第五章相交线与平行线单元试卷综合测试(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线单元试卷综合测试(Word 版 含答案)
一、选择题
1.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )
A .70º
B .20º
C .110º
D .160º
2.下列结论中:①同一平面内,两条不相交的直线被第三条直线所截,形成的同旁内角互补;②在同一平面内,若,//a b b c ⊥,则a c ⊥; ③直线外一点到直线的垂线段叫点到直线的距离;④同一平面内,过一点有且只有一条直线与已知直线平行,正确的个数有( )
A .1个
B .2个
C .3个
D .4个
3.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )
A .112°
B .110°
C .108°
D .106° 4.如图,在ABC 中,//EF BC ,ED 平分BEF ∠,且70∠︒=DEF ,则B 的度数
为( )
A .70°
B .60°
C .50°
D .40°
5.如图,OC 是∠AOB 的平分线,直线l ∥OB .若∠1=50°,则∠2的大小为( )
A .50°
B .60°
C .65°
D .80°
6.如图,已知AB ∥CD ∥EF ,则∠x 、∠y 、∠z 三者之间的关系是( )
A .180x y z ++=°
B .180x y z +-=°
C .360x y z ++=°
D .+=x z y
7.如图,在四边形ABCD 中,∠1=∠2,∠A=60°,则∠ADC=( )
A .65°
B .60°
C .110°
D .120°
8.如下图,在下列条件中,能判定AB//CD 的是( )
A .∠1=∠3
B .∠2=∠3
C .∠1=∠4
D .∠3=∠4 9.下列命题:①同位角相等;②过一点有且只有一条直线与已知直线平行; ③过一点有且只有一条直线与已知直线垂直; ④如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行.其中假命题的个数是( )
A .1个
B .2个
C .3个
D .4个
10.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
A .30°
B .25°
C .20°
D .15°
11.如图,将△ABE 向右平移50px 得到△DCF ,如果△ABE 的周长是400px
(1px=0.04cm ),那么四边形ABFD 的周长是( )
A .16cm
B .18cm
C .20cm
D .21cm
12.下列命题中,是真命题的是( )
A .在同一平面内,垂直于同一直线的两条直线平行
B .相等的角是对顶角
C .两条直线被第三条直线所截,同旁内角互补
D .过一点有且只有一条直线与已知直线平行
二、填空题
13.已知直线AB ∥CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按顺时针方向以每秒4°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按顺时针方向每秒1°旋转至QD 停止,此时射线PB 也停止旋转.
(1)若射线PB 、QC 同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为_____; (2)若射线QC 先转45秒,射线PB 才开始转动,当射线PB 旋转的时间为_____秒时,PB ′∥QC′.
14.规律探究:同一平面内有直线1a 、2a 、3a ,⋯,100a ,若12//a a ,23a a ⊥,34//a a ,45a a ⊥,⋯,按此规律,1a 与100a 的位置关系是______.
15.如图,图①是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图②,则图②中的∠CFG 的度数是_____________.
16.如图,点A 、B 为定点,直线l ∥AB,P 是直线l 上一动点,对于下列各值:①线段AB 的长;②△PAB 的周长;③△PAB 的面积;④∠APB 的度数,其中不会随点P 的移动而变化的是(填写所有正确结论的序号)______________.
17.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.
18.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.
19.一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .
请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中
α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔
20.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E,若∠1=62°,则∠2=______.
三、解答题
21.已知//AB CD ,点E 、F 分别在AB 、CD 上,点G 为平面内一点,连接EG 、
FG .
(1)如图,当点G 在AB 、CD 之间时,请直接写出AEG ∠、CFG ∠与G ∠之间的数量关系__________.
(2)如图,当点G 在AB 上方时,且90EGF ︒∠=, 求证:90︒∠-∠=BEG DFG ;
(3)如图,在(2)的条件下,过点E 作直线HK 交直线CD 于K , FT 平分DFG ∠交HK 于点T ,延长GE 、FT 交于点R ,若ERT TEB ∠=∠,请你判断FR 与HK 的位置关系,并证明. (不可以直接用三角形内角和180°)
22.感知与填空:如图①,直线//AB CD ,求证:B D BED ∠+∠=∠.
阅读下面的解答过程,并填上适当的理由,
解:过点E 作直线//EF CD ,
2D ∴∠=∠( )
//AB CD (已知),//EF CD ,
//AB EF ∴( )
1B ∴∠=∠( )
12BED ∠+∠=∠,
B D BED ∴∠+∠=∠( )
应用与拓展:如图②,直线//AB CD ,若22,35,25B G D ∠=︒∠=∠=︒.
