临沧市高级中学2018-2019学年高二上学期第一次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
临沧市高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )
A .06=--y x
B .06=++y x
C .06=+-y x
D .06=-+y x 2. 抛物线x=﹣4y 2的准线方程为( )
A .y=1
B .y=
C .x=1
D .x=
3. 抛物线y=﹣8x 2的准线方程是( )
A .y=
B .y=2
C .x=
D .y=﹣2
4. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12
B .8
C .6
D .4
5. 下列说法正确的是( )
A.圆锥的侧面展开图是一个等腰三角形;
B.棱柱即是两个底面全等且其余各面都是矩形的多面体;
C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;
D.通过圆台侧面上的一点,有无数条母线.
6. 记集合T={0,1,2,3,4,5,6,7,8,9},M=,
将M 中的元素按从大到小排列,则第2013个数是( )
A .
B .
C .
D .
7. 若,[]0,1b ∈,则不等式2
2
1a b +≤成立的概率为( ) A .
16π B .12π C .8π D .4
π
8. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )
A .36种
B .38种
C .108种
D .114种
9. 若函数f (x )=﹣a (x ﹣x 3
)的递减区间为(
,
),则a 的取值范围是( )
A .a >0
B .﹣1<a <0
C .a >1
D .0<a <1
10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V
≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,
那么,近似公式V
≈L 2h 相当于将圆锥体积公式中的π近似取为( )
A
.
B
.
C
.
D
.
11.已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( ) A .0
B
.
C
.
D
.
12.若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )
A .[5,10]
B .(5,10)
C .[3,12]
D .(3,12)
二、填空题
13.阅读下图所示的程序框图,运行相应的程序,输出的n 的值等于_________. 14
15.设p :f (x )=e x +lnx+2x 2
+mx+15,则p 是q 的 条件.
16.已知x ,y 满足条件
的最大值是 .
17.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.
18.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)
三、解答题
19.已知关x 的一元二次函数f (x )=ax 2﹣bx+1,设集合P={1,2,3}Q={﹣1,1,2,3,4},分别从集合P 和Q 中随机取一个数a 和b 得到数对(a ,b ).
(1)列举出所有的数对(a ,b )并求函数y=f (x )有零点的概率;
(2)求函数y=f (x )在区间[1,+∞)上是增函数的概率.
20.已知函数()2
ln f x x bx a x =+-.
(1)当函数()f x 在点()()
1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*
0,1,x n n n N ∈+∈,求的值;
(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且12
02
x x x +=,求证:()00f x '>.
21.斜率为2的直线l 经过抛物线的y 2=8x 的焦点,且与抛物线相交于A ,B 两点,求线段AB 的长.
22.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am 2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少 am 2
;已知旧
住房总面积为32am 2
,每年拆除的数量相同.
(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m 2
?
(Ⅱ),求前n (1≤n ≤10且n ∈N )年新建住房总面积S n
23.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,
(1)求|MF|+|NF|的值;
(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.
24.
设函数()x
f x e =,()ln
g x x =.
(Ⅰ)证明:()2e g x x
≥-
; (Ⅱ)若对所有的0x ≥,都有()()f x f x ax --≥,求实数a 的取值范围.
临沧市高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】
考点:直线方程
2.【答案】D
【解析】解:抛物线x=﹣4y2即为
y2=﹣x,
可得准线方程为x=.
故选:D.
3.【答案】A
【解析】解:整理抛物线方程得x2=﹣y,∴p=
∵抛物线方程开口向下,
∴准线方程是y=,
故选:A.
【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.
4.【答案】B
【解析】解:展开式通项公式为T r+1=•(﹣1)r•x3n﹣4r,
则∵二项式(x3﹣)n(n∈N*)的展开式中,常数项为28,
∴,
∴n=8,r=6.
故选:B.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
5.【答案】C
【解析】
考点:几何体的结构特征.
6.【答案】
A
【解析】
进行简单的合情推理.
【专题】规律型;探究型.
【分析】将M中的元素按从大到小排列,求第2013个数所对应的a i,首先要搞清楚,M集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案.
【解答】因为=(a1×103+a2×102+a3×10+a4),
括号内表示的10进制数,其最大值为9999;
从大到小排列,第2013个数为
9999﹣2013+1=7987
所以a1=7,a2=9,a3=8,a4=7
则第2013个数是
故选A.
【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n个数对应的十进制的数即可.
7.【答案】D
【解析】
考点:几何概型.
8.【答案】A
【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.
