题,让学生独立解决。

四、教学过程:1.引入新知识a.教师简要介绍因式分解的概念和作用;b.提出一个实际问题:“小明家的地面积是56平方米,长和宽都是整数,那么它的长和宽分别是多少?”;c.学生讨论解决问题的思路,引出因式分解的思想;d.教师介绍本节课重点内容:提公因式法、公式法和配方法。

2.学习提公因式法a.学生观察例子,归纳提公因式法的规律;b.学生完成练习题,提供帮助和指导;c.教师和学生一起讨论练习题的解析。

3.学习公式法a.学生通过一个实际问题认识公式法的作用;b.学生按照公式法的步骤解决实际问题;c.学生自主解答练习题,教师提供帮助和指导。

4.学习配方法a.学生通过一个例子理解配方法的思路;b.学生按照配方法的步骤解决简单问题;c.学生独立解答练习题,教师提供帮助和指导。

分解因式

分解因式

3、情感目标:通过让学生自己去探索和发现,激 发学生学好数学的兴趣,使学生在积极参与过程 中培养创造性思维及个性的心理特征,尽可能让 学生体会到成功 。

教法分析与学法指导
教法分析: 由于本节课内容较简单,为了
充分调动学生学习的积极性,变被动学习为主动学 习,使课堂教学生动、有趣、高效,本节课我将采 用自主探索、启发引导、合作交流、反馈测试展开 教学,并采用计算机辅助课堂教学,激励学生积极 参与、观察、发现其知识的内在联系,使每个学生 都能积极思维,这样一方面可以激发学生学习的兴 趣,提高学生的学习效率,另一方面拓展学生的思 维空间,培养学生用创造性思维去学会学习。
人 数 平 均 分 10 分 以 上 20 分 题 号 正 确 率
一 二 三 四
课堂小结
1 什么是分解因式?
2 分解因式与整是乘法有什么关系?
3 有关分解因式概念的几个注意问题
(二)测试题 1、填空题(5分)
式子x² +ax+bx+ab=(x+a)(x+b)自左向右变形称为_______,自右向 左变形称为_____。
所以整式乘法和分解因式是两种_____变形。 2、选择题(5分) (1)下列各式从左到右的变形,是分解因式的是:
(A)(2x-5)(2x+5)=4x² -25 (B)xy-x=x(y-1/x)
(二)、新课讲解
有了分解因数还不够,根据学生旧有的知识, 引领学生来完成“做一做”,要让学生在做中学, 让学生渗透整式乘法与分解因式的互逆关系,从 而引出分解因式的概念。课件
(三)、巩固练习
课件
通过以上环节,学生在头脑中已经建 立了分式因解的概念。概念的掌握,要通 过实际去做,具体去用,才能形成技能。 (四)、课堂小结

北师大版八年级数学下分解因式全章教案

北师大版八年级数学下分解因式全章教案

北师大版八年级数学下第二章分解因式全章教案第二章分解因式§2.1分解因式知识与技能目标: 1.使学生了解因式分解的意义。

2.知道它与整式乘法在整式变形过程中的相反关系。

过程与方法目标: 1.通过观察,发现分解因式与整式乘法的关系。

2.培养学生的观察能力和语言概括能力。

情感态度与价值观目标: 1.通过观察,推导分解因式与整式乘法的关系。

2.让学生了解事物间的因果联系教学重点 1.理解因式分解的意义;2.识别分解因式与整式乘法的关系.教学难点通过观察,归纳分解因式与整式乘法的关系.教学方法师生共同讨论法. 教师引导,主要由学生分组讨论得出结果. 教具准备有两个边长为1的正方形,剪刀. 投影片两张:第一张:做一做(记作§2.1.1A);第二张:补充练习(记作§2.1.1B). 教学过程Ⅰ.创设问题情境,引入新课计算(a+b)(a-b)=a2-b2.这是大家学过的平方差公式,我们是在整式乘法中学习的.从式子(a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢? a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.Ⅱ.讲授新课 1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流. 93-99能被100整除.因为993-99=99×992-99=99×(992-1)=99×9800=99×98×100,其中有一个因数为100,所以993-99能被100整除. 993-99还能被哪些正整数整除?(99,98,980,990,9702)从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式. 2.议一议你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.大家可以观察a3-a与993-99这两个代数式. a3-a=a(a2-1)=a(a-1)(a+1) 3.做一做(1)计算下列各式:①(m+4)(m-4)=__________;②(y -3)2=__________;③3x(x-1)=__________;④m(a+b+c)=__________;⑤a(a+1)(a-1)=__________.(2)根据上面的算式填空:①3x2-3x=( )( );②m2-16=( )( );③ma+mb+mc=( )( );④y2-6y+9=( )2.⑤a3-a=( )( ).能分析一下两个题中的形式变换吗?在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. 4.想一想由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?总结一下:联系:等式(1)和(2)是同一个多项式的两种不同表现形式.区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.所以,因式分解与整式乘法是相反方向的变形. 5.例题下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a -2);(4)x2-3x+2=x(x-3)+2.Ⅲ.课堂练习Ⅳ.课时小结本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形.Ⅴ.课后作业见作业本六、活动与探究已知a=2,b=3,c=5,求代数式a(a+b-c)+b(a+b-c)+c(c-a-b)的值. VI板书设计§2.1分解因式一、1.讨论993-99能被100整除吗? 2.议一议3.做一做 4.想一想 5.例题讲解二、课堂练习三、课时小结§2.2.1提公因式法(一)知识与技能目标: 1.让学生了解多项式公因式的意义。