则E F ∠+∠= 度
方法与实践:如图③,直线//AB CD ,若60,80E B F ∠=∠=︒∠=︒,则D ∠= 度.
23.已知:直线l 分别交AB 、CD 与E 、F 两点,且AB ∥CD .
(1) 说明:∠1=∠2;
(2) 如图2,点M 、N 在AB 、CD 之间,且在直线l 左侧,若∠EMN +∠FNM =260°, ①求:∠AEM +∠CFN 的度数;
②如图3,若EP 平分∠AEM ,FP 平分∠CFN ,求∠P 的度数;
(3) 如图4,∠2=80°,点G 在射线EB 上,点H 在AB 上方的直线l 上,点Q 是平面内一点,连接QG 、QH ,若∠AGQ =18°,∠FHQ =24°,直接写出∠GQH 的度数.
24.如图1,AB ∥CD ,点E 在AB 上,点G 在CD 上,点 F 在直线 AB ,CD 之间,连接
EF ,FG ,EF 垂直于 FG ,∠FGD =125°.
(1)求出∠BEF 的度数;
(2)如图 2,延长FE 到H ,点M 在FH 的上方,连接MH ,Q 为直线 AB 上一点,且在直线 MH 的右侧, 连接 MQ ,若∠EHM=∠M +90°,求∠MQA 的度数;
(3)如图 3,S 为 NB 上一点,T 为 GD 上一点,作直线 ST ,延长 GF 交 AB 于点 N ,P 为直线 ST 上一动点,请直接写出∠PGN ,∠SNP 和∠GPN 的数量关系 .(题中所有角都是大于 0°小于 180°的角)
25.(1)如图1,已知任意ABC ∆,过点C 作//DE AB ,求证:
180A B ACB ∠+∠+∠=︒;
(2)如图2,求证:∠AGF=∠AEF+∠F ;
(3)如图3,//,119,AB CD CDE GF ∠=︒交DEB ∠的角平分线EF 于点
,150F AGF ∠=︒,求F ∠的度数.
26.如图1所示,AB ∥CD ,E 为直线CD 下方一点,BF 平分∠ABE .
(1)求证:∠ABE +∠C ﹣∠E =180°.
(2)如图2,EG 平分∠BEC ,过点B 作BH ∥GE ,求∠FBH 与∠C 之间的数量关系. (3)如图3,CN 平分∠ECD ,若BF 的反向延长线和CN 的反向延长线交于点M ,且∠E +∠M =130°,请直接写出∠E 的度数.
27.问题情境:
我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.
已知三角板ABC 中,60,30,90BAC B C ∠=∠=︒∠=︒︒,长方形DEFG 中,
DE GF .
问题初探:
(1)如图(1),若将三角板ABC 的顶点A 放在长方形的边GF 上,BC 与DE 相交于点M ,AB DE ⊥于点N ,求EMC ∠的度数.
分析:过点C 作CH GF ∥,则有CH DE ∥,从而得
,CAF HCA EMC MCH ∠=∠∠=∠,从而可以求得EMC ∠的度数.
由分析得,请你直接写出:CAF ∠的度数为____________,EMC ∠的度数为___________.
类比再探:
(2)若将三角板ABC 按图(2)所示方式摆放(AB 与DE 不垂直),请你猜想写出CAF ∠与EMC ∠的数量关系,并说明理由.
28.[感知发现]:如图,是一个“猪手”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE ,我们发现:∠E=∠B+∠D
证明如下:过E 点作EF ∥AB .
∴∠B=∠1(两直线平行,内错角相等.) 又AB ∥CD(已知)
∴CD ∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行.) ∴∠2=∠D(两直线平行,内错角相等.)
∴∠1+∠2=∠B+∠D(等式的性质1.)
即:∠E=∠B+∠D
[类比探究]:如图是一个“子弹头”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE .试探究∠E+∠B+∠D=360°.写出证明过程.
[创新应用]:
(1).如图一,是两块三角板按如图所示的方式摆放,使直角顶点重合,斜边平行,请直接写出∠1的度数.
(2).如图二,将一个长方形ABCD按如图的虚线剪下,使∠1=120o,∠FEQ=90°.请直接写出∠2的度数.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】
由AO⊥CO和∠1=20º求得∠BOC=70º,再由邻补角的定义求得∠2的度数.
