香坊区第三中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
香坊区第三中学2018-2019学年高二上学期第二次月考试卷数学班级__________
姓名__________ 分数__________
一、选择题
1. 设F 1,F 2分别是椭圆
+
=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠
F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )
A .
B .
C .
D .
2. 如图,直三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,则异面直线A 1C
与B 1C 1所成的角为(
)
A .30°
B .45°
C .60°
D .90°
3. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为(
)
A .
B .15+
C .
D .15+15
+
【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.
4. 已知抛物线2
8y x =与双曲线的一个交点为M ,F 为抛物线的焦点,若,则该双曲
22
21x y a
-=5MF =线的渐近线方程为
A 、
B 、
C 、
D 、530x y ±=350x y ±=450x y ±=540
x y ±=
5. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )
A .0
B .
C .
D .
6. 已知全集为,集合,,则( )
R {}
|23A x x x =<->或{}2,0,2,4B =-()R A B = ðA .
B .
C .
D .{}2,0,2-{}2,2,4-{}2,0,3-{}
0,2,47. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )
A .
B .
C .
D .
8. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为(
)
[]90,100
A .20,2
B .24,4
C .25,2
D .25,49. 已知函数f (x )=31+|x|﹣,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是(
)
A .
B .
C .(﹣
,
)
D .
10.直线2x+y+7=0的倾斜角为( )A .锐角B .直角C .钝角D .不存在
11.不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( )
A .a <0,△<0
B .a <0,△≤0
C .a >0,△≥0
D .a >0,△>0
12.设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P ∩(∁U Q )=( )
A .{1,2,3,4,6}
B .{1,2,3,4,5}
C .{1,2,5}
D .{1,2}
二、填空题
13.已知f (x )=,若不等式f (x ﹣2)≥f (x )对一切x ∈R 恒成立,则a 的最大值为 .
14.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{
5
2128
lnx x x
f x m x mx x +>=-++≤,,
,,
若有三个零点,则实数m 的取值范围是________.
()()g x f x m =-15.已知f (x )=x (e x +a e -x )为偶函数,则a =________.
16.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .
17.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:
①当i=1,j=3时,x=2;②当i=3,j=1时,x=0;
③当x=1时,(i ,j )有4种不同取值;④当x=﹣1时,(i ,j )有2种不同取值;⑤M 中的元素之和为0.
其中正确的结论序号为 .(填上所有正确结论的序号)
18.设集合 ,满足
{}{}
22
|27150,|0A x x x B x x ax b =+-<=++≤,,求实数__________.
A B =∅ {}|52A B x x =-<≤ a =三、解答题
19.已知函数f (x )=ax 2+2x ﹣lnx (a ∈R ).(Ⅰ)若a=4,求函数f (x )的极值;
(Ⅱ)若f ′(x )在(0,1)有唯一的零点x 0,求a 的取值范围;
(Ⅲ)若a ∈(﹣,0),设g (x )=a (1﹣x )2﹣2x ﹣1﹣ln (1﹣x ),求证:g (x )在(0,1)内有唯一的零点x 1,且对(Ⅱ)中的x 0,满足x 0+x 1>1.
20.设函数f (x )=a (x+1)2ln (x+1)+bx (x >﹣1),曲线y=f (x )过点(e ﹣1,e 2﹣e+1),且在点(0,0)处的切线方程为y=0.(Ⅰ)求a ,b 的值;
(Ⅱ)证明:当x ≥0时,f (x )≥x 2;
(Ⅲ)若当x ≥0时,f (x )≥mx 2恒成立,求实数m 的取值范围.
21.(本小题满分12分)已知在中,角所对的边分别为且ABC ∆C B A ,,,,,c b a .)3(sin ))(sin (sin c b C a b B A -=-+(Ⅰ)求角的大小;
A
(Ⅱ) 若,,求.2a =ABC ∆c b ,
22.已知椭圆E 的长轴的一个端点是抛物线y 2=4x 的焦点,离心率是.
(1)求椭圆E 的标准方程;
(2)已知动直线y=k (x+1)与椭圆E 相交于A 、B 两点,且在x 轴上存在点M ,使得与k 的取值无
关,试求点M 的坐标.
23.(本小题满分12分)
已知函数,数列满足:,().
21
()x f x x +={}n a 12a =11n n a f a +⎛⎫= ⎪⎝⎭
N n *∈(1)求数列的通项公式;
{}n a (2)设数列的前项和为,求数列的前项和.