北师大版数学八年级下册第二章-因式分解-全章精品导学案

北师大版数学八年级下册第二章-因式分解-全章精品导学案

第二章 《因式分解》§2.1 分解因式学习重点:1.理解因式分解的意义.2.识别分解因式与整式乘法的关系.学习难点:通过观察,归纳分解因式与整式乘法的关系. 一、自主复习:【填空】公式类:()()a b a b +-= 2()a b += (1)单⨯单:3a×4 (2) 单⨯多:(35)a a b -= (3) 多⨯多:(3)(2)x y x y -+= (4) 混合乘:x (1)(1) = 二、独立探究问题:分解因式的概念1.自主学习教材p4344,其中p44做一做的前(1)—(5)是什么运算?做一做的后(1)—(5)与前(1)—(5)的关系是什么?2.分解因式的概念:把一个多项式化成 的形式,这种变形叫做把这个多项式3.掌握分解因式概念应注意: (1)被分解对象是(2)分解因式的结果必须是几个 的形式.(3)分解因式要一直分解到每个因式不能再 为止. 4.与时反馈:完成书p45随堂练习三、小组合作探究:分解因式与整式乘法的关系1.议一议(1)由(1)(1)a a a +-=3a a -的变形是 运算. (2)由3a a -=(1)(1)a a a +-的变形与(1)有什么不同? 2.想一想分解因式与整式乘法有什么关系?()ma mb mcm a b c ++++因式分解整式乘法.因式分解与整式乘法是的变形.四、知识的运用例:下列从左到右的变形中,哪些是分解因式?哪些不是分解因式?为什么?(1)1(1+x1) (2)()222424ab ac a b c +=+ (3)24814(2)1x x x x --=-- (4)222()ax ay a x y -=- (5)2224(2)a ab b a b -+=- (6)2(3)(3)9x x x +-=-五、课堂小结1.分解因式的概念:2.分解因式应注意:3.分解因式与整式乘法的关系六、课堂过关1.下列从左到右的变形,是分解因式的为( )A .x 2-(x -1)B .a (a -b )2- C .(3)(a -3)2-9D .x 2-21(x -2)+12.下列各式分解因式正确的是( ) A. 223633(2)a x bx x x a b -+=- B. ()22xy x y xy x y +=+C.2()a ab ac a a b c -+-=-+-D.22963(32)abc a b abc ab -=-3.(1) 22()()a b a b a b +-=-的运算是(2) 3222(2)x x x x -=-的运算是 4.计算下列各式: (1)()(a -b ).(2)()2.(3)8y (1). (4)a (1).根据上面的算式填空:(5)( )( )(6)a 2-b 2=( )( )(7)a 2+22=( )( )(8)8y 2+8( )( )§ 提公因式法(一)学习重点: 能观察出多项式的公因式,并根据分配律把公因式提出来.学习难点:让学生识别多项式的公因式. 一、自主回顾:1、分解因式的概念.2、分解因式概念应注意什么?3、分解因式与整式乘法的关系 二、自主学习1.公因式与提公因式法分解因式的概念. 自主学习教材p47,然后回答以下问题:⑴公因式:多项式的各项中都含有 叫做这个多项式各项的公因式⑵提公因式法:把多项式中的提取出来的分解因式方法叫做提公因式法.2.独立将下列各式分解因式(1)32-3a2b; (2)2x3+2x2-6x;(3)-12a2242; (4)-x2y2-x3y3;三、小组合作探究:(1)怎么样确定一个多项式的公因式?确定公因式的步骤有哪些?答:①、②(2)提公因式要注意些什么?答:①、②(3)提公因式法分解因式与单项式乘多项式有什么关系?四、知识运用:独立完成,教材的随堂练习、知识技能 P48~49五、课堂小结1.提公因式法分解因式的一般形式,如:().2.提公因式法分解因式,关键在于观察、发现多项式的公因式.3.找公因式的一般步骤(1)若各项系数是整系数,取系数的;(2)取相同的,的指数取的;4.特别注意:①不要漏项②要防止出现符号问题六、课堂过关:将下列各式分解因式1.321510a a-;2.224x y xy-;3.64x y x z-; 4.222261530m n mn m n-+;5.432163256x x x--+;6.322462a b a b ab-+-;7.3174m m mx x x++++(m是自然数);8.112416m n m nu v u v++-+(m,n是自然数).§提公因式法(二)教学重点:能观察出公因式是多项式的情况,并能合理地进行分解因式.学习难点:准确找出公因式,并能正确进行分解因式 一、自主回顾:1.怎么样确定一个多项式的公因式? 2.提公因式要注意些什么? 二、自主学习:1.请在下列各式等号右边的括号前填入“+”或“―”,使等式成立:(1)()____a b b a -=-; (2)()()22___m n n m -=-;(3)()()33___y x x y -=-; (4)()___b c b c --=+; (5)()2222___s t s t -+=-; (6)()()22___p q p q --=+.(7)m -n - (n -m +p ); (8)(1-x )(x -2)= (x -1)(x -2)(9))(=-4y x )(4x y - (10))(=-5y x)(5x y -2.根据1题情况进行归纳总结:一般地,关于幂的指数与底数的符号有如下规律(填“+”或“―”号):3.指出下列各式中的公因式: (1)()()23a b c b c +-+(2)()()23279a x y b x y +-+ (3)()()235m a b n b a ---4.自主学习教材p47,特别注意例2、3中用数学的什么思想?例3提公因式前做了什么样的变化?5.与时反馈:㈠完成教材第51的随堂练习题 ㈡把下列各式分解因式(1)5(x -y )3+10(y -x ) (2)(b -a )2(a -b )(b -a )(3)()()()222ab a b a b a ac a b --+---(4)m (m -n )(p -q )-n (n -m )(p -q ) 三、合作探究将()()()22331218y x x y y y x -+---分解因式,总结用提公因式法分解因式应注意什么? 四、过关训练题1.把下列各式分解因式:(1)x 2y -323; (2)a (x -y )-b (y -x )(x -y );(3)2(x -y )2+3(y -x ); (4)()()23515m n n m -+-. (5)(-c )(a -)+(b -)·(b -a -c ) (6)()()222kk x y y x +-+-;(7)()()2121k k x y y x +--+-. 2.不解方程组23431m n m n -=⎧⎨+=⎩求()()235222n m n n m ---的值.§ 运用公式法(一)学习重点:让学生掌握运用平方差公式分解因式.学习难点:将某些单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力.一、自主回顾:独立回顾,整式乘法中的平方差公式是;其特点是 . 二、新课合作探究学习1.先独立自主学习教材p54,例1、例2用了怎样的方法分解因式?2.合作探究回答以下问题:①例2中解第1题用了什么思想?告诉我们还要注意些什么?解第2题告诉我们分解因式应先做什么再做什么?②公式a 2-b 2=()(a -b )特点:等号左边:(1)是一个_ ;(2)每项都可以化成数(或式)的_ ; (3)这两项的符号_等号右边:(1)是两数(或式)的和与这两数(或式)的差的积.(2)被减数是左边平方项为_ 的那个数(或式)3.独立完成教材第55页的练习题.三、理论知识运用例1 判断下列分解因式是否正确. (1)()222222a b c a ab b c +-=++- (2)()()()242221111a a a a -=-=+⋅-例2 分解因式(1)()()223649x y x y +--; (2)()()211x b x -+-(x -1)2(1-x );(3)(x 21)2-1. (4) 44a b -(5)()23228x x x +-; (6)()()2244x x x +++-. 四、课时小结1.①分解时先看是否有公因式,再考虑平方差公式. ②分解时一定要分解完整彻底.2.运用平方差公式应注意: 五、课堂过关1、把下列各式分解因式:(1)49x 2-121y 2; (2)-25a 2+16b 2; (3)144a 2b 2-0.81c 2; (4)-36x 264492; (5)(a -b )2-1; (6)9x 2-(2)2;(7)(2m -n )2-(m -2n )2;(8)49(2a -3b )2-9()2.2、利用分解因式说明257―512能被120整除.§ 运用公式法(二)学习重点:让学生掌握多步骤、多方法分解因式方法.学习难点:让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式 一、自主回顾:1.整式乘法中的完全平方公式是;2.乘法中的完全平方公式的特点 二、新课合作探究学习1、先独立自主学习教材p57,例3、例4用了怎样的方法分解因式?其具备条件是什么?2、合作探究回答以下问题:①例4中解第1、2题分别告诉我们分解因式应先做什么再做什么?②公式a2+22=()2; a2-22=(a-b)2特点左边的特点有(1)多项式是;(2)其中有,且此两项能写成两数(或两式)的形式;(3)另一项是这两数(或两式) .右边的特点:两数(或两式子)的和(或差)的平方,当中间的乘积项与首末两项的符号相同时,是和的平方;当中间的乘积项与首末两项的符号相反时,是差的平方;③形如的式子称为完全平方式3.独立完成教材第58页的练习题.三、理论知识运用例1、将下列各式分解因式(1)a2b2+816c2; (2)4(2a)2-12(2a)+9;(3)1442m-6mn2; (4)51x2y-x4-1002y (5)()422422412x x y y x y++-;(6)()()2222221m n m n-+-+例2、(1)若21y ky++是完全平方式,则k.(2)若23x x k-+是完全平方式,则k.(3)若2930a a m-+是完全平方式,则m.例3、在△中,已知三边a、b、c满足4224332220a ab b a b ab++--=,试判断△的形状.四、课时小结1、用完全平方公式分解因式.它与平方差公式不同之处是:(1)要求多项式有.