【详解】
∵AO⊥CO和∠1=20º,
∴∠BOC=90 º-20 º=70º,
又∵∠2+∠BOC=180 º(邻补角互补),
∴∠2=110º.
故选:C.
【点睛】
考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.
2.B
解析:B
【分析】
根据平行线的性质,点到直线的距离依次判断.
【详解】
解:①同一平面内,两条不相交的直线(即两直线平行)被第三条直线所截,形成的同旁内角互补,说法正确;
②在同一平面内,若,//a b b c ⊥,则a c ⊥,说法正确;
③直线外一点到直线的垂线段叫点到直线的距离,说法错误;
④同一平面内,过一点有且只有一条直线与已知直线平行,说法错误;
正确的说法有2个,
故选:B .
【点睛】
此题考查平行线的性质,点到直线的距离,正确理解定义是解题的关键.
3.D
解析:D
【解析】
分析:由折叠可得:∠DGH=
12∠DGE=74°,再根据AD ∥BC ,即可得到∠GHC=180°﹣∠DGH=106°.
详解:∵∠AGE=32°,
∴∠DGE=148°,
由折叠可得:∠DGH=
12
∠DGE=74°. ∵AD ∥BC ,
∴∠GHC=180°﹣∠DGH=106°.
故选D .
点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补. 4.D
解析:D
【分析】
由角平分线的定义求出∠BEF=140°,再根据平行线的性质“两直线平行,同旁内角互补”求出∠B 的度数即可.
【详解】
∵ED 平分BEF ∠,且70∠︒=DEF ,
∴70DEB ∠=︒
∴270140BEF ︒=∠=⨯︒
∵//EF BC
∴180B BEF ∠+∠=︒
∴180********B BEF ∠=︒-∠=︒-︒=︒
故选D
此题主要考查了平行线的性质和角平分的性质,此题难度不大,注意掌握相关性质的运用5.C
解析:C
【分析】
根据平行线的性质可求∠AOB,再根据角平分线的定义求得∠BOC,再根据平行线的性质可求∠2.
【详解】
∵l∥OB,
∴∠AOB+∠1=180°
∴∠AOB=180°﹣∠1=130°,
∵OC是∠AOB的平分线,
∴∠BOC=65°,
∴∠2=∠BOC=65°.
故选:C.
【点睛】
考查了角平分线,平行线的性质,关键是熟悉两直线平行,同位角相等;两直线平行,同旁内角互补的知识点.
6.B
解析:B
【分析】
根据平行线的性质可得∠CEF=180°-y,x=z+∠CEF,利用等量代换可得x=z+180°-y,再变形即可.
【详解】
解:∵CD∥EF,
∴∠C+∠CEF=180°,
∴∠CEF=180°-y,
∵AB∥CD,
∴x=z+∠CEF,
∴x=z+180°-y,
∴x+y-z=180°,
故选:B.
7.D
解析:D
【解析】试题分析:根据平行线的判定,内错角相等,两直线平行,由∠1=∠2得到AB∥CD,然后根据平行线的性质可知∠A+∠ADC=180°,可求得∠ADC=120°.
故选:D.
8.C
解析:C
根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD∥BC,由
∠1=∠4,得到AB∥CD.
故选C.
9.A
解析:A
【分析】
根据平行线的性质、八个基本事实、平行线的判定等知识分别判断即可.
【详解】
解:同位角不一定相等,①是假命题;
过直线外一点有且只有一条直线与已知直线平行,②是假命题;
在同一平面内,过一点有且只有一条直线与已知直线垂直,③是假命题;
如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行,④是真命题,
故选:A.
【点睛】
本题考查了命题与定理、平行线的判定与性质、八个基本事实,熟记八个基本事实,会判断命题的真假是解答的关键.
10.B
解析:B
【解析】
根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,
11.C
解析:C
【分析】
根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.注意:1px = 0.04cm .
【详解】
∵1px = 0.04cm,
∴50px=2cm,400px=16cm,
∵△ABE向右平移2cm得到△DCF,
∴DF=AE,
∴四边形ABFD的周长=AB+BE+DF+AD+EF
=AB+BE+AE+AD+EF
=△ABE的周长+AD+EF.
∵平移距离为2cm,
∴AD=EF=2cm,
∵△ABE的周长是16cm,
∴四边形ABFD的周长=16+2+2=20cm.
