平潭县高中2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平潭县高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 设集合{|12}A x x =<<,{|}B x x a =<,若A B ⊆,则的取值范围是( ) A .{|2}a a ≤ B .{|1}a a ≤ C .{|1}a a ≥ D .{|2}a a ≥
2. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]
A .10
B .51
C .20
D .30
3. 若函数()()22f x x πϕϕ⎛
⎫=+< ⎪⎝
⎭的图象关于直线12x π=对称,且当
1217212
3x x π
π⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )
A
B .
2
D .
4
4. 半径R 的半圆卷成一个圆锥,则它的体积为( )
A .
πR 3
B .
πR 3
C .
πR 3
D .
πR 3
5. 若实数x ,y 满足,则(x ﹣3)2+y 2
的最小值是( )
A .
B .8
C .20
D .2
6. 已知全集为R ,集合{}
|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )
A .{}2,0,2-
B .{}2,2,4-
C .{}2,0,3-
D .{}0,2,4
7. P 是双曲线
=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2
的内切圆圆心的横坐标为( )
A .a
B .b
C .c
D .a+b ﹣c
8. 已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则
=( )
A .﹣1
B .2
C .﹣5
D .﹣3
9. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为( )
A .6
B .9
C .12
D .18
10.一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )
A .3
B .
C .2
D .6
11.若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+, 则当
14
x y
+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .3 12.函数y=a x +2(a >0且a ≠1)图象一定过点( )
A .(0,1)
B .(0,3)
C .(1,0)
D .(3,0)
二、填空题
13.命题“(0,)2x π
∀∈,sin 1x <”的否定是 ▲ .
14.函数1
()lg(1)1f x x x
=++-的定义域是 ▲ .
15.函数f (x )=x ﹣的值域是 .
16.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且 仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)
【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.
17.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下: ①若()()0f x f x '+>,且(0)1f =,则不等式()x
f x e -<的解集为(0,)+∞;
②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1
(2)4(2),n n f f n N +*<∈;
④若()
()0f x f x x
'+
>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()x
e x
f x f x x
'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.
其中所有正确结论的序号是 .
18
在这段时间内,该车每100千米平均耗油量为 升.
三、解答题
19.如图,已知五面体ABCDE ,其中△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC . (Ⅰ)证明:AD ⊥BC
(Ⅱ)若AB=4,BC=2,且二面角A ﹣BD ﹣C 所成角θ的正切值是2,试求该几何体ABCDE 的体积.
20.已知函数()2
1ln ,2
f x x ax x a R =-
+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;
(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明121
2
x x +≥.
21.计算: (1)8
+(﹣)0﹣
;
(2)lg25+lg2﹣log 29×log 32.
22.已知A (﹣3,0),B (3,0),C (x 0,y 0)是圆M 上的三个不同的点. (1)若x 0=﹣4,y 0=1,求圆M 的方程;
(2)若点C 是以AB 为直径的圆M 上的任意一点,直线x=3交直线AC 于点R ,线段BR 的中点为D .判断直线CD 与圆M 的位置关系,并证明你的结论.
23.等差数列{a n } 中,a 1=1,前n 项和S n 满足条件,
(Ⅰ)求数列{a n } 的通项公式和S n ;
(Ⅱ)记b n =a n 2n ﹣1
,求数列{b n }的前n 项和T n .
24.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22
(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.
(3)为了研究心肺疾病是否与性别有关,请计算出统计量2
K ,判断心肺疾病与性别是否有关?
(参考公式:)
)()()(()(2
d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)
平潭县高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1. 【答案】D 【解析】
试题分析:∵A B ⊆,∴2a ≥.故选D . 考点:集合的包含关系. 2. 【答案】D 【解析】
试题分析:分段间隔为5030
1500
=,故选D. 考点:系统抽样 3. 【答案】C 【
解
析
】
考
点:函数的图象与性质.
【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得
()
2122k k π
π
ϕπ⨯
+=
+∈Z ,解得3π
ϕ=
,从而()23f x x π⎛
⎫+ ⎪⎝
⎭,再次利用数形结合思想和转化化归思想
可得()()()()1122x f x x f x ,,,关于直线1112x π=-对称,可得12116
x x π
+=-,从而
()
12113
3f x x ππ⎛⎫
+=-+= ⎪⎝⎭.