(2)其中两项,且都可以写成某数(或某式)的,另一项则是这两数(或两式)的倍,符号可正可负.2、分解因式要一提(公因式)二套(公式)三要(分解要彻底)五、课堂过关1、把下列各式分解因式(1)-4-4x 2-y 2; (2)32+6a 23a 3; (3)()2-10()+25;(4)0.25a 2b 2-2; (5)x 2y -69y; (6)2x 3y 2-16x 232x; (7)16x 5+8x 3y24(8)()22241x x -+ (9)()()x x 2221619---+2、(1)若2210049x kxy y -+是完全平方式,则k . (2)若()292416x a x +-+是完全平方式,则a . (3)已知1x y -=,则221122x xy y -+的值为 .§2.4 因式分解(二)——分组分解法一、分组分解法1、将多项式采用“先部分,后整体”的方法,将一个多项式分成若干个组,先在各组中因式分解,然后把各组的公因式提出,达到整体因式分解.2、用分组分解法来分解的多项式一般至少有四项,分组不是盲目的,要有预见性. 也就是说,分组后每组之间必须要有公因式可提取,或者分组后可直接运用公式.注意:多项式分组有多种,哪种分组是成功的分组,要经过尝试才能知道,这也正是分组分解法的难点. 有些多项式可以有多种分组的方法,而一些多项式的分组方法是唯一的. 因此,用分组分解法分解因式时,尝试分组是必要的步骤. 也许第一次就成功了,也许要经过几次才能找到成功的路子.3、分组分解法一般有两种情况(1)等项分组. 把多项式分成项数一样多的几组,先在每组中提公因式,再在各组间提公因式.如223322(33)(22)x xy xz yz x xy xz yz +--=+-+(2)按公式分组. 把多项式按公式分组后,各组分解后,再提公因式按其他方法因式分解.如222221(2)1a ab b a ab b -+-=-+- 4、分组分解应注意以下几个问题(1)在一个多项式用提公因式,公式法都不能分解时,应考虑用分组分解法因式分解.(2)分组时应考虑到分组后,各组是否有公因式或各组能用公式法继续分解,若不能即为分组不合适,应重新分组.(3)有的多项式分组方法并不唯一,但因式分解的结果是唯一的. 二、典型例题 例1、分解因式:(1)2ab bc ac b --+ (2)393am bm b a -+- (3)22234334x y axz y z ax -+- (4)24144914m mx nx mn -+- 例2、分解因式:(1)2222a b a b -+- (2)22241299x xy z y --+ (3)224484x xy y --- (4)2244241m mn n m n ++--+ 三 、课堂练习把下列各式分解因式:1.2323 axy ax ax y ay --+2. 222444 x xy y z -+-3. 322333 x x y xy y -+-4.2222224 b c b c a -+-()四、课后作业 1.选择题:(1)下列分解因式,结果正确的是( )A .55()(5)m n my ny m n y +--=+- B. 22()(1)m n m n m n m n +--=++- C. 2233()(3)a a b b a b a b ++-=++- D. 2221(2)(1)(1)x x y x x y y -+-=-+-+(2)分解因式后,结果等于(2)(3)a b +-的多项式是( )A. 236ab a b -+-B. 623b a ab --++C. 326ab b a -+-D. 623b a ab -+-+(3)把多项式233x xy y x -+-分解因式,下列分组不能得到最后结果的是( )A .2(3)(3)x x y xy -+- B. 2(3)3x x y -+ C. 2()(33)x xy y x -+- D. 2(3)(3)x x y xy ---+ 2.填空题: (1)分解因式:ax by bx ay -+-= ;(2)分解因式:22x y ax ay --+= ;(3)分解因式:2221a ab b --+= ;(4)分解因式:2244(4)a ab b -++= ;(5)若2a b +=,则222a ab b a b ++++= ; 3.解答题:(1)若0a b +=,求332222a b a b ab -+-的值 (2)若2222()(10)250x y x y ++-+=,求22x y +的值 (3)计算:22621769473148-⨯-(4)分解因式(1)(2)6x x x --- (5)分解因式22()()ax by bx ay ++-§2.5 因式分解(二)——十字相乘法一、十字相乘法1、使用十字相乘法把二次三项x 2因式分解,如果常数项q分解成a 、b 两个因数的积,并且等于一次项系数p ,则二次三项式2x 2+()()()2、使用十字相乘法把二次三项式2分解因式,如果二次项系数a 分解成a 1、a 2;常数项c 分解成c 1、c 2;并且1 c 2 a 2 c 1等于一次项系数b ,则二次三项式a x 21a 2x 2+( a 1 c 2+ a 2 c 1) c 1c 2= (a 1 c 1)( a 22)借助于画十字交叉线排列如下: 二、典型例题例1、把下列各式分解因式:(1)256x x ++ (2)26x x -- (3)256x x +-例2、把下列各式分解因式:(1)26136x x ++ (2)2384a a -+ (3)22584y xy x --例3、把2()3()2x y x y ---+分解因式 ※例4、把2222(2)5(2)3x x x x ----分解因式三、课堂练习: 将下列各式分解因式: 1. 2568x x +-2. 2221012x xy y --3. 222430x xy y --4. 25398x x --5. 262x x --6. 23415x x --7. 4223x x +- 8. 2222248x xy y x y ++--- 9. 222(2)(3)13x x x +++- 四、课后作业 1.选择题:(1)把多项式2151263x x --+分解因式的结果是( ) A .1(2)(31)6x x --+ B. 1(1)(32)6x x ---C. 1(2)(31)6x x -+-D. 1(1)(32)6x x -++(2)把多项式432235x x x +-分解因式的结果是( ) A .22(5)(7)x x x x -+ B. 22(235)x x x +- C. 2(5)(7)x x x +- D. 2(5)(7)x x x -+(3)在多项式 ①276x x ++;②243x x ++;③268x x ++;④2710x x ++⑤21544x x ++中,有相同因式的是( )A .①② B. ②④ C. ②⑤ D.以上都不正确.(4)若二次三项式212(4)(3)x mx x x --+-分解成,则实数m 的值为( ) A .1B .2C .1-D . 2-2.填空题: (1)分解因式:2121115x x --= ;(2)分解因式:22910a b ab --= ;(3)分解因式:282221x x --= ;(4)分解因式:222(5)16x x x --= ;3.把下列各式因式分解(1)225-6+73x xy y -(2)217366x x -++(3)222(2)7(2)8x x x x +-+-4.已知222314x xy y -+=,且7x y -=;求2x y -的值.5.若二次三项式23235(0)kx x k +-≠有一个因式是27x +;求k 的值与另一因式.第二章 分解因式(单元归纳)学习重、难点:用提公因式法和公式法分解因式. 学习过程: 一、自主复习: 【回顾】1.分解因式的定义:把一个多项式化成 ,这种变形叫做把这个多项式分解因式.2.分解因式与整式乘法是 变形. 3分解因式的主要方法是 , ,4.(1)平方差公式:a 22= (2)完全平方公式a 2±22=二、例题精讲(一)利用提公因式法分解因式例1 用提公因式法将下列各式因式分解.(1)34x z x y -+; (2)3x ()+2y ();(3)(2a )(2a -3b )+(2a +5b )(2a ); (4)()()324121p q q -+-.(二)利用公式法分解因式例2 把下列各式分解因式.(1)()2-4a 2; (2)1-1025x 2; (3)()2-6()+9.(4)(x 2+4)2-2(x 2+4)+1; (5)()2-4(1).(三)利用分组分解法分解因式例3 把下列各式分解因式.(1)bc ac ab a -+-2(2)bx by ay ax -+-5102(3)22144a ab b --- (4) a 2-b 2-a +b(四)利用十字相乘法分解因式 例4 把下列各式分解因式.(1)22421x xy y --; (2) 2295x x +- (3)()()267a b a b +-+-; (4)()()22524x x -+-+(五)综合运用例5 : 用适当的方法把下列各式分解因式.(1)x 3-2x 2;(2)x 2()2();(3)(x 2-2x )2-4(x 2-2x )-5 (4) a 2+2+b 2--例6(1)试用简便方法计算:1982-396202⨯+2022 (2)若(1012+25)2-(1012-25)2=10n ,求n .(3)若9m 2-128n 2-42p 2-44=0,求的值.(4)若x 220能在整数范围内因式分解,则k 可取的整数值有多少个(六)课后作业:1.下列因式分解正确的是( )A .x 22=()(x -y )B .x 2-y 2=()(x -y )C .x 22=()2D .x 2-y 2=(x -y )2 2.下列各式不是完全平方式的是( )A .x 2+41 B .x 2-22C .x 2y 2+21 D .m 2-1423.下列多项式能用完全平方公式分解因式的是( ) A .m 2-2 B .()2-4 C .x 2-214D .x 2+2x -1 4.某同学粗心大意,分解因式时,把等式x 4-■=(x 2+4)(2)(x -▲)•中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A .8,1B .16,2C .24,3D .64,85.若129x 2是一个完全平方式,则k 应为( )A.2B.4C.2y2D.4y 26.若x 2+2(3)16, 是一个完全平方式,则m 应为( )5 B.3C.7D.7或-17.若n 为正整数,(11)22的值总可以被k 整除,则k 等于( )A.11B.22C.11或22D.11的倍数.8.多项式4x 2+1加上一个单项式后,使它成为一个整式的平方,则加上的单项式可以是.(填上一个你认为正确的即可) 9. 用适当的方法把下列各式分解因式.(1)(x 2-3)2+(x 2-3)-2 (2)a 4-2a 2b 2-8b 4 (3)4-6x 3+9x 2-16 (4) 12+22分解因式(5)()22241x x -+ (6)(x 42-4)(x 42+3)+10.。