【点睛】
本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
12.A
解析:A
【解析】
分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.
详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;
根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;
根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;
根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确.
故选A.
点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.
二、填空题
13.PB′⊥QC′ 15秒或63秒或135秒.
【分析】
(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;
解析:PB′⊥QC′ 15秒或63秒或135秒.
【分析】
(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;
(2)分三种情况:①当0s<t≤45时,②当45s<t≤67.5s时,③当67.5s<t<135s时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.
【详解】
(1)如图1,当旋转时间30秒时,由已知得∠BPB′=4°×30=120°,∠CQC′=30°,
过E作EF∥AB,则EF∥CD,
∴∠PEF=180°﹣∠BPB′=60°,∠QEF=∠CQC′=30°,
∴∠PEQ=90°,
∴PB′⊥QC′,
故答案为:PB′⊥QC′;
(2)①当0s<t≤45时,如图2,则∠BPB′=4t°,∠CQC′=45°+t°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠PEC=∠CQC′,
即4t=45+t,
解得,t=15(s);
②当45s<t≤67.5s时,如图3,则∠APB′=4t﹣180°,∠CQC'=t+45°,∵AB∥CD,PB′∥QC′,
∴∠APB′=∠PED=180°﹣∠CQC′,
即4t﹣180=180﹣(45+t),
解得,t=63(s);
③当67.5s<t<135s时,如图4,则∠BPB′=4t﹣360°,∠CQC′=t+45°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠PEC=∠CQC′,
即4t﹣360=t+45,
解得,t =135(s );
综上,当射线PB 旋转的时间为15秒或63秒或135秒时,PB′∥QC′.
故答案为:15秒或63秒或135秒.
【点睛】
本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.
14.互相垂直.
【解析】
【分析】
依据,,,,,可得,即可得到与的位置关系是互相垂直.
【详解】
解:,,,

按此规律,,
又,,

以此类推,


故答案为:互相垂直.
【点睛】
本题主要
解析:互相垂直.
【解析】
【分析】
依据12a //a ,23a a ⊥,34a //a ,45a a ⊥,⋯,可得14n a a ⊥,即可得到1a 与100a 的位置关系是互相垂直.
【详解】
解:12a //a ,23a a ⊥,34a //a ,
14a a ∴⊥,
按此规律,58a a ⊥,
又45a a ⊥,⋯,
18a a ∴⊥,
以此类推,14n a a ⊥
100425=⨯,
1100a a ∴⊥,
故答案为:互相垂直.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是根据已知条件得出规律:14n a a ⊥. 15.130°
【解析】
∵AD∥BC,∠DEF=25°,
∴∠BFE=∠DEF=25°,
∴∠EFC=155°,
∴∠CFG=155°-25°=130°.
故答案为130°.
点睛:本题主要是根据折叠能
解析:130°
【解析】
∵AD ∥BC ,∠DEF=25°,
∴∠BFE=∠DEF=25°,
∴∠EFC=155°,
∴∠CFG=155°-25°=130°.
故答案为130°.
点睛:本题主要是根据折叠能够发现相等的角,同时运用了平行线的性质.
16.①③
【分析】
求出AB 长为定值,P 到AB 的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB 不断发生变化、∠APB 的大小不断发生变化.
【详解】
解:∵A、B 为定点,
∴AB 长
解析:①③
【分析】
求出AB 长为定值,P 到AB 的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB 不断发生变化、∠APB 的大小不断发生变化.
【详解】
解:∵A 、B 为定点,
∴AB 长为定值,
∴①正确;
∵点A ,B 为定点,直线l ∥AB ,
∴P 到AB 的距离为定值,故△APB 的面积不变,
∴③正确;
当P点移动时,PA+PB的长发生变化,
∴△PAB的周长发生变化,
∴②错误;
当P点移动时,∠APB发生变化,
∴④错误;
故选A.
【点睛】
本题考查了平行线的性质,等底等高的三角形的面积相等,平行线间的距离的运用,熟记定理是解题的关键.
17.40
【解析】
根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,
∴∠BEF=∠ABE=70°;
又∵EF∥CD,
∴∠CEF=180°-∠ECD=18
解析:40
【解析】
根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.
解:∵AB∥EF,
∴∠BEF=∠ABE=70°;
又∵EF∥CD,
∴∠CEF=180°-∠ECD=180°-150°=30°,
∴∠BEC=∠BEF-∠CEF=40°;
故应填40.