{}n a n n S 1n S ⎧⎫
⎨⎬⎩⎭
n n T 【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.
24.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(不等式选做题)设
,且
,则的最小值为
(几何证明选做题)如图,中,
,以
为直径的半圆分别交
于点
,
若
,则
香坊区第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:设|PF1|=t,
∵|PF1|=|PQ|,∠F1PQ=60°,
∴|PQ|=t,|F1Q|=t,
由△F1PQ为等边三角形,得|F1P|=|F1Q|,
由对称性可知,PQ垂直于x轴,
F2为PQ的中点,|PF2|=,
∴|F1F2|=,即2c=,
由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t,
∴椭圆的离心率为:e===.
故选D.
2.【答案】C
【解析】解:因为几何体是棱柱,BC∥B1C1,则直线A1C与BC所成的角为就是异面直线A1C与B1C1所成的角.
直三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,
BC=,BA 1=,
CA 1=,
三角形BCA 1是正三角形,异面直线所成角为60°.故选:C .
3. 【答案】C
【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,且平面
62VE ^,如图所示,所以此四棱锥表面积为
ABCD 1S =26+2´
´
´1123+2+2622
´´´´´,故选C
.
15=+46
46
10
10
1
1
32
6
E V
D C
B
A
4. 【答案】A
【解析】:依题意,不妨设点M 在第一象限,且Mx 0,y 0,
由抛物线定义,|MF |=x 0+,得5=x 0+2.
p
2
∴x 0=3,则y =24,所以M 3,2,又点M 在双曲线上,2
06∴-24=1,则a 2=,a =,32a 292535因此渐近线方程为5x ±3y =0.5. 【答案】D
【解析】解:抛物线y 2=4x 的焦点(1,0),直线y=ax+1经过抛物线y 2=4x 的焦点,可得0=a+1,解得a=﹣1,
直线的斜率为﹣1,
该直线的倾斜角为:.
故选:D.
【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.
6.【答案】A
【解析】
考点:1、集合的表示方法;2、集合的补集及交集.
7.【答案】C
【解析】【知识点】样本的数据特征茎叶图
【试题解析】由题知:
所以m可以取:0,1,2.
故答案为:C
8.【答案】C
【解析】
考点:茎叶图,频率分布直方图.
9.【答案】A
【解析】解:函数f(x)=31+|x|﹣为偶函数,
当x≥0时,f(x)=31+x﹣
∵此时y=31+x为增函数,y=为减函数,
∴当x≥0时,f(x)为增函数,
则当x≤0时,f(x)为减函数,
∵f(x)>f(2x﹣1),
∴|x|>|2x﹣1|,
∴x2>(2x﹣1)2,
解得:x∈,
故选:A.
【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档.
10.【答案】C
【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.
【解答】解:设直线2x+y+7=0的倾斜角为θ,
则tanθ=﹣2,
则θ为钝角.
故选:C.
11.【答案】A
【解析】解:∵不等式ax2+bx+c<0(a≠0)的解集为R,
∴a<0,
且△=b2﹣4ac<0,
综上,不等式ax2+bx+c<0(a≠0)的解集为的条件是:a<0且△<0.
故选A.
12.【答案】D
【解析】解:∵U={1,2,3,4,5,6},Q={3,4,5},
∴∁U Q={1,2,6},又P={1,2,3,4},
∴P∩(C U Q)={1,2}
故选D.
二、填空题
13.【答案】 ﹣ .
【解析】解:∵不等式f(x﹣2)≥f(x)对一切x∈R恒成立,
∴若x≤0,则x﹣2≤﹣2.
则不等式f(x﹣2)≥f(x)等价为,﹣2(x﹣2)≥﹣2x,
即4≥0,此时不等式恒成立,
若0<x≤2,则x﹣2≤0,
则不等式f(x﹣2)≥f(x)等价为,﹣2(x﹣2)≥ax2+x,
即ax2≤4﹣3x,
则a≤=﹣,
设h(x)=﹣=4(﹣)2﹣9,
∵0<x≤2,∴≥,
则h(x)≥﹣9,∴此时a≤﹣9,
若x>2,则x﹣2>0,
则f(x﹣2)≥f(x)等价为,a(x﹣2)2+(x﹣2)≥ax2+x,
即2a(1﹣x)≥2,
∵x>2,∴﹣x<﹣2,1﹣x<﹣1,
则不等式等价,4a≤=﹣
即2a≤﹣
则g(x)=﹣在x>2时,为增函数,
∴g(x)>g(2)=﹣1,
即2a≤﹣1,则a≤﹣,
故a的最大值为﹣,
故答案为:﹣
【点评】本题主要考查不等式恒成立问题,利用分类讨论的数学思想,结合参数分离法进行求解即可.