北师大八年级下第二章分解因式的复习教案

北师大八年级下第二章分解因式的复习教案

第二章 分解因式的复习一、分解因式的概念 (一)概念:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

(和差化积)易错点注意:1、被分解的代数式(等式的左边)是多项式;2、分解后的因式(等式的右边)是整式;3、结果是积的形式;4、结果的因式必须分解彻底。

(二)例:1、计算下列各式:(1)()a b (a b)+- = ___ _ ___. (2)()2a b + = ___ _ ___.(3)()8y y 1+ = ___ _ ___. (4)()a x y 1++ = ___ _ ___.根据上述算式填空:(5)ax ay a ++ =( )( ) (6)22a b - =( )( )(7)22a 2ab b ++ =( )( ) (8)28y 8y + =( )( )小结:(1)~(4) 是初一所学的整式的乘法运算,而(5)~(8)的过程就叫分解因式,故分解因式与整式的乘法运算互为逆运算关系。

2、下列由左到右的变形,哪一个是分解因式( )A 、22))((b a b a b a -=-+B 、)1(4))((4422-+-+=-+-y y x y x y y xC、22)1(1)(2)(-+=++-+b a b a b a D 、)45(452xx x x x ++=++ 分析:等式的左边必须是一个多项式(是用加减号连接的式子);右边的结果应当是几个整式的、积的形式 [ 即不能出现分式(分母含字母的式子)和加减号 ],而且结果的每个因式都不能再被分解为止。

A 、是积化和差,右边是减式;B 、右边是和式;D 、右边含有分式4x,故选C 。

3、下列由左到右的变形,属分解因式的是( )A 、3355y x xy ⨯⨯= B 、()()4221644x x x -=+-C 、)54(5422b a ab ab ab b a -=+- D 、)54)(12(8185472++=++x x x x 分析:A 、左边是单项式,不是多项式;B 、分解不彻底,右边结果的分式()24x -还能再被分解为()()22x x +-,正确的结果是()()()4216422x x x x -=++-,C 、结果应当是)154(+-b a ab ,故选D 。