“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.
18.45°,60°,105°,135°.
【解析】
分析:根据题意画出图形,再由平行线的判定定理即可得出结论.
详解:如图,
当AC∥DE时,∠BAD=∠DAE=45°;
当BC∥AD时,∠DAE=∠
解析:45°,60°,105°,135°.
【解析】
分析:根据题意画出图形,再由平行线的判定定理即可得出结论.
详解:如图,
当AC ∥DE 时,∠BAD =∠DAE =45°;
当BC ∥AD 时,∠DAE =∠B =60°;
当BC ∥AE 时,∵∠EAB =∠B =60°,∴∠BAD =∠DAE +∠EAB =45°+60°=105°;
当AB ∥DE 时,∵∠E =∠EAB =90°,
∴∠BAD =∠DAE +∠EAB =45°+90°=135°.
故答案为45°,60°,105°,135°.
点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).
19.;(答案不唯一)
【分析】
画出图形,再由平行线的判定与性质求出旋转角度.
【详解】
图中,当时,DE//AC ;
图中,当 时,CE//AB ,
图中,当 时,DE//BC .
故答案为:;(答案
解析:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一)
【分析】
画出图形,再由平行线的判定与性质求出旋转角度.
【详解】
图③中,当45DCF D α=∠=∠=时,DE//AC ;
图④中,当9090120DCF DCB BCF B α=∠=∠+∠=︒-∠+︒=︒ 时,CE//AB ,
图⑤中,当90135a DCF DCB BCF D =∠=∠+∠=∠+=︒ 时,DE//BC .
故答案为:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一).
【点睛】
考查了平行线的判定和性质,解题关键是理解平行线的判定与性质,并且利用了数形结合.
20.121°
【分析】
由AC∥BD,根据两直线平行,同位角相等,即可求得∠B 的度数;由邻补角的定义,求得∠BAC 的度数;又由AE 平分∠BAC 交BD 于点E ,即可求得∠BAE 的度数,根据三角形外角的性质即
解析:121°
【分析】
由AC ∥BD ,根据两直线平行,同位角相等,即可求得∠B 的度数;由邻补角的定义,求得∠BAC 的度数;又由AE 平分∠BAC 交BD 于点E ,即可求得∠BAE 的度数,根据三角形外角的性质即可求得∠2的度数.
【详解】
∵AC ∥BD ,
∴∠B=∠1=64°,
∴∠BAC=180°-∠1=180°-62°=118°,
∵AE 平分∠BAC 交BD 于点E ,
∴∠BAE=12
∠BAC=59°, ∴∠2=∠BAE+∠B=62°+59°=121°.
故答案为121°.
【点睛】
此题考查了平行线的性质,角平分线的定义,邻补角的定义以及三角形外角的性质.题目难度不大,注意数形结合思想的应用.
三、解答题
21.(1)∠G=∠AEG+∠CFG ;(2)见解析;(3)FR ⊥HK ,理由见解析
【分析】
(1)根据平行线的判定和性质即可写出结论;
(2)过点G 作//GP AB ,根据平行线的性质得角相等和互补,即可得证;
(3)根据平行线的性质得角相等,即可求解.
【详解】
解:(1)如图:过点G 作//GH AB ,
∵//AB CD ,
∴//GH CD ,
∴AEG EGH ∠=∠,CFG FGH ∠=∠,
EGF AEG CFG ∴∠==∠+∠
AEG ∴∠、CFG ∠与G ∠之间的数量关系为G AEG CFG ∠=∠+∠.
故答案为:G AEG CFG ∠=∠+∠.
(2)如图,过点G 作//GP AB ,
180BEG EGP ∴∠+∠=︒,
180EHG HGP ∠+∠=︒,
90180EHG EGP ∴∠+︒+∠=︒,
90EHG EGP ∴∠+∠=︒,
//AB CD ,
DFG EHG ∴∠=∠,
180180()1809090BEG DFG EGP EHG EGP EHG ∴∠-∠=︒-∠-∠=︒-∠+∠=︒-︒=︒.
(3)FR 与HK 的位置关系为垂直.理由如下: FT 平分DFG ∠交HK 于点T ,GFT KFT ∴∠=∠,
90EGF ∴∠=︒,
90GFT ERT ∴∠+∠=︒,
90KFT ERT ∴∠+∠=︒,
ERT TEB ∠=∠,
90KFT TEB ∴∠+∠=︒,
//AB CD ,
FKT TEB ∴∠=∠,
90KFT FKT ∴∠+∠=︒,
90FTK ∴∠=︒,
KT FR ∴⊥,即FR HK ⊥.