14.【答案】
7 1
4⎛⎤ ⎥⎝⎦,
【解析】
15.【答案】
【解析】解析:∵f(x)是偶函数,∴f(-x)=f(x)恒成立,
即(-x)(e-x+a e x)=x(e x+a e-x),
∴a(e x+e-x)=-(e x+e-x),∴a=-1.
答案:-1
16.【答案】 .
【解析】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,
∴由斜截式可得直线l的方程为,
故答案为.
【点评】本题考查直线的斜率公式,直线方程的斜截式.
17.【答案】 ①③⑤
【解析】解:建立直角坐标系如图:
则P1(0,1),P2(0,0),P3(1,0),P4(1,1).
∵集合M={x|x=且i,j∈{1,2,3,4}},
对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;
对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;
对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},
∴=(1,﹣1),==(0,﹣1),==(1,0),
∴•=1;•=1;•=1;•=1;
∴当x=1时,(i,j)有4种不同取值,故③正确;
④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;
⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;
当i=2,j=4,或i=4,j=2时,x=0,
∴M中的元素之和为0,故⑤正确.
综上所述,正确的序号为:①③⑤,
故答案为:①③⑤.
【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1
,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.
18.【答案】
7
,3
2
a b
=-=
【解析】
考点:一元二次不等式的解法;集合的运算.
【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学
生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键.
三、解答题
19.【答案】
【解析】满分(14分).
解法一:(Ⅰ)当a=4时,f(x)=4x2+2x﹣lnx,x∈(0,+∞),
.…(1分)
由x∈(0,+∞),令f′(x)=0,得.
当x变化时,f′(x),f(x)的变化如下表:
x
f′(x)﹣0+
f(x)↘极小值↗
故函数f(x)在单调递减,在单调递增,…(3分)f(x)有极小值
,无极大值.…(4分)
(Ⅱ),
令f′(x)=0,得2ax2+2x﹣1=0,设h(x)=2ax2+2x﹣1.
则f′(x)在(0,1)有唯一的零点x0等价于h(x)在(0,1)有唯一的零点x0
当a=0时,方程的解为,满足题意;…(5分)
当a>0时,由函数h(x)图象的对称轴,函数h(x)在(0,1)上单调递增,
且h(0)=﹣1,h(1)=2a+1>0,所以满足题意;…(6分)
当a<0,△=0时,,此时方程的解为x=1,不符合题意;
当a<0,△≠0时,由h(0)=﹣1,
只需h(1)=2a+1>0,得.…(7分)
综上,.…(8分)
(说明:△=0未讨论扣1分)
(Ⅲ)设t=1﹣x,则t∈(0,1),p(t)=g(1﹣t)=at2+2t﹣3﹣lnt,…(9分)
,
由,故由(Ⅱ)可知,
方程2at2+2t﹣1=0在(0,1)内有唯一的解x0,
且当t∈(0,x0)时,p′(t)<0,p(t)单调递减;t∈(x0,1)时,p′(t)>0,p(t)单调递增.…(11分)
又p(1)=a﹣1<0,所以p(x0)<0.…(12分)
取t=e﹣3+2a∈(0,1),
则p(e﹣3+2a)=ae﹣6+4a+2e﹣3+2a﹣3﹣lne﹣3+2a=ae﹣6+4a+2e﹣3+2a﹣3+3﹣2a=a(e﹣6+4a﹣2)+2e﹣3+2a>0,
从而当t∈(0,x0)时,p(t)必存在唯一的零点t1,且0<t1<x0,
即0<1﹣x1<x0,得x1∈(0,1),且x0+x1>1,
从而函数g(x)在(0,1)内有唯一的零点x1,满足x0+x1>1.…(14分)
解法二:(Ⅰ)同解法一;…(4分)
(Ⅱ),
令f′(x)=0,由2ax2+2x﹣1=0,得.…(5分)
设,则m∈(1,+∞),,…(6分)
问题转化为直线y=a与函数的图象在(1,+∞)恰有一个交点问题.