4. 【答案】A
【解析】解:2πr=πR ,所以r=,则h=,所以V=
故选A
5.【答案】A
【解析】解:画出满足条件的平面区域,如图示:
,
由图象得P(3,0)到平面区域的最短距离d min=,
∴(x﹣3)2+y2的最小值是:.
故选:A.
【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.
6.【答案】A
【解析】
考点:1、集合的表示方法;2、集合的补集及交集.
7.【答案】A
【解析】解:如图设切点分别为M,N,Q,
则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.
由双曲线的定义,PF1﹣PF2=2a.
由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,
∵F1Q+F2Q=F1F2=2c,
∴F2Q=c﹣a,OQ=a,Q横坐标为a.
故选A.
【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.
8.【答案】C
【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,
即2,﹣1是f′(x)=0的两个根,
∵f(x)=ax3+bx2+cx+d,
∴f′(x)=3ax2+2bx+c,
由f′(x)=3ax2+2bx+c=0,
得2+(﹣1)==1,
﹣1×2==﹣2,
即c=﹣6a,2b=﹣3a,
即f′(x)=3ax2+2bx+c=3ax2﹣3ax﹣6a=3a(x﹣2)(x+1),
则===﹣5,
故选:C
【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.
9.【答案】
【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a=18,选D.
法二:a=6 102,b=2 016,r=54,
a=2 016,b=54,r=18,
a=54,b=18,r=0.
∴输出a=18,故选D.
10.【答案】C
【解析】解:∵椭圆的半焦距为2,离心率e=,
∴c=2,a=3,
∴b=
∴2b=2
.
故选:C .
【点评】本题主要考查了椭圆的简单性质.属基础题.
11.【答案】D 【解析】
试题分析:由题知(1)CB BM CM CB xCA y =-=+-,BA CA CB =-;设B
M k B A =,则,1x k y k =-=-,
可得1x y +=,当
14x y +取最小值时,()141445x y
x y x y x y y x
⎛⎫+=++=++ ⎪⎝⎭,最小值在4y x x y =时取到,此时21,33y x ==,将()
1,CN 2
CM xCA yCB CA CB =+=+代入,则
()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫
⋅=++⋅=+=+= ⎪⎝⎭
.故本题答案选D.
考点:1.向量的线性运算;2.基本不等式. 12.【答案】B 【解析】解:由于函数y=a x (a >0且a ≠1)图象一定过点(0,1),故函数y=a x
+2(a >0且a ≠1)图象一定
过点(0,3), 故选B .
【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.
二、填空题
13.【答案】()
0,2x π
∃∈,sin 1≥
【解析】
试题分析:“(0,)2x π
∀∈,sin 1x <”的否定是()
0,2
x π
∃∈,sin 1≥ 考点:命题否定
【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M
中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题. 14.【答案】()()1,11,-⋃+∞
考点:定义域
15.【答案】 (﹣∞,1] .
【解析】解:设
=t ,则t ≥0, f (t )=1﹣t 2﹣t ,t ≥0,函数图象的对称轴为t=﹣,开口向下,在区间[0,+∞)上单调减, ∴f (t )max =f (0)=1,
∴函数f (x )的值域为(﹣∞,1]. 故答案为:(﹣∞,1].
【点评】本题主要考查函数的值域的求法.换元法是求函数的值域的一个重要方法,应熟练记忆.
16.【答案】48 【
解
析
】
17.【答案】②④⑤
【解析】解析:构造函数()()x
g x e f x =,()[()()]0x
g x e f x f x ''=+>,()g x 在R 上递增,
∴()x
f x e
-<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<,∴①错误;
构造函数()()x f x g x e =,()()
()0x
f x f x
g x e
'-'=>,()g x 在R 上递增,∴(2015)(2014)g g >, ∴(2015)(2014)f ef >∴②正确;
构造函数2()()g x x f x =,2
()2()()[2()()]g x xf x x f x x f x xf x '''=+=+,当0x >时,()0g x '>,∴
1(2)(2)n n g g +>,∴1(2)4(2)n n f f +>,∴③错误;
由()()0f x f x x '+>得()()
0xf x f x x '+>,即()()0xf x x
'>,∴函数()xf x 在(0,)+∞上递增,在(,0)-∞上递
减,∴函数()xf x 的极小值为0(0)0f ⋅=,∴④正确;
由()()x e xf x f x x '+=得2
()()x e xf x f x x
-'=,设()()x
g x e xf x =-,则()()()x
g x e f x xf x ''=--(1)x x x e e e x x x
=-=-,当1x >时,()0g x '>,当01x <<时,()0g x '<,∴当
0x >时,()(1)0g x g ≥=,即()0f x '≥,∴⑤正确.