北师 八年级 下册 第二章 分解因式全章教案

北师 八年级  下册  第二章 分解因式全章教案
被哪些正整数整除?解决这个问题的关键 是什么? 研 2、 )计算下列各式: 、 (1) ( ①(m+4) (m-4)=__________; ②(y-3)2=__________; 讨 ③3x(x-1)=__________; ④m(a+b+c)=__________; ⑤a(a+1) a-1)=__________. ( (2)根据上面的算式填空: ) ①3x2-3x=( ) ( );
第 3 页,共 12 页
1、 已知 ab=7,a+b=6,求多项式 a2b+ab2 的值。 2、多项式 8xmyn-1-12x3myn 的公因式是 1、本节课你有哪些收获? 2、预习时的疑难解决了吗?你还有哪些疑惑? 3、你认为老师上课过程中还有哪些须要注意或改进的地方?
第 4 页,共 12 页
活动二:1、找出下列多项式的公因式,尝试把它提出来,从而将下列多 项式进行分解因式: (1)3x+6 (2)7x2–21x
1、分解因式:7x -21x 2、填空: (1) (x+3) –3) = (x ; (4x+y) –y)= (2) (4x ; (3m+2n) (4) (3m–2n)= ;
( ( ( (
) ) ) )
(1)4–m2 .
(2)9m2–4n2
(3)a2b2-m2
(4)(m-a)2-(n+b)2 (5)–16x4+81y4 (6)3x3y–12xy
(4)4m3–8m2
(5)–48mn–24m2n3(6)–2x2y+4xy2–2xy
3、利用分解因式法计算: (1)121×0.13+12.1×0.9-12×1.21
5、如果一个多项式的各项含有公因式,那么就可以 讨 而将多项式化成 法.

北师大版八年级数学下册 因式分解 教案

北师大版八年级数学下册  因式分解 教案

因式分解【教学目标】一、知识与技能:1.使学生了解因式分解的意义,理解因式分解的概念。

2.认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

二、能力训练:1.由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

2.由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

3.通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

三、情感与态度:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

【教学重点】理解分解因式的意义,准确地辨析整式乘法与分解因式这两种变形。

【教学难点】对分解因式与整式关系的理解【教学方法】情景投入,探索讨论法【教学过程】一、板书课题,揭示教学目标二、创设情景,导入新课993 能被哪些数整除?你是怎么得出来的?1.活动内容:992.学生思考:从以上问题的解决中,你知道解决这些问题的关键是什么?3.活动目的:引导学生把这个式子分解成几个数的积的形式,强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

4.注意事项:学生对于本环节问题的理解则显得比较轻松,学生能回答出99993-能被100,99、98整除,有的同学还回答出能被33、50、200等整除,此时,教师应有意识地引导,使学生逐渐明白解决这些问题的关键是——把一个多项式化为积的形式。

5.效果反馈:你能尝试把a a -3化成几个整式的乘积的形式吗?与同伴交流。

三、看谁算得准1.活动内容:计算下列式子:(1)3x (x -1)= ;(2)m (a+b+c )= ;(3)(m +4)(m -4)= ;(4)(y -3)2= ;(5)a (a +1)(a -1)= 。

2.根据上面的算式填空:(1)ma+mb+mc = ;(2)3x 2-3x = ;(3)m 2-16= ;(4)a 3-a = ;(5)y 2-6y +9= 。

北师大版八年级数学(下册).1因式分解(教案)

北师大版八年级数学(下册).1因式分解(教案)
3.重点难点解析:在讲授过程中,我会特别强调提取公因式法、平方差公式和完全平方公式这三个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何识别和运用这些方法。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与因式分解相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的数学实验操作,通过实际操作来演示因式分解的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“因式分解在实际数学题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
北师大版八年级数学(下册).1因式ቤተ መጻሕፍቲ ባይዱ解(教案)
一、教学内容
本节课选自北师大版八年级数学(下册)第一章“因式分解”,主要内容包括:
1.因式分解的意义与基本概念;
2.运用提取公因式法进行因式分解;
3.运用平方差公式进行因式分解;
4.运用完全平方公式进行因式分解;
5.习题与例题讲解,巩固所学方法与技巧。
二、核心素养目标
2.教学难点
-难点内容:因式分解的复杂应用和技巧。
-难点突破:
-帮助学生理解平方差公式和完全平方公式的推导过程,以便更好地记忆和应用。
-解决含有多个变量的多项式因式分解问题,如ax^2 + bx + c的因式分解。
-针对方程式中的因式分解,如解二次方程时,如何将方程转化为因式分解形式。
-在应用平方差公式时,如何将多项式适当变形以适应公式结构。

北师大课标版八年级下《分解因式》教案

北师大课标版八年级下《分解因式》教案

学习参考
word 资料可编辑
二、 1.计算:(1)) a (a + 1) ; (2)(a + 探索 2 b)(a – b); (3)(a + b) 问 题、 在前一章已学过整式乘法,学生不难得出 导入 正确答案, 新知
使学 生在 探索 中增 强观 察、 发 2.接着提出:把上述等式反过来看,等式 现、 归纳 是否还成立? 等能 3.这时再请学生观察、比较以上 2 题两种 力。 代数式变形的例子,它们之间有什么区别 和联系? 整式的乘法 多项式转化为几个 整式的积 a (a + 1) =a + a
学习参考

word 资料可编辑
为 近年来全球都在关注环境问题, 我国也 兴趣 激发学 生的兴 创 提出了建设节约型社会,动员和激励全社 是最 趣,可 设 会节约和高效利用各种资源。小红想用一 好的 以极大 情 地提高 个旧的薯片罐子和礼物的包装纸改造一只 老 景、 一堂课 以 漂亮的笔筒,可是遇到了一个问题,让我 师, 教学的 趣 有效 激 们看看能不能帮她解决?现在小红只找到 可以 性,同 情 一张缺一个角的正方形形状的包装纸,而 激发 时利用 数学课 制作笔筒需要纸张是一个长方形的尺寸形 情 堂向学 状,小红找到的这张包装纸能用吗?给出 感, 生渗透 节约资 你的数学解释。 唤起 源、保 某种 护环境 的环保 动 意识, 机, 也让学 生了解 从而 到数学 引导 与实际 生活的 学生 联系。 成为 一、 学习 的主 人。
学习参考
因式分解
word 资料可编辑
好习惯,努力使素质教育落到实处。新课的导入,设计了与生 活相关的实际问题,同时渗透了环保教育。设计的提高题结合 作业中的选做题将知识进一步延伸,给学生留下了思维发散的 时间和空间。

北师大版初二数学下册因式分解教案

北师大版初二数学下册因式分解教案

教案
15.4.因式分解
15.4.1 提公因式法
、教材说明
本节课选自人民教育出版社的义务教育课程标准实验教科书《数学》八年级上册《整式的乘除与因式分解》,这个教学片断是在学生认识了整式的乘除法之后进行的,它是以后学习分式和根式、函数等知识的基础,本堂课是通过讨论、探究、归纳得出因式分解的概念,通过了解分解因式与整式乘法是相反方向的变形,得出因式分解的最基本方法——提公因式法,然后通过巩固练习强化知识体系,达到让学生掌握知识的程度。

二、教学目标
教学目标:1、了解因式分解的概念和意义
2、了解分解因式与整式乘法的关系——互逆变形,体验矛
盾的对立统一规律
3、理解提公因式法的依据,会用提公因式法分解因式
4、通过探究因式分解的概念,让学生获得成功的体验,锻
炼克服困难的意志,建立自信心
6、在探究提公因式法分解因式时,让学生敢于发表自己的观点,并尊重理解他人见解,能从交流中获益教学重点:经历建立分解因式的概念,学会提公因式法分解因式教学难点:了解因式分解的意义
三、教学过程。

数学 分解因式教案(北师大版八年级下)

数学 分解因式教案(北师大版八年级下)
(3) m2-16=_______
(4) x2-6x+9=_____
(5) a3-a=______
启发学生观察变形并分析总结,找出这两组变形的区别与联系,从而引出分解因式的意义
议 一 议
由a(a+1)(a-1)得到a3-a的变形是什么运算?
由a3-a得到a(a+1)(a-1)的变形与它有什么不同?
学生从上题的运算中体会整式乘法运算与分解因式的区别.
(3).(5a-1)2=25a2-10a+1
(4).x2+4x+4=(x+2)2
(5).(a-3)(a+3)=a2-9
(6).m2-4=(m+4)(m-4)
(7).2πR+ 2πr= 2π(R+r)
学生独立思考,完成练习,通过练习加深对分解因式的理解.
练习二 (发展性要求)
1.把下列各式写成乘积的形式:
北师大版实验教科书八年级下册
2.1分 解 因 式
教学目标
1.了解分解因式的意义,以及它与整式乘法的相互关系.
2.感受分解因式在解决相关问题中的作用.
3.培养学生分析问题及逆向思维的数学思想.
重点与难点
重点:理解分解因式的意义,准确地辨析整式乘法与分解因式这两种变形.
难点:对分解因式与整式关系的理解
教学设计
分解因式定义
把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式
想一想: 分解因式与整式乘法有何关系?
学生通过辨别两种变形,理解分解因式定义,并总结二者的区别.
练习一
判断下列各式哪些是整式乘法?哪些是分解因式?
(1).x2-4y2=(x+2y)(x-2y)