根据分步计数原理,共有3×2×3=18种分配方案.
②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.
由分类计数原理,可得不同的分配方案共有18+18=36种,
故选A.
【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.
9.【答案】A
【解析】解:∵函数f(x)=﹣a(x﹣x3)的递减区间为(,)
∴f′(x)≤0,x∈(,)恒成立
即:﹣a(1﹣3x2)≤0,,x∈(,)恒成立
∵1﹣3x2≥0成立
∴a>0
故选A
【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.10.【答案】B
【解析】解:设圆锥底面圆的半径为r ,高为h ,则L=2πr ,
∴=
(2πr )2
h ,
∴π=
.
故选:B .
11.【答案】D
【解析】解:抛物线y 2=4x 的焦点(1,0),直线y=ax+1经过抛物线y 2
=4x 的焦点,可得0=a+1,解得a=﹣1,
直线的斜率为﹣1,
该直线的倾斜角为:.
故选:D .
【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.
12.【答案】A 【解析】解:令4a ﹣2b=x (a ﹣b )+y (a+b )
即
解得:x=3,y=1
即4a ﹣2b=3(a ﹣b )+(a+b ) ∵1≤a ﹣b ≤2,2≤a+b ≤4, ∴3≤3(a ﹣b )≤6 ∴5≤(a ﹣b )+3(a+b )≤10
故选A
【点评】本题考查的知识点是简单的线性规划,其中令4a ﹣2b=x (a ﹣b )+y (a+b ),并求出满足条件的x ,
y ,是解答的关键.
二、填空题
13.【答案】6
【解析】解析:本题考查程序框图中的循环结构.第1次运行后,9,2,2,S T n S T ===>;第2次运行后,
13,4,3,S T n S T ===>;第3次运行后,17,8,4,S T n S T ===>;第4次运行后,21,16,5,S T n S T ===>;第5次运行后,25,32,6,S T n S T ===<,此时跳出循环,输出结果6n =程
序结束.
14.【答案】 {(x ,y )|xy >0,且﹣1≤x ≤2,﹣≤y ≤1} .
【解析】解:图中的阴影部分的点设为(x,y)则
{x,y)|﹣1≤x≤0,﹣≤y≤0或0≤x≤2,0≤y≤1}
={(x,y)|xy>0且﹣1≤x≤2,﹣≤y≤1}
故答案为:{(x,y)|xy>0,且﹣1≤x≤2,﹣≤y≤1}.
15.【答案】必要不充分
【解析】解:由题意得f′(x)=e x++4x+m,
∵f(x)=e x+lnx+2x2+mx+1在(0,+∞)内单调递增,
∴f′(x)≥0,即e x++4x+m≥0在定义域内恒成立,
由于+4x≥4,当且仅当=4x,即x=时等号成立,
故对任意的x∈(0,+∞),必有e x++4x>5
∴m≥﹣e x﹣﹣4x不能得出m≥﹣5
但当m≥﹣5时,必有e x++4x+m≥0成立,即f′(x)≥0在x∈(0,+∞)上成立
∴p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件
故答案为:必要不充分
16.【答案】4.
【解析】解:由约束条件作出可行域如图,
化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(﹣2,0)时,
直线y=2x+z在y轴上的截距最大,即z最大,此时z=﹣2×(﹣2)+0=4.
故答案为:4.
【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
17.【答案】18.2
【解析】解:∵某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,
∵x=20,
∴y=0.9×20+0.2=18.2(亿元).
故答案为:18.2.
【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.
18.【答案】真命题
【解析】解:若a>0,b>0,则ab>0成立,即原命题为真命题,
则命题的逆否命题也为真命题,
故答案为:真命题.
【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.
三、解答题
19.【答案】
【解析】解:(1)(a ,b )共有(1,﹣1),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3﹣1),(3,1),(3,2),(3,3),(3,4),15种情况
函数y=f (x )有零点,△=b 2
﹣4a ≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况满足条件
所以函数y=f (x )有零点的概率为
(2)函数y=f (x )的对称轴为,在区间[1,+∞)上是增函数则有
,(1,﹣1),(1,1),(1,2),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,1),(3,2),(3,3),(3,4),共13种情况满足条件
所以函数y=f (x )在区间[1,+∞)上是增函数的概率为
【点评】本题主要考查概率的列举法和二次函数的单调性问题.对于概率是从高等数学下放的内容,一般考查的不会太难但是每年必考的内容要引起重视.
