三角函数教材分析()

合集下载

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。

三角函数教材分析

三角函数教材分析

三角函数教材分析学号::105012011112 姓名:冯远翔 班级:教师3-2班一、内容组织1、内容简介本章内容主要包括三角寒素任意角的概念、弧度制、任意角的三角函数、诱导公式、三角函数的图象和性质、三角函数模型及其应用.三角函数是一种基本初等函数,它是描述周期现象的数学模型,在数学与其他领域中具有重要的作用,三角函数既是解决生产实际问题的工具,又是进一步学习的基础.本章内容可以看成是数学中“函数”一章的延伸和拓展,因此,在学习过程中药注意体会三角函数与一般函数之间的关系,即共性与个性的关系.三角函数是数学中常见的一类关于角度的函数.也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义.三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具.三角函数也属于函数范畴,那么,之前学习函数时所研究函数的图像及性质,对于三角函数同样的需要研究.函数的种类很多,而三角函数则是函数研究几何的一种工具,通过角度来认识代数关系.三角函数同样有函数的三要素、符号和表达式.为了更好的学习三角函数,教材引进了任意角和弧度制的概念作为基础认识.本节教材重点研究三角函数的诱导公式、三角函数线、三角函数()b x A y ++=ϕωsin 的奇偶性,单调性、周期性、最大和最小值. 以下是三角函数的定义.设任意角α的终边与单位圆的交点坐标为()y x P ,1,由 于角απ+的终边与角α的终边关于原点对称,角απ+的终边与单位圆的交点2P 与点1P 关于原点O 对称,因此点2P 的坐标是()y x --,,由三角函数的定义得:y =αsin x =αcos xy=αtan y -=+)sin(απ x -=+)cos(απ xy=+)tan(απ 从而得到:公式一 公式二公式三 公式四我们可以用下面一段话来概括公式一道四:)(2Z k k ∈•+πα,α-απ±的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.如图,设任意角α的终边与单位位圆的交点1P 的坐标为),(y x .由于角απ-2的终边与角α的终边关于直线x y =对称.角απ-2的终边与单位圆的交点2P 与点1P 关于直线x y =对称,因此2P 的坐标为),(x y .于是我们有x =αcos y =αsin y =-)2cos(απ x =-)2sin(απ从而得到公式五 公式六ααπsin )sin(-=+ ααπsin )cos(-=+ααπtan )tan(=+ααsin )sin(-=-ααcos )cos(=-ααtan )tan(-=-ααπsin )sin(=- ααπcos )cos(-=- ααπtan )tan(-=- απαsin )2sin(=*+k απαcos )2cos(=*+k απαtan )2tan(=*+k 其中Z k ∈x=-)2sin(απy =-)2cos(απααπsin )2cos(-=+ααπcos )2sin(=+(由于⎪⎭⎫⎝⎛--=+αππαπ22,则由公式四及公式五得到公式六) 公式五及六可以概括如下απ±2的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.利川公式五.或公式六,.可以实现正弦函数和余弦函数之间的转化,公式一到六都叫故诱导公式.由前面的例子可以看出,函数b x A y ++=)sin(ϕω及函数b x A y ++=)cos(ϕω(其中A ,ω,ϕ为常数,且0≠A ,0>ω)的周期仅与自变量的系数有关(1)周期性 其周期为ωπ2=T .(2)奇偶性观察正弦曲线和余弦曲线,可以看到正弦曲线关于原点O 对称,余弦曲线关于y 轴对称,由诱导公式ααααcos )cos(,sin )sin(=--=-,可知:正弦函数是奇函数,余弦函数是偶函数.(3)单调性我们可以先在正弦函数的一个周期区间上(如⎥⎦⎤⎢⎣⎡-23,2ππ)讨论他们的单调性,再利用他们的周期性,将他们的单调性扩展到整个定义域上.正弦函数在每一个闭区间)(22,22Z k k k ∈⎥⎦⎤⎢⎣⎡++-ππππ上都是增函数,其值从1-增大到1;每一个闭区间)(223,22Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ上都是增函数,其值从1增大到1-. (4)最大值与最小值 正弦函数当且仅当)(22Z k k ∈+ππ取得最大值1,当且仅当)(22Z k k ∈+-ππ取得最小值1-.正弦函数当且仅当)(2Z k k ∈π取得最大值1,当且仅当)(2Z k k ∈+ππ取得最小值1-. 2、来龙去脉在初中,学生没有学习过三角函数,而是学习了一次函数、二次函数、反比例函数等简单的函数类型.但是学生有学习过平面几何以及函数的基本知识,这为以后的学习打下了基础.初中学习的相似三角形、全等三角形、平角、直角、特殊角等通过这些认识了教的应用、到高中,初次学习三角函数,是在学习了函数的概念及其性质之后,知道三角函数为任意角的集合与一个比值的集合的变量之间的映射.通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域.运用函数的相关知识来理解三角函数则更加清晰明了.另外,高中的三角函数是从几何图形抽象为代数语言,其形式更加严密、更加准确,但也更加难懂,着也是高中数学的特点.今后,学生还将学习三角恒等变换、解三角形等等知识都需要运用到三角函数的知识来解决.并且更加深入的了解三角函数在学习、生活、工作中的应用.重新认识三角函数在高中知识体系中的地位与作用.3、核心内容三角函数的核心与函数的核心是有不同,函数的概念的核心是函数的对应法则,具有相同的定义域和对应法则的函数是同一函数,但是三角函数是周期函数,并且其几何性质改变了三角函数的函数着一特点.就是可以有不同的对应法则是同一个函数.三角函数的核心在于在对应法则在最简的时候同时有相同的定义域,呢么才是同一个函数.另外,三角函数的诱导公式决定了这一性质.在三角变换中、截三角形等问题中其对应法则的唯一性与多样性是特别注意的.另外一方面,三角函数一般是在任意角与弧度制的基础上运算更加快捷,但是不能只知道运用弧度制来做,需要变通才行.而三角函数的其他性质都与函数的概念及性质类似的可以认识学习.4、三角函数的属性与层次三角函数的概念与性质是逐步形成并深化的,它的属性有概念、表示、性质、运算,在中学,没有三角哈数的概念,但是学习了基本初等函数的知识,为高中的学习做好了准备.三角函数本身也是函数,它具备函数所以的内容,并且还具有自身的独特性.它是高中学习的一个超越函数,运用牙就函数的方法来研究三角函数,通过直观的几何背景,总结出运用比例值来表示角,规定弧度制来刻画这一命题.再探究其表示方法、函数线图像、函数的单调性、奇偶性、最值、周期性等.在这一层次探索三角函数的本质特性.不同于其他函数的,是它有自己的领域.用代数的符号来解决几何中一些难题.从角度过度到弧度,这是跨领域的桥梁.运用数形结合的思想来了解几何背后的代数问题.三角函数的个特殊的函数体系,在纵轴上的有限于在横轴上的无限体现了数学的自然美.更体现出其特殊.5、学习三角函数概念与性质的关键环节对三角函数的概念的认识,应明确(1)三角函数也是函数,它具备函数的任何条件.同样有哈数的三要素(定义域、对应法则、值域).(2)深刻理解三角函数的定义域为整个实数域.因为受弧度制的影响或没有清楚地分开弧度与角度的关系,导致理解错误.(3)因为三角函数具有周期性,其正弦和余弦是可以通过变换转化的,因此,对应法则不一定相同但也可能是同一个函数.(4)对三角函数的本质要认识清楚.任意角的函数值可能相同,也可能不同.正角与负角只是方向的相反.图像的平移,伸缩变换要通过亲自动手才鞥深刻的体会到三角函数的变换过程.对三角函数基本性质的教学与函数的教学相似.关键是强调研究函数性质的“三部曲“,建立研究函数性质的策略知识.具体地,研究三角函数性质是的”三部曲“如下1)观察图像,发现函数图像特征;2)结合图、表,用自然语言描述函数图像特征;3)用数学的符号语言定义函数的性质.6、不同的概念体系人教 B 版——先以研究正弦函数为重点,从研究的方法到产生的结论,形成完整的研究过程.苏教版突出了三角函数周期性的地位,更符合新课标的要求.人教版教材关于三角函数的性质以并列的形式呈现,但事实上对于学生而言,各条性质的学习在难易程度上是有很大区别的.三角函数出现了周期性,使学生没有任何经验可供类比,加之周期函数概念的抽象,造成了一个学习难点.而对三角函数周期性的理解,又关系到求极值点和单调性的学习.因此,周期性体现了三角函数性质的特殊性.二、学生理解1、学生理解三角函数概念及性质的基础学生在学习了函数的概念及性质后再学习三角函数,他们会把函数的知识套用到三角函数上,这样做其实是正确的.但是,要注意的是,三角函数又具有它自身的特点,三角函数的本质是角度对应任意两边的比值为因变量的函数.初学者没有抓住三角函数的这样的特点,很难理解它的符号含义.学生在初中已经学习过函数的三种表示方法,在函数的概念及性质那一节中又学习了函数和映射,对三角函数的认识提高了很多.但是,三角函数在一开始首先介绍任意角和弧度制,旨在让学生从新的角度来认识三角函数,区别于普通函数的概念.弧度制的引入为更好的解决三角函数定义域中实数与角度的关系,更利于计算.在之后的章节里则很轻易的运用以前学过的函数知识解决了三角函单调性、周期性、奇偶性、最值等问题. 