八年级数学下册 因式分解教案新北师大版

八年级数学下册 因式分解教案新北师大版

第四章因式分解1.经历将一个多项式分解成几个整式乘积的形式的过程,体会因式分解的意义,发展运算能力.2.能用提公因式法和公式法分解因式.认识整式乘法与因式分解的关系,体会数学知识之间的相互联系.1.进一步发展观察、归纳、类比、概括等能力,发展有条理地思考及语言表达能力.2.养成认真勤奋、严谨求实的科学态度.因式分解是整式的一种重要的恒等变形,它和整式乘法运算有着密切的联系,是后续学习分式化简与运算、解一元二次方程的重要基础.学生已有的因数分解、整式乘法运算的学习经验是本章学习的基础.本章在知识与技能方面主要解决两个问题:什么是因式分解?怎样进行因式分解?对于第二个问题,只学习提公因式法与公式法(平方差公式与完全平方公式)这两种方法.本章教科书尽可能帮助学生从几何角度理解代数的含义,发展学生的类比思想以及从特殊到一般的思考问题的方法,帮助学生体会数学知识之间的联系.为此,教科书通过设计因数分解的例子让学生体会因数分解的必要性,继而用字母表示数体现一般化;通过类比因数分解体会因式分解的意义和因式分解的方法,体会数学知识之间的相互联系;通过经历借助拼图解释整式变形的过程,体会几何直观的作用;通过分析因式分解与整式乘法之间的互逆过程,学习因式分解的方法,提高学生对知识间联系的认识.具体地,本章设计了3节内容.第1节“因式分解”,先利用993-99的例子突出与因数分解的类比,体会因式分解的必要性,然后用几何图形的拼图解释因式分解,在了解因式分解概念的基础上,体会因式分解与整式乘法的关系.第2节“提公因式法”,它的依据是乘法分配律或者单项式乘多项式的法则.对于学生来说,难点是怎样在多项式的各项中发现公因式,为此,教科书让学生从简单的多项式ab+bc的各项中发现相同因式入手,由浅入深地体会如何寻找公因式,并以例题示范的形式学习用提公因式法进行因式分解及其注意事项,形成基本技能.第3节“公式法”,其关键是熟悉平方差公式、完全平方公式的式子及其特点.学生初学时的一个难点是如何根据一个多项式的形式与特点选择运用恰当的公式.为此,教科书将这两个公式编成两课时,分开教学.需要说明的是,根据《标准》的要求,本章教科书介绍了最基本的因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式).教学中应把握好这一要求,不要刻意提高要求、增加难度,另外,教科书通过设置恰当的、有一定梯度的题目,关注了学生知识技能的掌握和不同层次学生的需求.【重点】1.探索分解因式的方法.2.会用提公因式法把多项式分解因式.3.会用公式法把多项式分解因式.【难点】1.因式分解的概念的理解.2.确定多项式的公因式.3.确定合适的方法分解因式.1.要引导学生多角度理解因式分解的意义.(1)类比因数分解理解因式分解.通过类比数式993-99的分解过程,帮助学生认识多项式a3-a的分解.(2)通过拼图帮助理解因式分解.通过拼图前后图形的面积不变,可以形象地解释多项式x2+2x+1变形为(x+1)2的合理性,以直观形象的方式,促进学生对因式分解的理解.教师要引导学生用自己的语言说明变形过程.(3)对比整式乘法加深理解因式分解.通过对整式乘法运算与因式分解的对比,充分感受两者之间互为逆过程的关系.2.要注重发展学生的观察、发现、归纳、概括等能力.对于因式分解概念的教学,要让学生通过观察、对比整式乘法运算与因式分解,归纳概括出整式乘法运算与因式分解互为逆过程的关系.在学生经历探索因式分解方法的过程中,更要注重发展学生的观察、发现、归纳、概括等能力.探索因式分解的方法,事实上是对整式乘法运算的再认识.在教学中,教师要借助学生已有的整式乘法运算的基础,给学生提供丰富的问题情境,留有充分探索与交流的时间和空间,让他们经历从整式乘法运算到因式分解的转换过程,并能用符号合理地表示出因式分解的方法.3.要坚持用整式乘法帮助学生理解因式分解,培养学生逆向思考问题的习惯.因式分解与整式乘法之间具有互为逆过程的关系.在因式分解概念的教学中,要重视运用这种关系进一步加深对因式分解的理解,在探索因式分解的方法的过程中,教师要坚持运用这种关系更好地促进学生领会提公因式法分解因式与乘法分配律或单项式乘多项式之间的联系,领会因式分解的公式法与乘法公式之间的联系,进一步巩固“因式分解的结论是否正确可用整式乘法或乘法公式来检验”,从而培养学生的逆向思维.4.保证基本的运算技能,避免复杂的题型训练.运用提公因式法和公式法分解因式是学习本章内容的一个重要目标.由于因式分解在后面学习分式、解一元二次方程等内容中还可以继续巩固,因此教学中要依据教科书的要求,适当地分阶段进行必要的训练,使学生在具备基本运算技能的同时,能够明白每一步的算理.教学中要避免过于烦琐的运算,不要过分追求题目的数量和难度.另外,本章只要求在有理数范围内因式分解,教学要遵循《标准》和教科书的要求.1因式分解1.使学生了解因式分解的意义,理解因式分解的概念.2.认识因式分解与整式乘法的关系——互逆关系(即相反变形),并能运用这种关系寻求因式分解的方法.1.通过解决实际问题,学会将实际应用问题转化为数学问题,并用所学到的数学知识解决问题,体验解决问题策略的多样性,发展实践应用意识.2.通过对因式分解与整式乘法的观察与比较,学习代数式的变形和转化,培养学生分析问题的能力与综合应用能力.培养学生接受矛盾的对立统一观点,独立思考、勇于探索的精神和实事求是的科学态度.【重点】因式分解的概念.【难点】理解因式分解与整式乘法的关系,并运用它们之间的关系寻求因式分解的方法.【教师准备】多媒体课件.【学生准备】复习有关整式乘法的知识.导入一:【问题】简便运算.(1)736×95+736×5;(2)-2.67×132+25×2.67+7×2.67.[设计意图]观察实例,分析两个问题的共同属性:解决问题的关键是把一个数式化成几个数的积的形式,此时学生对因式分解还相当陌生,但学生对用简便方法进行计算应该相当熟悉.这一步的目的是设计问题情境,复习相关知识点与计算,引入新课,让学生通过回顾用简便方法计算——因数分解这一特殊算法,运用类比很自然地过渡到因式分解的概念上,从而为因式分解的理解和掌握打下基础.导入二:【问题】(1)993-99能被99整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流.因为993-99=99×992-99×1=99(992-1),所以993-99能被99整除.(2)993-99能被100整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流.小明是这样做的:993-99=99×992-99×1=99(992-1)=99×9800=99×98×100,所以993-99能被100整除.[设计意图]以一连串的知识性问题引入,在学生已有的知识基础上,先让学生解决一些具体的数的运算问题,通过简便运算把一个式子化成几个数的乘积的形式,并且问题的设置由浅入深,逐步让学生体会因数分解的过程和意义.这一环节的设置对学生理解下面因式分解的概念起到了很大作用,体现了知识螺旋上升的特点.一、因式分解的概念a3-a=a·a2-a·1=a·(a2-1)=a·(a+1)(a-1)=(a-1)·a·(a+1).(1)你能理解吗?你能与同伴交流每一步是怎么变形的吗?(2)这样变形是为了达到什么样的目的?像这样,把一个多项式化成几个整式的积的形式,这种变形叫做因式分解.因式分解也可称为分解因式.[设计意图]从知识性的问题过渡到思考性的问题,巧妙设问:“如果我们将数字换成字母,上述结论仍然成立吗?”引发学生联想到用字母表示数的方法,得出a3-a=(a-1)·a·(a+1),这个过程对学生来说是思维上的一次飞跃,是从对具体、个别事物的认识上升到对一般事物规律性、结构性的认识,是对学生思维能力水平的一次提高,同时很自然地从因数分解过渡到因式分解,初步树立起学生对因式分解概念的直观认识.解答:(1)ma+mb+mc=m(a+b+c).(2)x2+2x+1=(x+1)2.像这样,把一个多项式化成几个整式的积的形式,这种变形叫做因式分解.因式分解也可称为分解因式.[设计意图]以拼图前后面积不变的方式,加深学生对因式分解的理解,形象地说明因式分解是整式的恒等变形,对学生的思维发展具有实际价值.学生通过观察,给出填空的答案,可能有不同的形式,只要合理就都应给予鼓励.要注意的是,这里拼图前后的数量关系主要指向面积,教师要适当引导.(1)3x(x-1)=;(2)m(a+b-1)=;(3)(m+4)(m-4)=;(4)(y-3)2=.根据上面的算式进行因式分解:(1)3x2-3x=()();(2)ma+mb-m=()();(3)m2-16=()();(4)y2-6y+9=()().思考:因式分解与整式乘法有什么关系?举例说明.[设计意图]通过两组练习,类比两种不同的运算,进一步让学生体会什么是因式分解,以及因式分解与整式乘法之间的互逆关系,这个时候,因式分解的概念已基本在学生头脑中确立.由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维.[知识拓展]对于因式分解应注意以下几点:(1)分解的对象必须是多项式;(2)分解的结果一定是几个整式的乘积的形式;(3)要分解到不能分解为止.1.把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,因式分解也可称为分解因式.2.因式分解与整式乘法是互逆过程.3.因式分解要注意以下几点:(1)分解的对象必须是多项式;(2)分解的结果一定是几个整式的乘积的形式;(3)要分解到不能分解为止.1.下面式子从左边到右边的变形是因式分解的是()A.x2-x-2=x(x-1)-2B.(a+b)(a-b)=a2-b2C.x2-4=(x+2)(x-2)D.x2-=解析:主要考查因式分解的概念.故选C.2.下列各式因式分解正确的是()A.a+b=b+aB.4x2y-8xy2+1=4xy(x-2y)+1C.a(a-b)=a2-abD.a2-2ab+2a=a(a-2b+2)解析:主要考查因式分解的概念.故选D.3.把一个多项式化成的形式,这种变形叫做因式分解.答案:几个整式的积4.因式分解与整式乘法的关系是.答案:互为逆过程5.计算×13-×6+×2的结果是.解析:利用因式分解可以简化计算.原式=×(13-6+2)=×9=7.故填7.1因式分解一、因式分解的概念二、例题讲解一、教材作业【必做题】教材第93页随堂练习的1,2题.【选做题】教材第94页习题4.1的1,2题.二、课后作业【基础巩固】1.(柳州中考)下列式子是因式分解的是()A.x(x-1)=x2-1B.x2-x=x(x+1)C.x2+x=x(x+1)D.x2-x=(x+1)(x-1)2.下列各式从左到右的变形中,是因式分解的是()A.x2-9+6x=(x+3)(x-3)+6xB.(x+5)(x-2)=x2+3x-10C.x2-8x+16=(x-4)2D.(x-2)(x+3)=(x+3)(x-2)3.观察下面计算962×95+962×5的过程,其中最简单的方法是 ()A.962×95+962×5=962×(95+5)=962×100=96200B.962×95+962×5=962×5×(19+1)=962×(5×20)=96200C.962×95+962×5=5×(962×19+962)=5×(18278+962)=96200D.962×95+962×5=91390+4810=96200【能力提升】4.计算(1)~(3)题,并根据计算结果将(4)~(6)题进行因式分解.(1)(x-2)(x-1)=;(2)3x(x-2)=;(3)(x-2)2=;(4)3x2-6x=()();(5)x2-4x+4=()();(6)x2-3x+2=()().【拓展探究】5.下列从左到右的变形中,哪些是因式分解?哪些不是?请说明理由.(1)a(x+y)=ax+ay;(2)x2+2xy+y2-1=x(x+2y)+(y+1)(y-1);(3)ax2-9a=a(x+3)(x-3);(4)x2+2+=;(5)2a3=2a·a·a.【答案与解析】1.C(解析:因式分解就是把一个多项式化成几个整式的积的形式,对各选项分析判断后利用排除法求解.故选C.)2.C(解析:根据因式分解的概念可知只有C是因式分解.故选C.)3.A(解析:利用因式分解进行计算比较简单.故选A.)4.(1)x2-3x+2(2)3x2-6x (3)x2-4x+4(4)3x x-2(5)x-2x-2(6)x-2x-1(解析:利用因式分解与整式乘法互为逆过程解答.)5.解:因为(1)(2)的右边都不是整式的积的形式,所以它们不是因式分解;(4)中,都不是整式,所以不是因式分解;(5)中的2a3不是多项式,所以它也不是因式分解.只有(3)的左边是多项式,右边是整式的积的形式,所以(3)是因式分解.本节课以学生的思维进程发展为主线,采用逐步渗透和类比的思想方法.在概念引入时从因数分解与因式分解的类比,到概念强化阶段整式乘法与因式分解的过程的类比,再到等式恒等变形与因式分解的类比,逐渐加深学生的认识.主要体现在从一开始以一连串的知识性问题引入,到后来教学环节中多次提出思考性的问题,启发、引导学生做进一步的猜想、探究,这种循序渐进的思维进程有助于学生理解接受新知识.本课的设计过多强调学生用高度抽象的语言来描述概念.在例题的讲解过程中,没有让学生尝试自己独立完成.注意引导学生从几何的角度理解因式分解.最好将因式分解的方法也一起适当地融入到本节课的教学内容中.随堂练习(教材第93页)1.解:2.解:(2)(4)是因式分解.因为(2)(4)满足因式分解的定义:把一个多项式化成几个整式的积的形式.习题4.1(教材第94页)1.解:2.解:(2)(3)是因式分解.3.解:原式=I(R1+R2+R3)=2.5×(24.2+36.4+39.4)=250.故代数式的值为250.4.解:如右图所示.x2+x+2x+2=x2+3x+2=(x+2)·(x+1).5.解:(1)原式=1999×(1999+1)=1999×2000,所以19992+1999能被1999整除,也能被2000整除. (2)原式=×(16.9+15.1)=4,故16.9×+15.1×能被4整除.学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,因此对于因式分解的引入,学生不会感到陌生,它为今天学习因式分解打下了良好基础.