18.【答案】 8 升.
【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8. 故答案是:8.
三、解答题
19.【答案】
【解析】(Ⅰ)证明:∵AB 是圆O 的直径, ∴AC ⊥BC , 又∵DC ⊥平面ABC ∴DC ⊥BC , 又AC ∩CD=C , ∴BC ⊥平面ACD , 又AD ⊂平面ACD , ∴AD ⊥BC .
(Ⅱ)解:设CD=a ,以CB ,CA ,CD 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示. 则C (0,0,0),B (2,0,0
),,D (0,0,a ).
由(Ⅰ)可得,AC ⊥平面BCD , ∴平面BCD
的一个法向量是
=
,
设=(x ,y ,z )为平面ABD 的一个法向量,
由条件得,
=
,
=(﹣2,0,a ).
∴
即
,
不妨令x=1,则y=
,
z=,
∴=.
又二面角A ﹣BD ﹣C 所成角θ的正切值是2,
∴.
∴
=cos θ=
,
∴==,解得a=2.
∴V ABCDE =V E ﹣ADC +V E ﹣ABC
=+
=+
=
=8.
∴该几何体ABCDE 的体积是8.
【点评】本题考查了向量相互垂直与数量积的关系证明线面垂直、利用法向量的夹角求出二面角的方法、三棱锥的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题.
20.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,
a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫
+∞ ⎪⎝⎭
;(2)证明见解析.
【解析】
试题解析:
(2)当2a =-时,()2
ln ,0f x x x x x =++>,
由()()12120f x f x x x ++=可得22
121122ln 0x x x x x x ++++=,
即()()2
12121212ln x x x x x x x x +++=-,
令()12,ln t x x t t t ϕ==-,则()11
1t t t t
ϕ-'=-=
,
则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,
所以()()11t ϕϕ≥=,所以()()2
12121x x x x +++≥,
又120x x +>,故121
2
x x +≥, 由120,0x x >>可知120x x +>.1
考点:函数导数与不等式.
【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.
请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 21.【答案】 【解析】解:(1)8+(﹣)0﹣
=2﹣1+1﹣(3﹣e ) =e ﹣.
(2)lg25+lg2﹣log 29×log 32 = =
=1﹣2=﹣1.…(6分)
【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用.
22.【答案】
【解析】解:(1)设圆的方程为x 2+y 2
+Dx+Ey+F=0
圆的方程为x 2+y 2
﹣8y ﹣9=0…
(2)直线CD 与圆M 相切O 、D 分别是AB 、BR 的中点 则OD ∥AR ,∴∠CAB=∠DOB ,∠ACO=∠COD , 又∠CAO=∠ACO ,∴∠DOB=∠COD 又OC=OB ,所以△BOD ≌△COD ∴∠OCD=∠OBD=90°
即OC ⊥CD ,则直线CD 与圆M 相切. …
(其他方法亦可)
23.【答案】
【解析】解:(Ⅰ)设等差数列的公差为d,
由=4得=4,
所以a2=3a1=3且d=a2﹣a1=2,
所以a n=a1+(n﹣1)d=2n﹣1,
=
(Ⅱ)由b n=a n2n﹣1,得b n=(2n﹣1)2n﹣1.
所以T n=1+321+522+…+(2n﹣1)2n﹣1①
2T n=2+322+523+…+(2n﹣3)2n﹣1+(2n﹣1)2n②
①﹣②得:﹣T n=1+22+222+…+22n﹣1﹣(2n﹣1)2n
=2(1+2+22+…+2n﹣1)﹣(2n﹣1)2n﹣1
=2×﹣(2n﹣1)2n﹣1
=2n(3﹣2n)﹣3.
∴T n=(2n﹣3)2n+3.
【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.此方法是数列求和部分高考考查的重点及热点.
24.【答案】
【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.。