2、学生自发的方法(1)求三角函数值,代入化简求值是学生自发解决;(2)类比函数的概念及性质,学习了解三角函数的概念及性质;(3)对三角函数单调性和周期性的判断,学生会自发通过画图进行治肝炎判断; (4)对三角函数奇偶性的判断,学生会组发同哟图像对称型进行直观判断; (5)研究函数的最大、最小智时,学生会自发借助数形结合思想进行简单判断. 3、学生的学习能力限度在学习了函数的概念之后,大多数学生会通过类比到三角函数学习.然而,三角函数特别于其他函数的是它的定义域和对应法则,定义域通常会用弧度制,对应法则为超越函数符号.在没有真正认识三角函数的本质及其内容很难理解.三角函数的函数性质的研究需要学生动手去做.三角函数的变换很容易混淆,左右平移的方向、伸缩的正负方向都容易做错. 4、具体内容的难易正弦函数、余弦函数、正切函数等各个三角函数的定义,三角函数的单调性、平移变换、伸缩变换、对称性、诱导公式都是三角函数教学的重点.高中一开始接触三角函数符号很难理解它的含义,没有认识到三角函数的几何意义,对三角函数的认识与掌握有一定的难度.三角函数的变换常常会使得学生晕头转向,错误的判断变换的方向和大小,由于新学习的任意角与弧度制不够熟悉,无法直接从几何角度的维度过度到代数运算的层面.由于三角函数的定义域一般为角度,那么第一节中介绍的任意角及其周期性,再结合三角函数变换中很容易导致学生遗漏所求得的角度.与必修一学习的函数的概念及其性质相似,三角函数的概念及其性质的研究方法也可以通过同样的方式来探索,往往通过给出几个特殊具体的几何图形归结出三甲函数,让学生通过观察获得函数的几何定义或函数性质的直观认识,在利用图表探究函数的数量关系特征,并通过代数运算,验证法相的数量特征对定义域中的数用弧度制更加的方便灵活,最后概括道一般而形成基本性质的定义. 5、学生典型误解与认知重组(1)关于符号x x x tan ,sin ,cos 等等,tan cos/sin/是函数,x x x tan ,sin ,cos 是将tan cos/sin/施加于x 的结果,在学习过函数的前提下,学生知识对tan cos/sin/的含义不熟悉.在三角函数的计算过程中学生很可能会对同一个三角函数值y 对应的x 产生遗漏,因为三角函数是一个周期函数,在三角函数的定义域内,多个因变量可以对应同一个函数值.三角函数的本质是任意角的集合与一个比值的集合的变量之间的映射.通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域.(2)三角函数是周期函数,也是对称型函数,它的周期与对称轴的求解比较简单,,而特殊的地方在于变换,很多学生会凭借着初中学习过得函数知识来模仿学习三角函数,平移变换和伸缩变换的教学特别要注意,学生很容易走入一个误区就是,增加x 就是向正方向变换,减少x 就是向负方向变换.显然,平移变换和伸缩变换都不属于上述情况,而是相反.当我们用惯性思维去思考的时候可能会不如愿.所以,在这里需要学生认知重组,用数量关系的变化认识变量的增减性,体会三角函数的变换规律.(3)三角函数的导公式也是一个难点,诱导公式的变换可以使得三角函数之间互相转化,使得不相同的函数存在唯一的对应法则.如果死记硬背三角公式,那么三角公式又太多,因此,造成学生学习三角函数的苦恼.然而,其实诱导公式的记忆并不需要背很多,只要多加练习三角函数之间的转化就能熟练地掌握它了.三、效果评估1、典型题目及其变式(1)若角α满足条件0sin2<α,0sin cos <-αα,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案:B解析:0cos 2sin sin2<=ααα ∴0cos sin <αα即αsin 与αcos 异号,∴α在二、四象限,又0sin cos <-αα ∴ααsin cos <由图4—5,满足题意的角α应在第二象限 变式:(2)若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A.第一象限B.第二象限C.第三象限D.第四象限 答案:B解析:∵A 、B 是锐角三角形的两个内角,∴A +B >90°, ∴B >90°-A ,∴cos B <sin A ,sin B >cos A ,故选B.(3)在()π2,0内,ααcos sin <使成立的x 取值范围为( ) ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛45,2,4.ππππ A⎪⎭⎫ ⎝⎛2,4.ππB ⎪⎭⎫ ⎝⎛45,4.ππC ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛23,45,4.ππππ D 答案:C解法一:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,图4—5由图4—6可得C 答案.图4—6 图4—7解法二:在单位圆上作出一、三象限的对角线,由正弦线、余弦线知应选C.(如图4—7)(3)若αsin >αtan >αcot (-2π<α<2π),则α∈( ) A.(-2π,-4π) B.(-4π,0)C.(0,4π)D.(4π,2π)答案:B解法一:取α=±3π,±6π代入求出αsin 、αtan 、αcot 之值,易知α=-6π适合,又只有-6π∈(-4π,0),故答案为B. 解法二:先由αsin <αtan 得:α∈(-2π,0),再由αtan >αcot 得:α∈(-4π,0) 评述:本题主要考查基本的三角函数的性质及相互关系. (4)函数y =4sin (3x +4π)+3cos (3x +4π)的最小正周期是( ) A.6π B.2π C.32π D.3π答案:C解析:y =4sin (3x +4π)+3cos (3x +4π)=5[54sin (3x +4π)+53cos (3x +4π)]=5sin (3x +4π+ϕ)(其中tan ϕ=43) 所以函数y =sin (3x +4π)+3cos (3x +4π)的最小正周期是T =32π.故应选C.评述:本题考查了a sin α+b cos α=22b a +sin (α+ϕ),其中sin ϕ=22ba b +,cos ϕ=22ba a +,及正弦函数的周期性.(5)tan20°+tan40°+3tan20°·tan40°的值是_____. 答案:3 解析:tan60°=︒︒-︒+︒40tan 20tan 140tan 20tan ,∴tan20°+tan40°=3-3tan20°tan40°,∴tan20°+tan40°+3tan20°tan40°=3.(6)函数x x y cos )62sin(π-=的最小值是 .答案:43-解析:21)62sin(21662sin 21cos 6sin --=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=ππππx x x x y ,当162sin -=⎪⎭⎫ ⎝⎛-πx 时,函数有最小值,y 最小4321121-=⎪⎭⎫ ⎝⎛--评述:本题考查了积化和差公式和正弦函数有界性(或值域). 2、典型解题方法及使用范围(7)已知函数x x y cos sin 3+=,R x ∈1)当函数y 取得最大值时,求自变量x 的集合;2)该函数的图象可由)(sin R x x y ∈=的图象经过怎样的平移和伸缩变换得到? .解:(1)()R x x x x x x x x y ∈+=+=+=+=),6sin(2)6sin cos 6cos(sin 2cos sin 3cos sin 3πππy 取得最大值必须且只需,,226Z k k x ∈+=+πππ即Z k k x ∈+=,23ππ所以,当函数y 取得最大值时,自变量x 的集合为{Z k k x ∈+=,23ππ}2)变换的步骤是:①把函数x y sin =的图象向左平移6π,得到函数)6sin(π+=x y 的图象; ②令所得到的图象上各点横坐标不变,把纵坐标伸长到原来的2倍,得到函数)6sin(2π+=x y 的图象;经过这样的变换就得到x x y cos sin 3+=函数的图象.评述:本题主要考查三角函数的图象和性质,利用三角公式进行恒等变形的技能及运算能力.已知函数12()log (sin cos )f x x x =-1)求它的定义域和值域; 2)求它的单调区间; 3)判断它的奇偶性; 4)判断它的周期性.解1)x 必须满足sinx-cosx>0,利用单位圆中的三角函数线及52244k x k ππππ+<<+,k∈Z ∴ 函数定义域为)452,42(ππππ++k k ,k ∈Z ∵sin cos )4x x x π--∴当x ∈5(2,2)44k k ππππ++时,0sin()14x π<-≤∴0sin cos x x <-121log 2y -≥∴ 函数值域为⎪⎭⎫⎢⎣⎡+∞-,21;2)函数)(x f 在定义域内单调递减,因为对数函数的底数为121<; 3)∵()f x 定义域在数轴上对应的点关于原点不对称,.∴()f x 不具备奇偶性; 4)∵ )()2(x f x f =+π∴ 函数f(x)最小正周期为2π注;利用单位圆中的三角函数线可知,以Ⅰ、Ⅱ象限角平分线为标准,可区分x x cos sin -的符号;以Ⅱ、Ⅲ象限角平分线为标准,可区分x x cos sin +的符号. (8) 已知)(325cos 35cos sin 5)(2R x x x x x f ∈+-= 1)求)(x f 的最小正周期; 2)求)(x f 单调区间;3)求)(x f 图象的对称轴,对称中心。