又当m∈(1,+∞)时,h(m)单调递增,…(7分)
故直线y=a与函数h(m)的图象恰有一个交点,当且仅当.…(8分)
(Ⅲ)同解法一.
(说明:第(Ⅲ)问判断零点存在时,利用t→0时,p(t)→+∞进行证明,扣1分)
【点评】本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.
20.【答案】
【解析】解:(Ⅰ)f′(x)=2a(x+1)ln(x+1)+a(x+1)+b,∵f′(0)=a+b=0,f(e﹣1)=ae2+b(e﹣1)=a (e2﹣e+1)=e2﹣e+1∴a=1,b=﹣1.…
(Ⅱ)f(x)=(x+1)2ln(x+1)﹣x,
设g(x)=(x+1)2ln(x+1)﹣x﹣x2,(x≥0),g′(x)=2(x+1)ln(x+1)﹣x,
(g′(x))′=2ln(x+1)+1>0,∴g′(x)在[0,+∞)上单调递增,
∴g′(x)≥g′(0)=0,∴g(x)在[0,+∞)上单调递增,
∴g(x)≥g(0)=0.∴f(x)≥x2.…
(Ⅲ)设h (x )=(x+1)2ln (x+1)﹣x ﹣mx 2,h ′(x )=2(x+1)ln (x+1)+x ﹣2mx ,
(Ⅱ) 中知(x+1)2ln (x+1)≥x 2+x=x (x+1),∴(x+1)ln (x+1)≥x ,∴h ′(x )≥3x ﹣2mx ,①当3﹣2m ≥0即时,h ′(x )≥0,∴h (x )在[0,+∞)单调递增,∴h (x )≥h (0)=0,成立.②当3﹣2m <0即时,h ′(x )=2(x+1)ln (x+1)+(1﹣2m )x ,h ′′(x )=2ln (x+1)+3﹣2m ,令h ′′(x )
=0,得
,
当x ∈[0,x 0)时,h ′(x )<h ′(0)=0,∴h (x )在[0,x 0)上单调递减,∴h (x )<h (0)=0,不成立.综上,
.…
21.【答案】解:(Ⅰ)由正弦定理及已知条件有, 即. 3分
2223c bc a b -=
-bc a c b 3222=-+ 由余弦定理得:,又,故. 6分2
32cos 222=
-+=bc a c b A ),0(π∈A 6π=A
(Ⅱ) ,①, 8分
ABC ∆3sin 2
1
=∴A bc 34=∴bc 又由(Ⅰ)及得,② 10分
2223c bc a b -=-,2=a 1622=+c b 由 ①②解得或. 12分
32,2==c b 2,32==c b 22.【答案】
【解析】解:(1)由题意,椭圆的焦点在x 轴上,且a=,…1分c=e •a=×
=,
故b=
=
=
,…4分
所以,椭圆E 的方程为
,即x 2+3y 2=5…6分
(2)将y=k (x+1)代入方程E :x 2+3y 2=5,得(3k 2+1)x 2+6k 2x+3k 2﹣5=0;…7分设A (x 1,y 1),B (x 2,y 2),M (m ,0),则x 1+x 2=﹣,x 1x 2=
;…8分
∴=(x 1﹣m ,y 1)=(x 1﹣m ,k (x 1+1)),
=(x 2﹣m ,y 2)=(x 2﹣m ,k (x 2+1));
∴
=(k 2+1)x 1x 2+(k 2﹣m )(x 1+x 2)+k 2+m 2
=m 2+2m ﹣﹣
,
要使上式与k 无关,则有6m+14=0,解得m=﹣;∴存在点M (﹣,0)满足题意…13分
【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.
23.【答案】
【解析】(1)∵,∴. 211()2x f x x x +=
=+11
(2n n n
a f a a +==+即,所以数列是以首项为2,公差为2的等差数列, 12n n a a +-={}n a ∴. (5分)
1(1)22(1)2n a a n d n n =+-=+-=(2)∵数列是等差数列,
{}n a ∴,1()(22)(1)22
n n a a n n n
S n n ++===+∴. (8分)1111(1)1
n S n n n n ==-
++∴1231111n n T S S S S =++++
11111111(()()()1223341
n n =-+-+-++-+ . (12分)111n =-+1
n
n =
+
24
.【答案】【解析】A
B。