由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生来说还比较生疏,接受起来还有一定的困难,另外本节还没有涉及因式分解的具体方法,所以对于学生来说,寻求因式分解的方法是一个难点.已知a=2,b=3,c=5.求代数式a(a+b-c)+b(a+b-c)+c(c-a-b)的值.解:当a=2,b=3,c=5时,a(a+b-c)+b(a+b-c)+c(c-a-b)=a(a+b-c)+b(a+b-c)-c(a+b-c)=(a+b-c)(a+b-c)=(a+b-c)2=(2+3-5)2=0.2提公因式法经历探索求多项式各项公因式的过程,能在具体问题中确定多项式各项的公因式,会用提公因式法把多项式分解因式,积累确定公因式的初步经验.自主探索,合作交流,先学后教,当堂训练.进一步了解分解因式的意义,加强学生的逆向思维,并逐渐渗透化归的思想方法.【重点】用提公因式法分解因式.【难点】确定多项式各项的公因式.第课时1.使学生了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.2.让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解.自主探索,合作交流.1.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想.2.通过对因式分解的教学,培养学生“换元”的意识.【重点】因式分解的概念及提公因式法的应用.【难点】正确找出多项式中各项的公因式.【教师准备】多媒体课件.【学生准备】复习有关乘法分配律的知识.导入一:【问题】一块场地由三个长方形组成,这些长方形的长分别为,,,宽都是,求这块场地的面积.解法1:这块场地的面积=×+×+×=++==2.解法2:这块场地的面积=×+×+×=×=×4=2.从上面的解答过程看,解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是将多项式化为几个整式的积的形式的一种方法.[设计意图]让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.导入二:【问题】计算×15-×9+×2采用什么方法?依据是什么?解法1:原式=-+==5.解法2:原式=×(15-9+2)=×8=5.解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是把多项式化为几个整式的积的形式的一种方法.[设计意图]让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.一、提公因式法分解因式的概念如果一块场地由三个长方形组成,这三个长方形的长分别为a,b,c,宽都是m,那么这块场地的面积为ma+mb+mc或m(a+b+c),可以用等号来连接,即:ma+mb+mc=m(a+b+c).大家注意观察这个等式,等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?分析:等式左边的每一项都含有因式m,等式右边是m与多项式a+b+c的乘积,从左边到右边的过程是因式分解.由于m是左边多项式ma+mb+mc中的各项ma,mb,mc都含有的一个相同因式,因此m叫做这个多项式各项的公因式.由上式可知,把多项式ma+mb+mc写成m与多项式a+b+c的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc的各项中提出后形成的多项式a+b+c,作为多项式ma+mb+mc的另一个因式.总结:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.[设计意图]通过实例的教学,使学生明白什么是公因式和用提公因式法分解因式.结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.多项式2x2+6x3中各项的公因式是什么?你能尝试将多项式2x2+6x3因式分解吗?结论:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.[设计意图]从让学生找出几个简单多项式的公因式,再到让学生尝试将多项式分解因式,使学生理解公因式以及提公因式法分解因式的概念.(1)3x+x3;(2)7x3-21x2;(3)8a3b2-12ab3c+ab;(4)-24x3+12x2-28x.〔解析〕首先要找出各项的公因式,然后再提取出来.要避免提取公因式后,各项中还有公因式,即“没提彻底”的现象.解:(1)3x+x3=x·3+x·x2=x(3+x2).(2)7x3-21x2=7x2·x-7x2·3=7x2(x-3).(3)8a3b2-12ab3c+ab=ab·8a2b-ab·12b2c+ab·1=ab(8a2b-12b2c+1).(4)-24x3+12x2-28x=-(24x3-12x2+28x)=-(4x·6x2-4x·3x+4x·7)=-4x(6x2-3x+7).【学生活动】通过刚才的练习,大家互相交流,总结出提取公因式的一般步骤和容易出现的问题.总结:提取公因式的步骤:(1)找公因式;(2)提公因式.容易出现的问题(以本题为例):(1)第(2)题中只提出7x作为公因式;(2)第(3)题中最后一项提出ab后,漏掉了“+1”;(3)第(4)题提出“-”号时,没有把后面的因式中的每一项都变号.教师提醒:(1)各项都含有的字母的最低次幂的积是公因式的字母部分;(2)因式分解后括号内的多项式的项数与原多项式的项数相同;(3)若多项式的首项为“-”,则先提取“-”号,然后再提取其他公因式;(4)将分解因式后的式子再进行整式的乘法运算,其积应与原式相等.[设计意图]经历用提公因式法进行因式分解的过程,在教师的启发与指导下,学生自己归纳出提公因式的步骤及提取公因式时容易出现的类似问题,为提取公因式积累经验.1.提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).这里的字母a,b,c,m可以是一个系数不为1的、多字母的、幂指数大于1的单项式.2.提公因式法分解因式的关键在于发现多项式的公因式.3.找公因式的一般步骤:(1)若各项系数是整系数,则取系数的最大公约数;(2)取各项中相同的字母,字母的指数取最低的;(3)所有这些因式的乘积即为公因式.1.多项式-6ab2+18a2b2-12a3b2c的公因式是 ()A.-6ab2cB.-ab2C.-6ab2D.-6a3b2c解析:根据确定多项式各项的公因式的方法,可知公因式为-6ab2.故选C.2.下列用提公因式法分解因式正确的是()A.12abc-9a2b2=3abc(4-3ab)B.3x2y-3xy+6y=3y(x2-x+2y)C.-a2+ab-ac=-a(a-b+c)D.x2y+5xy-y=y(x2+5x)解析:A.12abc-9a2b2=3ab(4c-3ab),错误;B.3x2y-3xy+6y=3y(x2-x+2),错误;D.x2y+5xy-y=y(x2+5x-1),错误.故选C.3.下列多项式中应提取的公因式为5a2b的是()A.15a2b-20a2b2B.30a2b3-15ab4-10a3b2C.10a2b-20a2b3+50a4bD.5a2b4-10a3b3+15a4b2解析:B.应提取公因式5ab2,错误;C.应提取公因式10a2b,错误;D.应提取公因式5a2b2,错误.故选A.4.填空.(1)5a3+4a2b-12abc=a();(2)多项式32p2q3-8pq4m的公因式是;(3)3a2-6ab+a=(3a-6b+1);(4)因式分解:km+kn=;(5)-15a2+5a=(3a-1);(6)计算:21×3.14-31×3.14=.答案:(1)5a2+4ab-12bc (2)8pq3(3)a (4)k(m+n)(5)-5a (6)-31.45.用提公因式法分解因式.(1)8ab2-16a3b3;(2)-15xy-5x2;(3)a3b3+a2b2-ab;(4)-3a3m-6a2m+12am.解:(1)8ab2(1-2a2b).(2)-5x(3y+x).(3)ab(a2b2+ab-1).(4)-3am(a2+2a-4).第1课时一、提公因式法分解因式的概念二、例题讲解一、教材作业【必做题】教材第96页随堂练习.【选做题】教材第96页习题4.2.二、课后作业【基础巩固】1.把多项式4a2b+10ab2分解因式时,应提取的公因式是.2.(2014·淮安中考)因式分解:x2-3x=.3.分解因式:12x3y-18x2y2+24xy3=6xy·.【能力提升】4.把下列各式因式分解.(1)3x2y-6xy;(2)5x2y3-25x3y2;(3)-4m3+16m2-26m;(4)15x3y2+5x2y-20x2y3.【拓展探究】5.分解因式:a n+a n+2+a2n.6.观察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….这列式子有什么规律?请你将猜想到的规律用含有字母n(n为自然数)的式子表示出来.【答案与解析】1.2ab2.x(x-3)3.(2x2-3xy+4y2)4.解:(1)3xy(x-2). (2)5x2y2(y-5x). (3)-2m(2m2-8m+13). (4)5x2y(3xy+1-4y2).5.解:原式=a n·1+a n·a2+a n·a n=a n(1+a2+a n).6.解:由题中给出的几个式子可得出规律:n2+n=n·(n+1).本节运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,使学生易于理解和掌握.如学生在接受提公因式法时,由提公因数到提公因式,由整式乘法的逆运算到提公因式法的概念,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解.在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,比如在以后将要学习的分式运算、解分式方程等中都要用到因式分解的知识,因此应该注重因式分解的概念和方法的教学.随堂练习(教材第96页)解:(1)m(a+b). (2)5y2(y+4). (3)3x(2-3y). (4)ab(a-5). (5)2m2(2m-3).(6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).习题4.2(教材第96页)1.解:(1)2x2-4x=2x(x-2). (2)8m2n+2mn=2mn·4m+2mn·1=2mn(4m+1). (3)a2x2y-axy2=axy·ax-axy·y=axy(ax-y). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2y-12xy2-28y3=-(24x2y+12xy2+28y3)=-4y(6x2+3xy+7y2). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12xy2+8xy3=-(2x2+12xy2-8xy3)=-2x(x+6y2-4y3). (8)-3ma3+6ma2-12ma=-(3ma3-6ma2+12ma)=-3ma·(a2-2a+4).2.解:(1)m+m+m=m(++)=3.14×(202+162+122)=2512. (2)∵xz-yz=z·(x-y),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.3.解:(1)不正确,因为提取的公因式不对,应为n(2n-m-1). (2)不正确,因为提取公因式-b后,第三项没有变号,应为-b(ab-2a+3). (3)正确. (4)不正确,因为最后的结果不是乘积的形式,应为(a-2)(a+1).提公因式法是本章的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法分配律的逆运算到提公因式的过程,让学生体会数学中的一种主要思想——类比思想.运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提公因式法时,由整式乘法的逆运算到提公因式法的概念,就利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,进而使学生进一步理解因式分解与整式乘法运算之间的互逆关系.已知方程组求7y(x-3y)2-2(3y-x)3的值.〔解析〕将代数式分解因式,产生x-3y与2x+y两个因式,再根据方程组整体代入,使计算简便.解:7y(x-3y)2-2(3y-x)3=(x-3y)2[7y+2(x-3y)]=(x-3y)2(7y+2x-6y)=(x-3y)2(2x+y).由方程组可得原式=12×6=6.第课时1.经历探索多项式因式分解方法的过程,能在具体问题中确定多项式各项的公因式.2.会用提公因式法把多项式分解因式(多项式中的字母指数仅限于正整数的情况).3.进一步了解因式分解的意义,加强学生的逆向思维,并渗透化归的思想方法.1.由学生自主探索解题途径,在此过程中,通过观察、对比等手段,确定多项式各项的公因式,加强学生的逆向思维,渗透化归的思想方法,培养学生的观察能力.2.由乘法分配律的逆运算过渡到因式分解,从提取的公因式是一个单项式过渡到提取的公因式是多项式,进一步发展学生的类比思想.3.寻找出确定多项式各项的公因式的一般方法,培养学生的初步归纳能力.通过观察能合理地进行因式分解,并能清晰地阐述自己的观点.【重点】用提公因式法把多项式分解因式.【难点】探索多项式因式分解方法的过程.【教师准备】多媒体课件.【学生准备】复习提公因式法分解因式的知识.导入一:【问题】把下列各式分解因式:(1)8mn2+2mn;(2)a2b-5ab+9b;(3)-3ma3+6ma2-12ma;(4)-2x3+4x2-8x.[设计意图]回顾上一节课提取公因式的基本方法与步骤,为学生能从容地把提取的公因式从单项式过渡到多项式提供必要的基础.以板演的形式让学生回忆起提取公因式的方法与步骤,使学生真正理解基本方法和步骤.导入二:上节课我们学习了用提公因式法分解因式,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜.。