人教版必修4三角函数

人教版必修4三角函数

课程标准
1.借助单位圆理解任意角三角函数 .借助单位圆理解任意角三角函数 单位圆理解 (正弦、余弦、正切)的定义. 正弦、余弦、正切)的定义 单位圆中的三角函数线 2.借助单位圆中的三角函数线推导出 .借助单位圆中的三角函数线推导出 ±α, 的正弦、 诱导公式 (π/2±α π±α的正弦、余弦、 π ±α π±α的正弦 余弦、 正切), 画出y=sin x, y=cos x, y=tan 正切 ,能画出 x的图象,了解三角函数的周期性 的图象, 三角函数的周期性. 的图象 了解三角函数的周期性 3. 借助图象理解正弦函数、余弦函数在 借助图象理解正弦函数、 理解正弦函数 [0,2π],正切函数在 π/2, π/2 )上的 , ,正切函数在(, 上的 性质(如单调性、最大和最小值、 性质(如单调性、最大和最小值、图象 轴交点等) 与x轴交点等). 轴交点等 4. 理解同角三角函数的基本关系式: 理解同角三角函数的基本关系式 同角三角函数的基本关系式: sin2x+cos2x=1, tanx=sinx/cosx . , 5. 结合具体实例 了解 结合具体实例,了解 了解y=Asin(ωx+ϕ)的 ω ϕ的 实际意义;能借助计算器或计算机 计算器或计算机画出 实际意义;能借助计算器或计算机画出 y=Asin(ωx + ϕ)的图象,观察 ,ω,ϕ 的图象, ω 的图象 观察A, 对函数图象变化的影响. 对函数图象变化的影响
区别
利用单位圆, 利用单位圆 重视数形结合. 重视数形结合 重视让学生 参与三角函数概 公式、 念、公式、图象 和性质等知识的 产生和推导的全 过程. 过程 只定义三个三 角函数 同角关系三个 减为两个. 减为两个. 删去已知三角 函数值求角、 函数值求角、反 三角函数. 三角函数 降低“ 降低“给角 求值” 求值”,“化简 与证明三角恒等 的难度要求. 式”的难度要求 现代教学技 术支持教学 和差倍半设章

《三角函数》教材分析及教学建议

《三角函数》教材分析及教学建议

《三角函数》教材分析及教学建议《三角函数》教材分析及教学建议2011年10月03日《三角函数》教材分析及教学建议一、新旧教材对比分析三角函数是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。

这是学生在高中阶段学习的最后一个基本初等函数。

三角恒等变换在数学中有一定的应用。

三角函数与三角恒等变换是高中数学课程的传统内容,因此,本模块的内容属于“传统内容”。

与以往的教科书相比较,本书在内容、要求以及处理方法上都有新的变化。

1.以基本概念为主干内容贯穿本书,削枝强干,教材体系更显合理。

“标准”设定的三角函数与三角恒等变换学习目标是:(1)通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律的问题中的作用;(2)运用向量的方法推导基本的三角恒等变换公式,由此出发导出其他的三角恒等变换公式,并运用这些公式进行简单的三角恒等变换。

根据上述学习目标,在编写教科书过程中,特别注意突出主干内容,强调模型思想、数形结合思想。

“三角函数”一章,突出了三角函数作为描述周期变化的数学模型这一本质。

即通过现实世界的周期现象,在学生感受引入三角函数必要性的基础上,引出三角函数概念,研究三角函数的基本性质,并用三角函数的基础知识解决一些实际问题。

与传统的处理方法不同,这里把三角恒等变换从三角函数中独立出来,其目的也是为了在三角函数一章中突出“函数作为描述客观世界变化规律的数学模型”这条主线。

为了实现削枝强干的目标,教科书除了将三角恒等变换独立成章外,还在具体内容上进行了处理。

在三角函数部分删减了任意角的余切、正割、余割,已知三角函数值求角以及符号等内容。

任意角、弧度制概念,同角三角函数的基本关系式,周期函数与最小正周期,三角函数的奇偶性等内容都降低了要求。

三角恒等变换中,两角和与差的正余弦、正切公式,二倍角的正余弦、正切公式由原来的掌握减弱为能从两角差的余弦公式导出。

积化和差、和差化积、半角公式都作为三角恒等变换基本训练的例题,不要求用积化和差、和差化积、半角公式作复杂的恒等变形。

高一数学三角函数教材分析

高一数学三角函数教材分析

高一数学《三角函数》教材分析高一数学新教材相对于传统教材而言,对“三角函数”作了大幅度的精简,在内容结构、知识要点和目标要求上都有较大的变化。

一、关于内容编排的变化《三角函数》一章共编排了三个单元,分别是:任意角的三角函数,两角和与差的三角函数,三角函数的图像和性质。

其主要特点是:内容范围缩小了,但基本保留了原有的基础知识;教学时间减少了,由原来的76课时减少到36课时。

本章删去了以下内容:(1) 同角三角函数关系的五个公式(平方关系2个,倒数关系2个,商的关系1个);(2) 正切、余切函数的诱导公式;(3) 余切函数的图像和性质;(4) 反三角函数和简单的三角方程。

本章被简化的内容和要求是:(1) 对余切、正割、余割,只要求了解定义,不要求作延伸;(2) 只引出半角、积化和差、和差化积公式,但不要求记忆。

半角公式是通过§4.7例4(P.45)引出的,而且是平方的形式,没有用根式的形式,课本明确不要求记忆;同时将证明αααααsin cos 1cos 1sin 2tan -=+=安排在P.46练习中。