20.【答案】(1)()2
6ln f x x x x =--;(2)3n =;(3)证明见解析. 【解析】
试
题解析: (1)()2a
f'x x b x =+-
,所以(1)251(1)106
f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨=+==⎩⎩, ∴函数()f x 的解析式为2
()6ln (0)f x x x x x =-->;
(2)22
626
()6ln '()21x x f x x x x f x x x x
--=--⇒=--=,
因为函数()f x 的定义域为0x >,
令(23)(2)3
'()02
x x f x x x +-=
=⇒=-或2x =, 当(0,2)x ∈时,'()0f x <,()f x 单调递减,
当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增, 且函数()f x 的定义域为0x >,
(3)当1a =时,函数2
()ln f x x bx x =+-,
21111()ln 0f x x bx x =+-=,2
2222()ln 0f x x bx x =+-=,
两式相减可得22
121212()ln ln 0x x b x x x x -+--+=,121212ln ln ()x x b x x x x -=
-+-. 1'()2f x x b x =+-,0001
'()2f x x b x =+-,因为1202x x x +=,
所以12120121212
ln ln 2
'()2()2x x x x f x x x x x x x +-=⋅+-+-
-+ 212121221221122112211
1
21ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤
⎛⎫-⎢⎥ ⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦
设21
1x
t x =>,2(1)()ln 1t h t t t -=-+,
∴22
222
14(1)4(1)'()0(1)(1)(1)
t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =,
∴()0h t >,又
21
1
0x x >-,所以0'()0f x >.
考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.
【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.
21.【答案】
【解析】解:设直线l的倾斜解为α,则l与y轴的夹角θ=90°﹣α,
cotθ=tanα=2,
∴sinθ=,
|AB|==40.
线段AB的长为40.
【点评】本题考查抛物线的焦点弦的求法,解题时要注意公式|AB|=的灵活运用.
22.【答案】
【解析】解:(I)10年后新建住房总面积为a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a.
设每年拆除的旧住房为xm2,则42a+(32a﹣10x)=2×32a,
解得x=a,即每年拆除的旧住房面积是am2
(Ⅱ)设第n年新建住房面积为a,则a n=
所以当1≤n≤4时,S n=(2n﹣1)a;
当5≤n≤10时,S n=a+2a+4a+8a+7a+6a+(12﹣n)a=
故
【点评】本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.
23.【答案】
【解析】解:(1)设M(x1,y1),N(x2,y2),则x1+x2=8﹣p,|MF|=x1+,|NF|=x2+,
∴|MF|+|NF|=x 1+x 2+p=8;
(2)p=2时,y 2
=4x ,
若直线MN 斜率不存在,则B (3,0);
若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则
代入利用点差法,可得y 12﹣y 22
=4(x 1﹣x 2)
∴k MN =,
∴直线MN 的方程为y ﹣t=(x ﹣3),
∴B 的横坐标为x=3﹣
,
直线MN 代入y 2=4x ,可得y 2﹣2ty+2t 2
﹣12=0
△>0可得0<t 2<12,
∴x=3﹣∈(﹣3,3), ∴点B 横坐标的取值范围是(﹣3,3).
【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.
24.【答案】
【解析】(Ⅰ)令e e ()()2ln 2F x g x x x x =-+
=-+,22
1e e ()x F x x x x
-'∴=-=
由()0e F x x '>⇒> ∴()F x 在(0,e]递减,在[e,)+∞递增,
∴ min e ()(e)ln e 20e F x F ==-+= ∴()0F x ≥ 即e
()2g x x
≥-成立. …… 5分
(Ⅱ) 记()()()x x
h x f x f x ax e e ax -=---=--, ∴ ()0h x ≥在[0,)+∞恒成立,
()e x x
h x e a -'=+-, ∵ ()()e 00x x h x e x -''=-≥≥,
∴ ()h x '在[0,)+∞递增, 又(0)2h a '=-, …… 7分 ∴ ① 当 2a ≤时,()0h x '≥成立, 即()h x 在[0,)+∞递增, 则()(0)0h x h ≥=,即 ()()f x f x ax --≥成立; …… 9分 ② 当2a >时,∵()h x '在[0,)+∞递增,且min ()20h x a '=-<, ∴ 必存在(0,)t ∈+∞使得()0h t '=.则(0,)x t ∈时,()0h t '<,
即 (0,)x t ∈时,()(0)0h t h <=与()0h x ≥在[0,)+∞恒成立矛盾,故2a >舍去. 综上,实数a 的取值范围是2a ≤. …… 12分。