∴FR 与HK 的位置关系是垂直.
【点睛】
本题考查了平行线的判定和性质,解决本题的关键是应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.
22.两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;82;20
【分析】
感知与填空:根据平行公理及平行线的性质即可填写;
应用与拓展:根据感知与填空的方法添加辅助线即可得到∠E+∠F=∠B+∠G+∠D ,即可得到答案;
方法与实践:过点F 作平行线,用同样的思路证明即可得到∠D 的度数.
【详解】
感知与填空:
两直线平行,内错角相等;
如果两条直线都和第三条直线平行,那么这两条直线也互相平行;
两直线平行,内错角相等;
等量代换,
应用与拓展:如图,作GM ∥AB ,
由感知得:∠E=∠B+∠EGM,
∵AB ∥CD,GM ∥AB,
∴GM ∥CD,
∴∠F=∠D+∠FGM,
∴∠E+∠F=∠B+∠D+∠EGF,
∵22,35,25B EGF D ∠=︒∠=∠=︒,
∴∠E+∠F=82︒,
故答案为:82.
方法与实践:如图:作FM ∥AB ,
∴∠MFB+∠B=180︒,
∵60B ∠=︒,
∴∠MFB=180︒-∠B=120︒,
∵80F ∠=︒,
∴∠MFE=40︒,
∵∠E=∠MFE+∠D, 60E ∠=︒,
∴∠D=20︒,
故答案为:20.
【点睛】
此题考查平行公理的运用及平行线的性质定理,解此题的关键是理解感知部分的作线方法,得到的方法的总结,由此才能正确解答后面的问题.
23.(1)理由见解析;(2)①80°,②40°;(3)38°、74°、86°、122°.
【分析】
(1)根据平行线的性质及对顶角的性质即可得证;
(2)①过拐点作AB 的平行线,根据平行线的性质推理即可得到答案;
②过点P 作AB 的平行线,根据平行线的性质及角平分线的定义求得角的度数;
(3)分情况讨论,画出图形,根据三角形的内角和与外角的性质分别求出答案即可.
【详解】
(1)
//AB CD
1EFD ∴∠=∠,
2EFD ∠=∠
12∠∠∴=; (2)①分别过点M ,N 作直线GH ,IJ 与AB 平行,则//////AB CD GH IJ ,如图:
AEM EMH ∴∠=∠,CFN FNJ ∠=∠,180HMN MNJ ∠+∠=︒,
()80AEM CFN EMH FNJ EMN MNF HMN MNJ ∴∠+∠=∠+∠=∠+∠-∠+∠=︒;
②过点P 作AB 的平行线,
根据平行线的性质可得:3AEP ∠=∠,4CFP ∠=∠,
∵EP 平分∠AEM ,FP 平分∠CFN , ∴11344022
AEP CFP AEM CFM ∠+∠=∠+∠=
∠+∠=︒, 即40P ∠=︒;
(3)分四种情况进行讨论:
由已知条件可得80BEH ∠=︒,
①如图:
118082EPG BEH AGQ ∠=︒-∠-∠=︒
182HPQ EPG ∴∠=∠=︒
11118074GQ H EHQ HPQ ∴∠=︒-∠-∠=︒
②如图:
104BPH FHP BEH ∠=∠+∠=︒,
22122BQ H BPH AGQ ∴∠=∠+∠=︒;
③如图:
56BPH BEH FHP ∠=∠-∠=︒,
3338BQ H BPH AGQ ∴∠=∠-∠=︒;
④如图:
104BPH BEH FHP ∠=∠+∠=︒ ,
4486GQ H BPH AGQ ∴∠=∠-∠=︒;
综上所述,∠GQH 的度数为38°、74°、86°、122°.
【点睛】
本题考查平行线的性质,三角形外角的性质等内容,解题的关键是掌握辅助线的作法以及分类讨论的思想.