和差化积、积化和差的8个公式是这样安排的:其中两个安排在§4.7例5(P.46)中,其余6个安排在P.46的练习中,当然也都不要求学生记忆。

我们注意到,在§4.7中,没有安排利用半角公式、积化和差公式、和差化积公式进行计算、化简的习题,这是否要在§4.7的教学中作适当补充?考虑到数学高考命题的提法是:“遵循大纲,但不拘泥于大纲”,“不要求记忆,不等于不要求理解”,对此,我们建议在§4.7的教学中,少量地组织一点相关的计算和化简,以适应数学高考的要求。

(3)化ααcos sin b a +为一个角的三角函数的形式对这一知识,课本是通过例5给出的,并在习题4.6(P.41)中安排了相应的习题(第7、8题)。

(4)余弦函数的图像不用余弦线画,而是根据诱导公式化为正弦函数,通过将正弦曲线向左平移2个单位得到。

高中数学_三角函数的图象与性质教学设计学情分析教材分析课后反思

高中数学_三角函数的图象与性质教学设计学情分析教材分析课后反思

《三角函数的图象与性质》教学设计设计理念新课程的教学中,注重信息技术与数学课程的整合,注重以学生为主体,教师为主导的教学理念。

本节课通过精心设计数学实验,创设实验情境,引导学生通过实验手段,经历数学知识的建构过程,体验数学发现的喜悦,发展他们的创新意识。

倡导自主探究、动手实践等学习数学的方式,将传统意义下的“学习”数学改变为“研究数学”,使学生的数学学习活动变的主动而富有个性。

教学分析本节倡导学生自主探究,在教师的引导下,通过图像变换和“五点作图法”来揭示参数φ、ω、A 变化时对函数图象的形状和位置的影响,正确找出函数y=Asin(ωx+φ)的图象与正弦曲线的图象变换规律,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图像变换的一个延伸,也是研究函数性质的一个直观反映。

如何经过变换由正弦曲线来获取函数y=Asin(ωx+φ)的图象呢?通过对参数φ、ω、A 的分类讨论,让学生深刻认识到图像变换与函数解析式变换之间的内在联系,通过引导学生对由函数x y sin 到y=Asin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂,由特殊到一般的化归思想。

三维目标一、知识与技能1.理解三个参数φ、ω、A 对函数y=Asin(ωx+φ)图象的影响;2.掌握函数y=Asin(ωx+φ)的图象与正弦曲线的变换关系。

二、过程与方法1、通过学生经历对函数x y sin =的图象到)sin(A ϕω+=x y 的图象变换规律的探索过程,体会由简单到复杂,由特殊到一般的化归思想;2、培养学生全面分析、抽象、概括的能力;培养学生研究问题和解决问题的能力。

三、情感态度与价值观1.通过对问题的自主探究,培养学生的独立意识和独立思考能力;2. 在解决问题的难点时,培养学生解决问题抓主要矛盾的思维方式;3. 在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观。

第三章三角函数学情与教材分析

第三章三角函数学情与教材分析

第三章三角函数学情与教材分析学情分析第三章主要介绍三角函数的相关概念和性质,是高中数学研究的重要内容之一。

通过分析学生的学情,可以更好地理解学生对三角函数的掌握程度和研究动力,从而有针对性地进行教学。

学生掌握程度通过对学生进行测验和作业的分析,可以发现学生在掌握三角函数的基本概念和性质方面存在一些困难。

很多学生对三角函数的定义、正弦定理和余弦定理等知识点掌握不够扎实,容易混淆和搞混不同的公式和概念。

研究动力通过与学生进行交流和观察研究情况,可以发现对于三角函数的研究,部分学生存在着研究动力不高的问题。

一方面,学生觉得三角函数比较抽象和难理解,缺乏对其在现实生活中的应用的认识和兴趣。

另一方面,有些学生缺乏研究三角函数的目标和动力,认为这部分内容与他们的研究需求和兴趣不符。

教材分析教材在教学过程中发挥着重要的作用。

通过分析教材的内容和设计,可以了解教材在三角函数研究中的优点和不足,为教学提供参考和改进的方向。

优点教材对三角函数的基本概念和性质进行了清晰的解释和举例,帮助学生理解相关知识点。

教材中提供了一些生动的实例和实际应用,有助于激发学生的研究兴趣和动力。

此外,教材中的练题和题集数量适中,覆盖了基础和拓展的内容,有助于学生巩固和扩展所学知识。

不足教材在三角函数的难点和易错点的强化上有所不足。

对于学生常犯的错误和容易混淆的概念,教材中的讲解和练题没有给予充分的重视和解答。

此外,教材中的应用题数量有限,无法满足学生对三角函数实际应用的需求。

改进建议针对学情分析和教材分析,可以提出以下改进建议,以提高学生对三角函数的研究效果和动力。

1. 增加练题的难度和进阶内容,帮助学生深入理解三角函数的性质和应用。

2. 强化教材中易错点和难点的讲解和练,让学生能够更好地消化和掌握这些知识点。

3. 增加实际应用题的数量和难度,让学生能够将所学知识应用到实际问题解决中。

4. 鼓励学生参加数学竞赛或实践活动,提高对三角函数研究的兴趣和动力。

《锐角三角函数》教材分析

《锐角三角函数》教材分析
材分析
(一)地位、作用
从《数学课程标准》看,中学数学把三角学内容分成 两个部分,第一部分放在义务教育第三学段,第二部分放 在高中阶段,在义务教育第三学段,主要研究锐角三角函 数和解直角三角形的内容,即本章内容。在高中阶段的三 角内容是三角学的主体部分,包括解斜三角形、三角函数、 反三角函数和简单的三角方程。无论是从内容上看,还是 从思考问题的方法上看,前一部分都是后一部分的重要基 础,掌握锐角三角函数的概念和解直角三角形的方法,是 学习三角函数和解斜三角形的基础。与此同时,本章为学 生提供了更加广阔的探索空间,可以开阔思路,发展学生 的思维能力,有效改变学生的学习方式。
(二)知识点
余弦
正切
30°、45°、60° 角 的三角函数值
利用直角三角 形求三角函数 值
边的关系 角的关系 边角关系
依据
计算
应用
角锐 函角 数三
五、学情分析
学生前面已经学习了函数、四边形、相似三角形和勾股 定理的知识,已经掌握了直角三角形各边、各角之间的关系 和函数的基本概念,能够熟练地利用勾股定理解决有关直角 三角形的问题。为锐角三角函数的学习提供了研究的方法, 具备了一定的逻辑思维能力和推理能力,通过以前的合作学 习,具备了一定的合作与交流的能力,会观察、猜想、分析、 综合、抽象和概括;会用归纳、演绎和类比进行推理。但在 本章,学生首次接触到以角度为自变量的三角函数,初学者 不易理解,学生很难想到对于任意锐角,它的对边、邻边和 斜边的比值也是固定的实事,关键在于教师引导学生比较、 分析、得出结论。正弦、余弦的概念是全章知识的基础,对 学生今后的学习与工作都十分重要,教学中应十分重视,同 时正弦、余弦、正切的概念隐含角度与数之间具有的一一对 应的函数思想,又用含几个字母的符号组合来表示,在教学 中应作为难点处理。