初二数学(北师大版)—因式分解教案

初二数学(北师大版)—因式分解教案

讲义:课题——北师大版—学习因式分解教学步骤及教学内容包括的环节:一、作业检查。

二、课前热身:①.要求学生复述上节课的主要知识。

②.以及习题检测。

三、内容讲解:【知识点】1、因式分解是把一个多项式化成几个整式的积的形式,也称分解因式。

整式乘法是把几个整式相乘的关系化为一个多项式。

2、如何用提公因式法来分解因式3、如何用公式法来分解因式4、因式分解的一般步骤5、分组分解法、十字相乘法分解因式【典型例题讲解】知识点一:因式分解的概念理解和应用例1、判断下列哪些是整式乘法,哪些是因式分解,哪些两者都不是(1)x3-x=x(x+1)(x-1)(2)(x-2)(x+2)=x2-4(3)8xyz3-6x2y2z=xyz(8z2-6xy)说明:○1整式乘法是一种积化成和差,因式分解是一种和差化积;○2分解因式必须分解到每个多项式不能再分解为止例2、多项式x+mx+5因式分解得(x+5)(x+n),求m、n的值。

说明:理解因式分解与整式乘法的互逆关系。

例3、如图1所示,是由一个正方形和两个小长方形组成的一个大长方形,根据图形,写出一个关于因式分解的等式。

n n mm图1说明:因式分解与数形结合思想的综合应用【练习1】(1)把下列各式因式分解21xy-14xz+35z2; (2)(x-2)2-x+2; (3)a2(x-2a)2-a(2a-x)2.(2)已知x2-3x+m可以分解为(x+2)(x-5),则m的值等于()A、-3 B、3 C、10 D、-10(3)已知多项式2x+bx+c因式分解为2(x-3)(x+1),求b、c的值。

(4)9993-999能被998整除吗?能被1000整除吗?知识点二:提公因式法1、公因式可以是各项的系数或各项的相同字母,系数应是最大公约数,字母是最低次幂;2、可以是单项也可以是多项式;3、注意多项式变形过程中的符号问题;4、公因式一定是“最大公因式”,当多项式首项的系数是负数时,一般先提出“-”。

北师大版八年级下数学2.1分解因式(教案)

北师大版八年级下数学2.1分解因式(教案)

2.1分解因式教学目的和要求: 经历从分解因数到分解因式的类比过程;了解分解因式的意义,以及它与整式乘法的关系;感受分解因式在解决相关问题中的作用.教学重点和难点:重点:利用因数分解可以简化运算、研究整数的性质, 以类比因数分解来引入因式分解的学习 难点:每一步变形的依据快速反应:1. 根据因式分解的概念,判断下列各等式哪些是因式分解,哪些不是,为什么?(1)6abxy =2ab ·3xy;(2));11)(11(112-+=-x x x (3)(2x-1)·2=4x-2(4)4x 2-4x+1=4x (x-1)+1.2. 填空(1)(2m+n )(2m-n )=4m 2-n 2此运算属于 。

(2)x 2-2x+1=(x-1)2此运算属于 。

(3)配完全平方式 49x 2+y 2+ =( -y )2自主学习:1. 993-99能被100整除吗?你是怎样想的?与同伴交流。

小时是这样做的?993-99=99×992-99×1=99(992-1)=99×9800=98×99×100所以,993-99能被100整除。

(1) 小明在判断993-99能否被100整除时是怎么做的?(2) 993-99还能被哪些正整数整除。

答案:(1)小明将993-99通过分解因数的方法,说明993-99是100的倍数,故993-99能被100整除。

(2)还能被98,99,49,11等正整数整除。

2. 计算下列各式:(1)(m +4)(m-4)= ;(2)(y-3)2= ;(3)3x (x -1)= ;(4)m (a+b+c )= .根据上面的算式填空:(1)3x 2-3x =( )( )(2)m 2-16=( )( )(3)ma+mb+mc =( )( )(4)y 2-6y+9=( )( )请问,通过以上两组练习的演练,你认为这两组练习之间有什么关系?答案:第一组:(1)m 2-16;(2)y 2-6y+9;(3)3x 2-3x ;(4)ma+mb+mc ;第二组:(1)3x (x -1);(2)(m +4)(m-4);(3)m (a+b+c );(4)(y-3)2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁省辽阳市第九中学八年级数学下册 2.1.分解因式教案北师大版
总体说明
因式分解是进行代数恒等变形的重要手段之一,它在以后的代数学习中有着重要的应用,如:多项式除法的简便运算,分式的运算,解方程(组)以及二次函数的恒等变形等,因此学好因式分解对于代数知识的后继学习具有相当重要的意义.
本节是因式分解的第1小节,占一个课时,它主要让学生经历从分解因数到分解因式的过程,让学生体会数学思想——类比思想,让学生了解分解因式与整式的乘法运算之间的互逆关系,感受分解因式在解决相关问题中的作用.
一、学生知识状况分析
学生的技能基础:学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,因此,对于因式分解的引入,学生不会感到陌生,它为今天学习分解因式打下了良好基础.学生活动经验基础:由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受起来还有一定的困难,再者本节还没有涉及因式分解的具体方法,所以对于学生来说,寻求因式分解的方法是一个难点.
二、依据新课标标准和学情制定以下教学目标
基于学生在小学已经接触过因数分解的经验,但对于因式分解的概念还完全陌生,因此,本课时在让学生重点理解因式分解概念的基础上,应有意识地培养学生知识迁移的数学能力,如:类比思想,逆向运算能力等。

因此,本课时的教学目标是:
知识与技能:
(1)使学生了解因式分解的意义,理解因式分解的概念.
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法.数学能力:
(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想.
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力.
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力.
情感与态度:
让学生初步感受对立统一的辨证观点以及实事求是的科学态度.
教学重点、难点:掌握分解因式的定义
教学方法:讲、议、练相结合
三、教学过程分析
本节课设计了六个教学环节:看谁算得快——看谁想得快——看谁算得准——学生讨论——反馈练习——学生反思.
第一环节 看谁算得快
活动内容:用简便方法计算:
(1)29
76971397⨯+⨯-⨯= (2)-2.67×132+25×2.67+7×2.67=
(3)992
–1= .
活动目的:如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.
注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式.
第二环节 看谁想得快
活动内容:993–99能被哪些数整除?你是怎么得出来的?
学生思考:从以上问题的解决中,你知道解决这些问题的关键是什么?
活动目的:引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备.
注意事项:由于有了第一环节的铺垫,学生对于本环节问题的理解则显得比较轻松,学生能回答出993–99能被100、99、98整除,有的同学还回答出能被33、50、200等整除,此时,教师应有意识地引导,使学生逐渐明白解决这些问题的关键是——把一个多项式化为积的形式.
第三环节 看谁算得准
活动内容:
计算下列式子:
(1)3x(x-1)= ;
(2)m(a+b+c)= ;
(3)(m+4)(m-4)= ;
(4)(y-3)2= ;
(5)a(a+1)(a-1)= .
根据上面的算式填空:
(1)ma+mb+mc= ;
(2)3x2-3x= ;
(3)m2-16= ;
(4)a3-a= ;
(5)y2-6y+9= .
活动目的:在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力.
注意事项:由于整式的乘法运算是学生在七年级已经学习过的内容,因此,学生能很快得出第一组式子的结果,并能很快发现第一组式子与第二组式子之间的联系,从而得出第二组式子的结果.
第四环节学生讨论
活动内容:
比较以下两种运算的联系与区别:
(1)a(a+1)(a-1)= a3-a
(2)a3-a= a(a+1)(a-1)
在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?
结论:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.辨一辨:下列变形是因式分解吗?为什么?
(1)a+b=b+a(2)4x2y–8xy2+1=4xy(x–y)+1
(3)a(a–b)=a2–ab(4)a2–2ab+b2=(a–b)2
活动目的:通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;
(2)分解因式的结果要以积的形式表示;
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;
(4)必须分解到每个多项式不能再分解为止.
注意事项:学生通过讨论,能找出分解因式与整式的乘法的联系与区别,基本清楚了“分解因式与整式的乘法是一种互逆关系”以及“分解因式的结果要以积的形式表示”这两种事实,后两种事实是在老师的引导与启发下才能完成.
第五环节反馈练习
活动内容:
1、看谁连得准
x2-y2 . (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
2、下列哪些变形是因式分解,为什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
活动目的:通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏.
注意事项:从学生的反馈情况来看,学生对因式分解意义的理解基本到位.
第六环节学生反思
活动内容:从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
活动目的:通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解,对矛盾对立统一的观点有一个初步认识.注意事项:从学生的反思来看,学生掌握了新的知识,提高了逆向思维的能力,对于类比的数学思想有了一定的理解,对于矛盾对立统一的哲学观点也有了一个初步认识.
巩固练习:课本第45页习题2.1第1,2,3题
思考题:课本第45页习题2.1第4题(给学有余力的同学做)
四、教学反思。

相关文档
最新文档