24.(1)145︒;(2)55︒;(3)2125PGN SNP NPG ∠+∠-︒=∠
【分析】
(1)过点F 作//FN AB ,根据AB ∥CD ,EF 垂直于FG ,∠FGD =125°可计算NFG ∠,EFN ∠,从而求算BEF ∠;
(2)作//FN AB ,//HK AB 交MQ 于点K ,由(1)知55,=35NFG EFN ∠=︒∠︒,从而求算35AEF EHL ∠=∠=︒,再根据90EHM M ∠=∠+︒,设M x ∠=︒,利用外角求出MHL ∠,从而求算MQA ∠;
(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,设SNP x ∠=︒ ,则NPI x ∠=︒
设IPG y ∠=︒ ,则PGT y ∠=︒,从而表示PGN ∠,进而寻找数量关系.
【详解】
(1)过点F 作//FN AB ,如图:
∵AB ∥CD ,EF 垂直于FG ,∠FGD =125°
∴55,905535NFG EFN ∠=︒∠=︒-︒=︒
∴180145BEF EFN ∠=︒-∠=︒
(2)作//FN AB ,//HK AB 交MQ 于点K ,如图:
由(1)知:55,905535NFG EFN ∠=︒∠=︒-︒=︒
∴35AEF EHL ∠=∠=︒
又∵90EHM M ∠=∠+︒,设M x ∠=︒
∴90EHM x ∠=︒+︒
∴903555MHL x x ∠=︒+︒-︒=︒+︒
∴5555MKH MQA MHL M x x ∠=∠=∠-∠=︒+︒-︒=︒
(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,如图:
设SNP x ∠=︒ ,则NPI x ∠=︒
设IPG y ∠=︒ ,则PGT y ∠=︒
又∵125FGD ∠=︒
∴125PGN y ∠=︒-︒
∴2125PGN SNP NPG ∠+∠-︒=∠
【点睛】
本题考查平行线的性质综合,转化相关的角度是解题关键.
25.(1)见详解;(2)见详解;(3)29.5°.
【分析】
(1)根据平行线的性即可A ACD ∠=∠,B BCE ∠=∠,再根据平角的定义进行等量代换即可证明;
(2)因为根据平角的定义和三角形的内角和定理即可得到结论;
(3)根据平行线的性质得到119DEB ∠=︒,61AED ∠=︒,由角平分线的性质得到59.5DEF ∠=︒,根据三角形的外角的性质即可得到结论.
【详解】
(1)如图1所示,在ABC ∆中,//DE AB ,
A ACD ∴∠=∠,
B BCE ∠=∠.
180ACD BCA BCE ∠+∠+∠=︒,
180A B ACB ∴∠+∠+∠=︒.
即三角形的内角和为180︒;
(2)180AGF FGE ∠+∠=︒,
由(1)知,180GEF F FGE ∠+∠+∠=︒,
AGF AEF F ∴∠=∠+∠;
(3)//AB CD ,119CDE ∠=︒,
119DEB CDE ∴∠=∠=︒,18061AED CDE ∠=︒-∠=︒,
∵EF 平分DEB ∠,
59.5DEF ∴∠=︒,
120.5AEF AED FED ∴∠=∠+∠=︒,
150AGF ∠=︒,AGF AEF F ∠=∠+∠,
150120.529.5F ∴∠=︒-︒=︒.
【点睛】
本题考查了平行线的性质,三角形的内角和定理的证明与应用,三角形外角定理证明与应用,熟练掌握平行线的性质定理是解题的关键,此类题目每一步都为后续解题提供了解题条件或方法.
26.(1)见解析;(2)2∠FBH +∠C =180°;(3)80°
【分析】
(1)过点E 作//EK AB ,由平行线的性质得出,180ABE BEK CEK C ∠=∠∠+∠=︒,进而得出答案;
(2)设,ABF EBF BEG CEG αβ∠=∠=∠=∠=,由平行线的性质得出
,HBE BEG FBH FBE HBE βαβ∠=∠=∠=∠-∠=-,由(1)知
180ABE C BEC ∠+∠-∠=︒,即可得出答案;
(3)设,ABF EBF x ECN DCN y ∠=∠=∠=∠=,由(1)知2()180E x y ∠=+-︒,过M 作////PQ AB CD ,由平行线的性质得出
,PMF ABF x QMN DCN y ∠=∠=∠=∠=,求出130E FMN x y ∠+∠=+=︒,即可得出答案.