高中数学_三角函数的概念教学设计学情分析教材分析课后反思

高中数学_三角函数的概念教学设计学情分析教材分析课后反思

5.2.1三角函数的概念学校: 授课教师:班级: 姓名: 学习目标:1. 会利用单位圆上点的坐标定义三角函数,理解三角函数的定义,把握三角函数的本质。

2. 通过动笔求解、合作学习,体会数形结合、由特殊到一般的研究问题的思想方法.3. 经历三角函数定义的形成过程,能抽象出数学模型,发展数学抽象、直观想象等素养.学习重点:任意角的正弦、余弦、正切的定义学习难点:影响单位圆上点的坐标变化的因素分析,三角函数的定义方式的理解,三角函数内在联系性的认识.学习过程:一、设置情境,激发兴趣在单位圆⊙O 上一点P ,以A 为起点做逆时针方向旋转,能否建立一个数学模型, 刻画点P 的位置变化情况. 二、互助合作,形成概念探究一(请同学们动手操作→独立思考→互相讨论→共同交流→探究结论) 请同学们在练习本上作图,完成表格,并思考以下问题: 问题一:3226πππα=时P 的坐标分别是什么?是不是唯一确定的?问题二:任意给定一个角α,它的终边OP 与单位圆交点P 是否唯一确定?三角函数的定义:设α是一个任意角,R ∈α,它的终边OP 与单位圆相较于点P (x,y )正弦函数: 余弦函数: 正切函数:记为探究二、请同学们回忆一下初中锐角三角函数的定义并完成下列问题 问题一:求出346πππ的正弦、余弦、正切值问题二:请按照本节课学习的三角函数的定义求出问题一 你能得出怎样的结论呢?结论: 三、小试牛刀 例1 求35π的正弦、余弦和正切值 小结:变式训练一:完成下列表格四、学以致用例2如图,设α是一个任意角,它终边上任意一点P (不与原点O 重合)的坐标(x,y ),点探究三:请同学们讨论以下问题:问题一:正弦值是否随点P位置的改变而改变?问题二:余弦和正切值是否随点P位置的改变而改变?小结:变式训练二:已知角θ的终边过点P(-12,5),求角θ的三角函数值.五、课堂小结:六、当堂检测1.思考辨析(1)sin α表示sin与α的乘积.()(2)设角α终边上的点P(x,y),r=|OP|≠0,则sin α=yr,且y越大,sin α的值越大.()(3)终边相同的角的同一三角函数值相等.()(4)终边落在y轴上的角的正切函数值为0.()2.已知角α终边过点P(1,-1),则tan α的值为()A.1B.-1 C.22D.-22八、作业布置 必做题:1.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于x 轴对称,若sin α=15,则sin β=________.2.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos 25π3+tan ⎝⎛⎭⎫-15π4. 选做题:已知角α的终边上有一点P 的坐标是(3a,4a ),其中a ≠0,求αsin 、αcos 、αtan 的值.三角函数的概念的学情分析1. 学生的认知基础是函数的一般观念以及对幂函数、指数函数和对数函数的研究经验,另外还有圆的有关知识。

高中数学 三角函数

高中数学 三角函数

高中数学三角函数一、教学分析三角函数是数学中常见的一类关于角度的函数。

也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。

三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。

三角函数是基本初等函数之一,它是中学数学的重要内容之一,它的认知基础主要是几何中圆的性质、相似形的有关知识,在必修ⅰ中建立的函数概念以及指数函数、对数函数的研究方法。

主要的学习内容是三角函数是概念、图像和性质,以及三角函数模型的简单应用;研究方法主要是代数变形和图像分析。

因此,三角函数的研究已经初步把几何与代数联系起来了。

本章所介绍的知识,既是解决生产实际问题的工具,又是学习后继内容和高等数学的基础,三角函数是数学中重要的数学模型之一,是研究度量几何的基础,又是研究自然界周期变化规律最强有力的数学工具。

三角函数作为描述周期现象的重要数学模型,与其他学科联系紧密。

二、目标建议1.总体要求三角函数就是基本初等函数,它就是叙述周期现象的关键数学模型,在数学和其他领域有著关键促进作用。

在本模块中,学生将通过实例,自学三角函数及其基本性质,体会三角函数在化解具备周期变化规律的问题中的促进作用。

2.具体要求(1)任一角、弧度制:介绍任一角的概念和弧度制,能够展开弧度与角度的互化。

①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。

②利用单位圆中的三角函数线推论出来诱导公式(正弦、余弦、正弦),能画出来y=sinx,y=cosx,y=tanx的图像,介绍三角函数的周期性。

③借助图像理解正弦函数、余弦函数在[0,2],正切函数在上的性质(如单调性、最大和最小值、图像与x轴的交点等)。

④认知同角三角函数的基本关系式:⑤结合具体实例,了解的实际意义;能借助计算器或计算机画出的图像,观察参数对函数图像变化的影响。

高一数学三角函数教材分析

高一数学三角函数教材分析

第四章 三角函数教材分析三角函数是中学数学的重要内容之一.由于角的概念由静态到动态的推广,它的研究由几何中的相似形和圆的静态的关系拓展到代数变形和图象分析的动态变换,因此三角函数的研究已经初步把几何与代数联系起来了,本章所介绍的知识,既是解决生产实际问题的工具,又是学习中学后继内容和高等数学的基础。

一、 内容与要求 6π3π2π23π56ππ76π43π32π53π116π2π2π-π-32π-2π- (一)本章主要内容是任意角的概念、弧度制、任意角的三角函数、同角三角函数间的关系、诱导公式、两角和与差的三角函数、二倍角的三角函数、三角函数的图象和性质、已知三角函数值求角等。

(二)第一大节是“任意角的三角函数”。

教科书首先推广了角的概念,介绍了弧度制,接着把三角函数的概念由锐角直接推广到任意角(都用坐标定义),然后导出同角三角函数的两个基本关系式及正弦、余弦的诱导公式。

教科书在本大节的各小节中,都安排了许多实例以及知识的应用。

第二大节是“两角和与差的三角函数”。

教科书先引入平面内两点间距离公式(只通过画图说明公式的正确性,不予严格证明),用距离公式推出余弦的和角公式,然后顺次推出(尽量用启发式)其他公式,同时安排了这些公式的简单应用和实际应用,包括解决引言中的实际问题,引出半角公式、和差化积及积化和差公式让学生有所了解。

第三大节是“三角函数的图象和性质”。

教科书先利用正弦线画出函数x y sin = ,x ∈[0,π2]的图象,并根据“终边相同的角有相同的三角函数值”,把这一图象向左、右平行移动,得到正弦曲线;在此基础上,利用诱导公式,把正弦曲线向左平行移动2π个单位长度,得到余弦曲线。

接着根据这两种曲线的形状和特点,研究了正弦、余弦函数的性质,然后又研究了正弦函数的简图的画法,简要地介绍了利用正切线画出正切函数的图象以及正切函数的性质。

最后讲述了如何由已知三角函数值求角,并引进了arcsinx 、arccosx 、arctanx 等记号,以供在后续章节中遇到求角问题时用来表示答案。

第二十八章《锐角三角函数》教材分析(教案)

第二十八章《锐角三角函数》教材分析(教案)
三、教学难点与重点
1.教学重点
(1)锐角三角函数的定义:正弦、余弦、正切的定义及其在直角三角形中的应用是本节课的核心内容。重点讲解三个函数的概念,使学生理解并掌握其在直角三角形中的表示方法。
举例:在直角三角形中,当锐角A的对边为a,邻边为b,斜边为c时,正弦(sin)为a/c,余弦(cos)为b/c,正切(tan)为a/b。
针对以上教学难点,教师应采取以下措施:
1.通过直观的图形演示,帮助学生理解锐角三角函数的互化关系。
2.结合实际案例,引导学生学会将现实问题抽象为数学模型,并运用锐角三角函数求解。
3.开展跨学科教学活动,让学生在实际情境中体会数学知识的应用,提高跨学科综合应用能力。
四、教学流程
(一)导入新课(用时5分钟)
第二十八章《锐角三角函数》教材分析(教案)
一、教学内容
第二十八章《锐角三角函数》教材分析(教案):
本章节内容依据人教版八年级数学教材,主要包括以下部分:
1.锐角三角函数的定义:正弦、余弦、正切的定义及其在直角三角形中的应用。
2.锐角三角函数的图像与性质:正弦、余弦、正切函数的图像及其性质。
3.锐角三角函数的简单应用:利用锐角三角函数解决直角三角形中的实际问题,如测量物体的高度等。
同学们,今天我们将要学习的是《锐角三角函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量物体高度或距离的情况?”(如测量旗杆的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索锐角三角函数的奥秘。
(二)新课讲授(用时10分钟)
五、教学反思
在本次《锐角三角函数》的教学过程中,我注意到了几个值得反思的方面。首先,学生在理解锐角三角函数定义时,普遍感到概念较为抽象。为此,我通过引入生活实例,如测量物体高度等,帮助学生将抽象的数学概念与具体实际相结合,降低理解难度。但在这一过程中,我也发现部分学生对实际问题的提炼和数学化处理能力较弱,需要在今后的教学中加强这方面的训练。

