翼教版八年级数学下册矩形的判定测试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D A C F O
E B
第2课时 矩形的判定
1.矩形具有而一般平行四边形不具有的性质是( )
A .对角相等
B .对边相等
C .对角线相等
D .对角线互相垂直
2.下列叙述中能判定四边形是矩形的个数是( )
①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.
A .1
B .2
C .3
D .4
3.下列命题中,正确的是( )
A .有一个角是直角的四边形是矩形
B .三个角是直角的多边形是矩形
C .两条对角线互相垂直且相等的四边形是矩形
D .有三个角是直角的四边形是矩形
4.如图1所示,矩形ABCD 中的两条对角线相交于点O ,∠AOD=120°,AB=4cm ,则矩形的对角线的长为_____.
图1 图2
5.若四边形ABCD 的对角线AC ,BD 相等,且互相平分于点O ,则四边形ABCD•是_____形,若∠AOB=60°,那么AB :AC=______.
6.如图2所示,已知矩形ABCD 周长为24cm ,对角线交于点O ,OE ⊥DC 于点E ,•OF ⊥AD 于点F ,OF-OE=2cm ,
则AB=______,BC=______.
7.如图所示,□ABCD的四个内角的平分线分别相交于E,F,G,H,试说明四边形EFGH是矩形.
8.如图所示,△ABC中,CE,CF分别平分∠ACB和它的邻补角∠ACD.AE•⊥CE于E,AF⊥CF于F,直线EF 分别交AB,AC于M,N两点,则四边形AECF是矩形吗?为什么?
D A C F
P E B
9.(一题多解题)如图所示,△ABC 为等腰三角形,AB=AC ,
CD ⊥AB 于D ,P•为BC 上的一点,过
P 点分别作PE ⊥AB ,PF ⊥CA ,垂足分别为E ,F ,则有PE+PF=CD ,你能说明为什么吗?
10.如图所示,△ABC 中,AB=AC ,AD 是BC 边上的高,AE•是∠CAF 的平分线且∠CAF 是△ABC 的一个外角,且DE ∥BA ,四边形ADCE 是矩形吗?为什么?
11.如图所示是一个书架,•你能用一根绳子检查一下书架的侧边是否和上下底垂直吗?为什么?
12.已知AC为矩形ABCD的对角线,则下图中∠1与∠2一定不相等的是()
13.正方形通过剪切可以拼成三角形.方法如图1所示,仿照图1上用图示的方法,解答下面问题:如图2,对直角三角形,设计一种方案,将它分成若干块,•再拼成一个与原三角形等面积的矩形.
图1 图2
14.(展开与折叠题)已知如图所示,折叠矩形纸片ABCD,先折出折痕(对角线)BD,再过点D折叠,使AD 落在折痕BD上,得另一折痕DG,若AB=2,BC=1,求AG的长度.
参考答案
1.C 2.B 3.D 4.8cm 5.矩;1:2 6.8cm;4cm 7.解:∠HAB+∠HBA=90°,所以∠H=90°.同理可求得∠HEF=•∠F=•∠FGH=90°,
所以四边形EFGH是矩形.
8.解:四边形AECF是矩形.∠ECF=1
2(∠ACB+∠ACD)=90°.∠AEC=∠AFC=90°,
点拨:•本题是通过证四边形中三个角为直角得出结论.还可以通过证其为平行四边形,再证有一个角为直角得出结论.
9.解法一:能.如图1所示,过P点作PH⊥DC,垂足为H.
四边形PHDE是矩形.所以PE=DH,PH∥BD.所以∠HPC=∠B.图1
又因为AB=AC,所以∠B=∠ACB.所以∠HPC=∠FCP.
又因为PC=CP,∠PHC=∠CFP=90°,所以△PHC≌△CFP.所以PF=HC
所以DH+HC=PE+PF,即DC=PE+PF.
图2.
解法二:能.延长EP,过C点作CH⊥EP,垂足为H,如图2所示,
四边形HEDC是矩形.所以EH=•PE+PH=DC,CH∥AB.所以∠HCP=∠B.
△PHC≌△PFC,所以PH=PF,所以PE+PF=DC.
10.解:是矩形;理由:∠CAE=∠ACB,所以AE∥BC.又DE∥BA,所以四边形ABDE是平行四边形,•所以AE=BD,所以AE=DC.又因为AE∥DC,所以四边形ADCE是平行四边形.又因为∠ADC=90°,所以四边形ADCE 是矩形.