【详解】
(1)如图1,过点E 作//EK AB
∴ABE BEK ∠=∠
∵//AB CD
∴//EK CD
∴180CEK C ∠+∠=︒
∴180ABE C E BEC CEK C BEC CEK C ∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; (2)∵BF 、EG 分别平分ABE ∠、BEC ∠
∴,ABF EBF BEG CEG ∠=∠∠=∠
设,ABF EBF BEG CEG αβ∠=∠=∠=∠=
∵//BH EG
∴HBE BEG β∠=∠=
∴FBH FBE HBE αβ∠=∠-∠=-
由(1)知,180ABE C BEC ∠+∠-∠=︒
即222()180C C αβαβ+∠-=-+∠=︒
∴2180FBH C ∠+∠=︒;
(3)∵CN 、BF 分别平分ECD ∠、ABE ∠
∴,ABF EBF ECN DCN ∠=∠∠=∠
设,ABF EBF x ECN DCN y ∠=∠=∠=∠=
由(1)知:180ABE C E ∠+∠-∠=︒
即2()180E x y ∠=+-︒
如图3,过M 作////PQ AB CD
则,PMF ABF x QMN DCN y ∠=∠=∠=∠=
∴180180()FMN PMF QMN x y ∠=︒-∠-∠=︒-+
130E FMN ∠+∠=︒
∴2()180180()130x y x y +-︒+︒-+=︒
130x y ∴+=︒
∴2()180213018080E x y ∠=+-︒=⨯︒-︒=︒.
【点睛】
本题考查了角平分线的定义、平行线的性质、角的和差等知识点,较难的是题(3),通过作辅助线,构造平行线是解题关键.
27.(1)30°,60°;(2)∠CAF+∠EMC=90°,理由见解析
【分析】
(1)利用∠CAF=∠BAF-∠BAC 求出∠CAF 度数,求∠EMC 度数转化到∠MCH 度数; (2)过点C 作CH ∥GF ,得到CH ∥DE ,∠CAF 与∠EMC 转化到∠ACH 和∠MCH 中,从而发现∠CAF 、∠EMC 与∠ACB 的数量关系.
【详解】
(1)过点C 作CH ∥GF ,则有CH ∥DE ,
所以∠CAF=∠HCA ,∠EMC=∠MCH ,
∵∠BAF=90°,
∴∠CAF=90°-60°=30°.
∠MCH=90°-∠HCA=60°,
∴∠EMC=60°.
故答案为30°,60°.
(2)∠CAF+∠EMC=90°,理由如下:
过点C 作CH ∥GF ,则∠CAF=∠ACH .
∵DE ∥GF ,CH ∥GF ,
∴CH ∥DE .
∴∠EMC=∠HCM .
∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°.
【点睛】
考查了平行线的判定和性质,解题关键是熟记并灵活运用其性质和判定.
28.类比探究:见解析;
创新应用:(1):1105.∠=︒
创新应用:(2):2150.∠=︒
【分析】
[类比探究]:如图,过E 作//,EF AB 结合已知条件得//,FE CD 利用平行线的性质可得答案,
[创新应用]:
(1):由题意得://,AB CD 过E 作//,EF AB 得到//,CD EF 利用平行线的性质可得答案,
(2):由题意得://,AB CD 过E 作//,EG AB 得到 //,EG CD 利用平行线的性质可得答案.
【详解】
解:类比探究:如图,过E 作//,EF AB
//,AB CD
//,FE CD ∴
//,EF AB
180,B BEF ∴∠+∠=︒
//,FE CD
180,D DEF ∴∠+∠=︒
360,B BEF DEF D ∴∠+∠+∠+∠=︒
360.B BED D ∴∠+∠+∠=︒
[创新应用]:(1):由题意得://,AB CD 过E 作//,EF AB
//,CD EF ∴
//,EF AB
,B BEF ∴∠=∠
//,CD EF
,D DEF ∴∠=∠
,B D BEF DEF BED ∴∠+∠=∠+∠=∠
30,45,B D ∠=︒∠=︒
75,BED ∴∠=︒
90,AEB DEC ∠=∠=︒
1360909075105.∴∠=︒-︒-︒-︒=︒
(2):由题意得://,AB CD 过E 作//,EG AB //,EG CD ∴
2180,GEQ ∴∠+∠=︒
//,EG AB
1180,GEF ∴∠+∠=︒
1212360GEF GEQ FEQ ∴∠+∠+∠+∠=∠+∠+∠=︒ , ∠1=120o ,∠FEQ=90°,
2150.∴∠=︒
【点睛】
本题考查平行公理及平行线的性质,掌握平行公理及平行线的性质是解题关键.。

相关文档
最新文档