高中数学说课稿(共5篇)

高中数学说课稿(共5篇)

⾼中数学说课稿(共5篇)篇⼀:⾼中数学说课稿:《三⾓函数》说课稿范⽂⾼中数学说课稿:《三⾓函数》⼀、教材分析 (⼀)内容说明函数是中学数学的重要内容,中学数学对函数的研究⼤致分成了三个阶段。

三⾓函数是最具代表性的⼀种基本初等函数。

4.8节是第⼆章《函数》学习的延伸,也是第四章《三⾓函数》的核⼼内容,是在前⾯已经学习过正、余弦函数的图象、三⾓函数的有关概念和公式基础上进⾏的,其知识和⽅法将为后续内容的学习打下基础,有承上启下的作⽤。

本节课是数形结合思想⽅法的良好素材。

数形结合是数学研究中的重要思想⽅法和解题⽅法。

著名数学家华罗庚先⽣的诗句:......数缺形时少直观,形少数时难⼊微,数形结合百般好,隔裂分家万事休......可以说精辟地道出了数形结合的重要性。

本节通过对数形结合的进⼀步认识,可以改进学习⽅法,增强学习数学的⾃信⼼和兴趣。

另外,三⾓函数的曲线性质也体现了数学的对称之美、和谐之美。

因此,本节课在教材中的知识作⽤和思想地位是相当重要的。

(⼆)课时安排4.8节教材安排为4课时,我计划⽤5课时(三)⽬标和重、难点1.教学⽬标教学⽬标的确定,考虑了以下⼏点:(1)⾼⼀学⽣有⼀定的抽象思维能⼒,⽽形象思维在学习中占有不可替代的地位,所以本节要紧紧抓住数形结合⽅法进⾏探索;(2)本班学⽣对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。

(3)学会⽅法⽐获得知识更重要,本节课着眼于新知识的探索过程与⽅法,巩固应⽤主要放在后⾯的三节课进⾏。

由此,我确定了以下三个层⾯的教学⽬标:(1)知识层⾯:结合正弦曲线、余弦曲线,师⽣共同探索发现正(余)弦函数的性质,让学⽣学会正确表述正、余函数的单调性和对称性,理解体会周期函数性质的研究过程和数形结合的研究⽅法;好学教育:(2)能⼒层⾯:通过在教师引导下探索新知的过程,培养学⽣观察、分析、归纳的⾃学能⼒,为学⽣学习的可持续发展打下基础;(3)情感层⾯:通过运⽤数形结合思想⽅法,让学⽣体会(数学)问题从抽象到形象的转化过程,体会数学之美,从⽽激发学习数学的信⼼和兴趣。

《数学》第五章“三角函数”教材分析与教学建议

《数学》第五章“三角函数”教材分析与教学建议
数 。 学 习 三 角 函数 将 对 函 数 的 周 边 概 念 如 函数 符 号 、 定义域 、 值域、 单调性 、 奇偶 性、 周 期 性 等 建 构 更 完 整 的 认 识 。教 师在 教 学 中 要 注 意 让 学 生体 会 三 角 函数 与 一般 函 数 的 区别 与联 系 , 同 时 要 特 别 注 重 数 形
中要注意让学生体会三角 函数 与一般 函数之 间的关 系 ,
即个 性 与共 性 之 间 的关 系 。 同时 , 在本章的教学中 , 要 特
别注 意数学思想方法 的渗 透 . 如突 出“ 数形结合 ” 的思想
方 法 。 由于 三 角 函数 的基 础 是 几 何 中的 相 似 形 和 圆 , 而
角 的正弦 :与单位 圆交点 的横 标 就等 于这 个角 的余 弦: 与单位 圆交点的纵 坐标 与横坐标 的比值就等 于这个
角的正切。
维方法 。 学好余 弦函数 的图像 和性质 的最有效 的方法是
与正 弦 函数 的 图像 和性 质 进 行 类 比 。 下面, 笔 者 对 本 章 的教 学 内容 , 从 学习准备 、 教 学 探
本 章 可 看 作 是 第 三章 ( 函数 ) 的延伸和拓展 。 在 教 学
边角 的问题 。到 了中职教 育阶段 , 需要从 函数 的角度来
认 识 三 角 函数 , 落 实 大 纲 中 与 三 角 函数 部 分 相 关 的教 学 内容 与 要 求 。 本 章 首 先 对 角 的概 念 进 行 推 广 . 并 通 过 弧 度 制 对 角 的度量建立角与实数之 问的一一对应关 系 , 为 学 生 理 解 三 角 函数 是 以实 数 为 自变 量 的 函 数 奠 定 基 础 ; 为 了角 的 概 念 推 广 的需 要 .把 角 放 到 平 面 直 角 坐标 系 中 进 行 研 究, 不 仅建立 了角 的大小与终 边位 置的关 系 , 而 且 通 过 角 的 终 边 上 的点 的坐 标 来 定 义 任 意 角 的 j 角 函 数 . 并 利

高中数学_三角函数的定义教学设计学情分析教材分析课后反思

高中数学_三角函数的定义教学设计学情分析教材分析课后反思

教学设计:整个教学过程是“以问题为载体,以学生活动为主线”进行的。

(一)创设情境:1、数学建模问题。

2、动画演示: 《用弹簧振子演示简谐运动的图象》【设计意图】直接切入研究的课题。

(二)回顾初中定义初中关于三角函数的定义是什么?【设计意图】回顾初中知识,发现初中定义的局限性(三) 问题引入1.由初中定义的局限性,引入平面直角坐标系,先将初中定义放在平面直角坐标系中研究,得到一定启发,然后按照启发的做法,推广到任意角上去。

2.有了推广的做法后,在验证这种做法的合理性,即三角函数值是否会因为终边上点的不同而变化?【设计意图】通过问题探究1,让学生验证做法的合理性(四)给出定义在验证了做法的合理性之后,给出确切的定义。

并在此基础上,练习定义的应用。

【设计意图】初步利用定义解决题目。

例1和变式1(五)定义深化在定义合理性的基础上,进一步引导学生深化定义,上升到函数的高度来理解这个定 义。

并研究函数的定义域。

【设计意图】通过问题探究2和3,让学生自己理解三角函数的定义并根据定义,探究函数的定义域。

(六)知识巩固通过例2、变式2以及当堂检测1、2进一步巩固所学知识(七)归纳总结师生共同回顾本节所学知识学情分析:本节课在高一第二学段,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。

关于三角函数定义,学生在初中学习的基础上,初步接触过三角函数的定义,知道 sin cos tan ααα===对边邻边对边,,斜边斜边邻边但高中已经学习了任意角,对于任意角的三角函数,初中的定义有了局限性,没法求出。

就需要对这个定义进行推广,实质上是研究工具的推广,需要引导学生将角放到直角坐标系中来进一步研究,进而得出更为广泛的定义。

效果分析1.在学生动手实践、观察、思考问题的过程中,关注学生发现问题、解决问题的能力;并在进一步的学习过程中,观察学生的类比学习能力;2.在各组共同学习、解决问题的过程中,观察学生合作交流、学习的能力;3.对不同方案的对比学习中,了解学生把握事物本质的能力;4.通过课堂活动与交流,了解学生对知识的掌握程度,通过反馈,对易错、易混的知识点,做出启发性的指导;5.通过课堂小结,学生说出自己的收获,与别人分享学习数学的体会,激发学习数学的积极性,建立自信心。

第三章三角函数学情与教材分析

第三章三角函数学情与教材分析

第三章三角函数学情与教材分析
第三章的三角函数是高中数学中的重要内容之一。

本文将对学
生学情以及教材进行分析。

1. 学生学情分析
根据对学生学情的观察和调查,我们可以得出以下结论:
- 许多学生对三角函数的概念和性质还存在一定的困惑,特别
是在涉及角度和弧度的转化、三角函数的图像和周期等方面。

- 学生普遍在解三角函数方程和应用相关知识进行实际问题求
解时存在困难。

- 一部分学生对于三角函数的应用场景理解欠缺,缺乏实际的
应用实例和背景知识。

2. 教材分析
针对学生的学情特点,应对教材进行一定的分析和优化,以提
高学生的研究效果和兴趣:
- 引入生活中的实际问题,结合三角函数的应用场景进行教学,以增加学生对概念的理解和兴趣的培养。

- 对于三角函数概念的讲解,可采用多样化的教学方法,如图
形展示、实例演示等,帮助学生更好地理解和掌握。

- 加强练环节,提供大量的练题,包括应用题和思考题,以培
养学生的解题能力和思维能力。

- 利用现代技术手段,如计算机软件和互动教学平台,提供多
样化的研究资源和研究工具,帮助学生更好地研究和巩固所学知识。

总结:
通过对学生学情和教材的分析,我们可以更好地调整教学策略,提高学生的学习效果和成绩水平。

在三角函数教学中,引入生活中
的实际问题,多样化的教学方法以及加强练习和利用现代技术手段
等措施都是有效的教学策略。

三角函数的图像和性质(说课案)

三角函数的图像和性质(说课案)

三角函数的图像和性质(第一课时说课案) 下面我将从四个方面说明本节课的教学设计。

一、教材分析二、教学方法分析三、教学流程四、教学说明一、教材分析1、地位与作用:本节课是在学生掌握了单位圆中的正弦线和诱导公式的基础上进行的,不仅是对前面所学知识应用的考察,也是后续学习正、余弦函数性质的基础。

对函数图像清晰而准确的掌握也为学生在解题实践中提供了有力的工具。

2、学情分析:(1)知识与技能:学生已掌握了一些初等基本函数的图像和性质,并了解一些函数图像的画法。

(2)心理与生理:高一上学期的学生已经对高中数学体系中函数问题的处理方法和过程有了初步认识,且具有了较强的分析、判断、理解能力和一定层次上的交流沟通能力。

3、教学目标(1)知识与技能目标:通过研究掌握正弦函数图像及其画法;掌握余弦函数图像;深刻理解五点作图法中五点(零点、最高点、最低点)的本质即:图像中走向趋势发生变化的点。

(2)过程与方法:通过主动思考,主动发现,亲历知识的形成过程,使对正弦函数单调、对称、“周而复始”等性质的认知更为深刻。

(3)情感态度与价值观:用联系的观点看待问题,善于类比联想,直观想象,对数形结合有进一步认识,激发学习数学的兴趣,养成良好的数学品质。

4、重、难点分析:(1)重点:用单位圆中的正弦线作正弦函数在]2,0[π的图象、“五点法”作图;(2)难点:如何由正弦函数在]2,0[π上的图象得到正弦函数在R上的图象;如何在正弦函数的图像上找出“五点”。

二、教学方法教学方法:演示法、示范教学法、启发式引导、互动式讨论、反馈式评价。

学习方法:观察发现、合作交流、归纳总结、反馈模仿。

教学手段:运用多媒体网络教学平台,构建学生自主探究的教学环境。

三、教学流程1、复习、引入:复习内容有:描点作函数图像的一般步骤;弧度定义;正、余弦函数定义;正弦线、余弦线;诱导公式。

设置的目的是让学生再次回顾弧度的定义(强调弧度与实数一一对应的关系)与正弦线(实质是函数值),为利用正弦线作出正弦函数的图像做准备。

锐角三角函数教材分析

锐角三角函数教材分析

锐角三角函数教材分析本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。

锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。

研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章重点是锐角三角函数的概念和直角三角形的解法。

锐角三角函数的概念既是本章的难点,也是学习本章的关键。

难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。

至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

本章内容与已学“相似三角形”“勾股定理”等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

本章内容分为两节,第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容。

第一节内容是第二节的基础,第二节是第一节的应用,并对第一节的学习有巩固和提高的作用。

在“锐角三角函数”中,教科书先研究了正弦函数,然后在正弦函数的基础上给出余弦函数和正切函数的概念。

对于正弦函数,教科书首先设置了一个实际问题,把这个实际问题抽象成数学问题,就是在直角三角形中,已知一个锐角和这个锐角的对边求斜边的问题,由于这个锐角是一个特殊的角,因此可以利用“在直角三角形中,角所对的边是斜边的一半”。

这个结论来解决这个问题,接下去教科书又提出问题,如果角所对的边的长度发生改变,那么斜边的长变为多少?解决这个的问题仍然需要利用上述结论,这样就能够使学生体会到“无论直角三角形的大小如何,角所对的边与斜边的比总是一个常数”,这里体现了函数的对应的思想,即的角对应数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 三角函数教材分析 2006.3.3三角函数是中学数学的重要内容之一,它的基础主要是几何中的相似形和圆,研究方法主要是代数中的式子变形和图象分析,因此三角函数的研究已经初步把几何与代数联系起来了。

本章所学的知识内容,既是解决生产实际问题的工具,又是学习后继知识内容和高等数学的基础。

本章教学时间约用36课时,具体分配如下(仅供参考):4.1 角的概念的推广 约2课时4.2 弧度制 约2课时4.3 任意角的三角函数 约2课时4.4 同角三角函数的基本关系式 约2课时4.5 正弦、余弦的诱导公式 约3课时4.6 两角和与差的正弦、余弦、正切 约7课时4.7 二倍角的正弦、余弦、正切 约3课时4.8 正弦函数、余弦函数的图象和性质 约4课时4.9 函数y=Asin(ωx+φ)的图象 约3课时4.10 正切函数的图象和性质 约2课时4.11 已知三角函数值求角 约2课时小结与复习 约4课时一、内容与要求(一)本章主要内容是任意角的概念、弧度制、任意角的三角函数、同角三角函数间的关系、诱导公式、两角和与差的三角函数、二倍角的三角函数,以及三角函数的图象和性质,已知三角函数值求角等。

同角三角函数的基本关系式诱导公式 三角函数式的恒等变形(求值、化简、证明)任意角的概念角的度量方法角度制与弧度制任意角的三角函数三角函数的图象和性质 已知三角函数值求角两角和与差的三角函数公式 二倍角的三角函数公式函数y=Asin(ωx+ϕ)的图象(二)章头引言安排了一个实际问题——求半圆内接矩形的最大面积。

这个问题可以用二次函数来解决,但如果设角度为自变量,就会得到三角函数式,学生尚未学过求它的最大值。

(三)第一单元是“任意角的三角函数”。

首先推广了角的概念,介绍了弧度制,接着把三角函数的概念由锐角直接推广到任意角(都用坐标定义),然后导出同角三角函数的基本关系式及正弦、余弦的诱导公式。

而且教科书在本大节的各小节中,都安排了许多实例以及知识的应用。

1.任意角,包括任意大小的正角、负角和零角,应该注意掌握终边相同的角、象限角、轴上的角(限界角)等概念的联系与区别,要求能准确地表示,还要注意与这些角有关的角的表示,如:已知角α是第几象限的角,求2α、3α角所在的象限和2α角所在的位置;运用“整数集=奇数集∪偶数集”写出终边在x 轴或y 轴上的角α的集合。

注意:“角α的终边在x 轴的非负半轴上”的叙述方式,与过去的说法“角α的终边在x 轴的正2.由于任意角α的三角函数值仅与角α的终边所在的位置有关,与其终边上的点的位置选取无关;而且三角函数的定义是同角三角函数关系式,乃至整章知识的基础,所以必须牢固掌握任意角的三角函数的定义。

要结合单位圆内的三角函数线,掌握数形结合的数学思想方法解决三角函数问题。

3.三角函数线:单位圆中的三角函数线是三角函数的一种几何表示。

用三角函数线的数值来代替三角函数值要比由定义所规定的比值来求得三角函数值要直观得多,因此三角函数线是讨论三角函数性质的一个重要工具,特别是在求取值范围、比较大小、解三角不等式等问题时,用三角函数线来求解十分简捷。

另外,三角函数线又是绘制正弦曲线、正切曲线的基础。

4.诱导公式在三角函数求值、化简三角函数式、证明三角恒等式中起着重要的桥梁作用,一定要熟记在心。

可以用“奇变偶不变,符号看象限”或“纵变横不变,符号看象限”来帮助记忆。

5.同角三角函数基本关系式,可用“正六边形记忆法”来记忆。

当已知一个角的一个三角函数值时,可以按照“正六边形”图示来求出这个角的其他三角函数值,值得提示的是:应该首选倒数关系,尽量少用平方关系,因为用平方关系时,需要讨论三角函数值的符号。

(四)第二单元是“两角和与差的三角函数”。

先引入平面内两点间距离公式(只通过画图说明公式的正确性,不予严格证明),用距离公式推出和角的余弦公式,然后顺次推出其他公式,同时安排了这些公式的简单应用和实际应用,包括解决引言中的实际问题,引出半角公式、和差化积及积化和差公式让学生有所了解。

1.两角和与差的三角函数公式是本节所有公式(二倍角公式、半角公式以及万能公式、积化和差公式与和差化积公式)的基础,在教学过程中,要将公式之间的内在联系讲透。

既要重视公式的正向运用,也要重视公式的逆用与变形运用训练,提高公式的灵活应用水平。

2.三角公式的主要运用是三角函数式的化简、求值及证明三角恒等式。

在三角变换时要选准解决问题的突破口,要善于观察角的差异,注意拆角和拼角的技巧;观察函数名称的异同,注意切割化弦、化异为同的方法的选用;观察函数式结构的特点等。

i )注意掌握以下几个三角恒等变形的常用方法和简单技巧:①常值代换,特别是“1”的代换,如:θθctg tg =1,θθ22cos sin 1+=,θθ22csc 1ctg -=,θθ22sec 1tg -=等等;②项的分拆与角的配凑;③降次与升次;④万能代换。

ii )对于形如θθcos sin b a +的式子,要引入辅助角ϕ并化成)sin(22ϕθ++b a 的形式,这里辅助角ϕ所在的象限由b a ,的符号决定,ϕ角的值由ab tg =ϕ确定。

对这种思想,务必强化训练,加深认识。

αααcotiii )三角函数的化简与求值的常用方法和技巧:①三角函数化简时,在题设的要求下,首先应合理利用有关公式,还要尽量减少角的种数,尽量减少三角函数种数,尽量化同角、化同名等。

其他思想还有:异次化同次、高次化低次、切割化弦、特殊角三角函数与特殊值互化等。

②三角函数的求值问题,主要有两种类型:一类是给角求值问题;另一类是给值求角问题。

它们都是通过恰当的变换,与求值的三角函数式、特殊角的三角函数式、已知某值的三角函数式之间建立起联系。

选用公式时应注意方向性、灵活性,以创造出消项或约项的机会,简化问题。

iv )求三角函数值的常用方法有:⑴配方法;⑵化为一个角的三角函数;⑶数形结合法;⑷换元法;⑸基本不等式法(学完第六章以后)。

3.在已知一个角的三角函数值,求这个角的其他三角函数值时,要注意题设中角的范围,并对不同的象限分别求出相应的值。

在应用诱导公式进行三角函数式的化简、求值时,应注意公式中符号的选取。

i )关于三角函数式的简单证明:三角恒等式的证明分为无附加条件和有附加条件两种,证明方法灵活多样。

一般规律是从化简入手,适当变换,化繁为简,不过这里的变换目标要由所证恒等式的特点来决定。

①不附加条件的三角恒等式证明:多用综合法、分析法。

②附加条件的三角恒等式证明:关键在于恰当而适时地使用所附加的条件,也就是要仔细地寻找所附加条件和要证明的等式之间的内在联系。

常用的方法是代入法和消元法。

三角恒等式证明中的重点是掌握等价转化的思想和变量代换的方法。

证明的关键是:发现差异——观察等式两边角、函数、运算间的差异;寻找联系——选择恰当公式,找出差异间的联系;合理转化促进联系,创造性地应用基本公式。

ii )关于角的恒等式或条件恒等式的证明,一般来说,要证βα=,先证明βα,的同名三角函数值相等,即)()(βαf f =,再证明βα,在三角函数)(x f y =的同一单调区间内,进而由函数的单调性得出βα=。

4.根据正弦函数、余弦函数的有界性,在求三角函数的最大值和最小值时,要注意挖掘题设中的隐含条件,对于含有参数的问题,还要注意参数的作用,该分类讨论的就要分类讨论。

5.求三角函数最值的常用方法是:配方法、判别式法、重要不等式法、变量代换法、三角函数的单调性和有界性等。

其基本思想是将三角函数的最值转化为代数函数的最值。

(五)第三单元是“三角函数的图象和性质”。

先利用正弦线画出函数x y sin = ,x ∈[0,π2]的图象,并根据“终边相同的角有相同的三角函数值”,把这一图象向左、右平行移动,得到正弦曲线;在此基础上,利用诱导公式,把正弦曲线向左平行移动2π个单位长度,得到余弦曲线。

接着根据这两种曲线的形状和特点,研究了正弦、余弦函数的性质、正弦函数的简图的画法,以及y=Asin(ωx+ϕ)的图象是如何由y=sinx 的图象经过图象变换得到的,简要地介绍了利用正切线画出正切函数的图象以及正切函数的性质。

最后讲述了如何由已知三角函数值求角,并引进了arcsinx 、arccosx 、arctanx 等记号,以供遇到求角问题时用来表示答案。

1.三角函数的图象是三角函数及其性质的直观反映,是解决三角函数及其有关问题的重要工具。

三角函数的性质是高考考查的重点,在讲课时,要使学生牢记三角函数的图象,并有意识地训练从数形结合的角度去分析、解决问题(如:三角函数的图象的识别、特征(对称轴、对称中心)分析、变换(图象变换)、根据图象写出三角函数的解析式),还要注意与其它知识的综合运用,特别是与平面向量相结合,加强三角函数作为工具的应用意识。

要将三角函数式尽可能化为只含一个三角函数的“标准式”,进而可求得某些复合三角函数的最值、最小正周期、单调区间等。

对函数式作恒等变形时需特别注意保持定义域的不变性。

2. 周期性是三角函数的独特性质,求三角函数的最小正周期是每年高考的必考内容,而且基本上都是围绕考查y=Asin(ωx+ϕ)(或经过变形化为y=Asin(ωx+ϕ))的最小正周期T=2πω来设计。

3. 函数的单调性是在给定的区间上考虑的,只有属于同一单调区间内的同一函数的两个函数值才能由它的单调性来比较大小。

主要体现在:解简单的三角不等式、比较大小、求最大值或最小值、判断单调区间,或者与三角函数的图象、三角函数线(用与单位圆有关的线段表示三角函数)、三角函数的概念、已知三角函数值求角等知识综合考查。

(六)本章的教学要求:1.使学生理解任意角的概念、弧度的意义;能正确地进行弧度与角度的换算。

2.使学生掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;掌握同角三角函数间的基本关系式;掌握正弦、余弦的诱导公式。

3.使学生掌握两角和与差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式,通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。

4.使学生能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆),重点应放在结知识理解的准确性、熟练性和灵活性上。

对于θθ33cos sin+,θθ44cos sin +,θθ66cos sin +等表达式,要会结合乘法公式熟练地进行变形,并利用1cos sin 22=+θθ等三角公式进行化简。

5.使学生会用单位圆中的三角函数线画出正弦函数、正切函数的图象,并在此基础上由诱导公式画出余弦函数的图象;理解周期函数与最小正周期的意义,并通过它们的图象理解这正弦函数、余弦函数、正切函数的性质;会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+ϕ)的简图,理解A 、ω、φ的物理意义。

相关文档
最新文档