11.解:能;首先用绳子量一下书架的两组对边,再用绳子量一下书架的对角线,若对角线相等,则书架的侧边和上下底垂直,否则不垂直.12.D
13.解:本题有多种拼法,下面提供几种供参考:
方法一:如图(1),方法二:如图(2)
14.解:如图所示,过点G作GE⊥BD于点E,则AG=EG,AD=ED.在Rt△ABD中,由勾股定理,得5所以5,BG=•AB-AG=2-AG,设AG=EG=x,则BG=2-x.在Rt△BEG中,由勾股定理,得BG2=EG2+BE2,即(2-x)2=5)2+x2,
解得51-51-
易错专题:求二次函数的最值或函数值的范围
——类比各形式,突破给定范围求最值
◆类型一 没有限定自变量的取值范围求最值
1.函数y =-(x +1)2+5的最大值为________.
2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法12】( )
A .3
B .2
C .1
D .-1
3.函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值.
◆类型二 限定自变量的取值范围求最值
4.在二次函数y =x 2-2x -3中,当0≤x ≤3时,y 的最大值和最小值分别是【方法12】( ) A .0,-4 B .0,-3 C .-3,-4 D .0,0
5.已知0≤x ≤32
,则函数y =x 2+x +1( )
A .有最小值34,但无最大值
B .有最小值3
4,有最大值1
C .有最小值1,有最大值19
4 D .无最小值,也无最大值
6.已知二次函数y =-2x 2-4x +1,当-5≤x ≤0时,它的最大值与最小值分别是( )
A .1,-29
B .3,-29
C .3,1
D .1,-3
7.已知0≤x ≤1
2,那么函数y =-2x 2+8x -6的最大值是________.
◆类型三 限定自变量的取值范围求函数值的范围
8.从y =2x 2-3的图像上可以看出,当-1≤x ≤2时,y 的取值范围是( )
A .-1≤y ≤5
B .-5≤y ≤5
C .-3≤y ≤5
D .-2≤y ≤1
9.(贵阳中考)已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )
A .y ≥3
B .y ≤3
C .y >3
D .y <3
10.二次函数y =x 2-x +m(m 为常数)的图像如图所示,当x =a 时,y <0;那么当x =a -1时,函数值
C
A.y<0 B.0<y<m C.y>m D.y=m
11.二次函数y=2x2-6x+1,当0≤x≤5时,y的取值范围是______________.
◆类型四已知函数的最值,求自变量的取值范围或待定系数的值
12.当二次函数y=x2+4x+9取最小值时,x的值为( )
A.-2 B.1 C.2 D.9
13.已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为( )
A.3 B.-1 C.4 D.4或-1
14.已知y=-x2+(a-3)x+1是关于x的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是( )
A.a=9 B.a=5 C.a≤9 D.a≤5
15.已知a≥4,当1≤x≤3时,函数y=2x2-3ax+4的最小值是-23,则a=________.
16.若二次函数y=x2+ax+5的图像关于直线x=-2对称,已知当m≤x≤0时,y有最大值5,最小值1,则m的取值范围是_____________.
参考答案与解析
1.5 2.C
3.解:∵y =x (2-3x )=-3⎝ ⎛⎭⎪⎫x 2-23x =-3⎝ ⎛⎭⎪⎫x -132+13,∴该抛物线的顶点坐标是⎝ ⎛⎭
⎪⎫13,13.∵-3<0,∴该抛物线的开口方向向下,∴当x =13时,该函数有最大值,最大值是13
. 4.A 5.C
6.B 解析:首先看自变量的取值范围-5≤x ≤0是否包含了顶点的横坐标.由于y =-2x 2-4x +1=-2(x +1)2+3,其图像的顶点坐标为(-1,3),所以在-5≤x ≤0范围内,当x =-1时,y 取最大值,最大值为3;当x =-5时,y 取最小值,最小值为y =-2×(-5)2-4×(-5)+1=-29.故选B.
7.-2.5 解析:∵y =-2x 2+8x -6=-2(x -2)2+2,∴该抛物线的对称轴是直线x =2,当x <2,y
随x 的增大而增大.又∵0≤x ≤12,∴当x =12时,y 取最大值,y 最大=-2×⎝ ⎛⎭
⎪⎫12-22+2=-2.5. 8.C
9.B 解析:当x =2时,y =-4+4+3=3.∵y =-x 2+2x +3=-(x -1)2+4,∴当x >1时,y 随x 的增大而减小,∴当x ≥2时,y 的取值范围是y ≤3.故选B.
10.C 解析:当x =a 时,y <0,则a 的范围是x 1<a <x 2,又对称轴是直线x =12
,所以a -1<0.当x <12
时,y 随x 的增大而减小,当x =0时函数值是m .因此当x =a -1<0时,函数值y 一定大于m . 11.-72≤y ≤21 解析:二次函数y =2x 2-6x +1的图像的对称轴为直线x =32
.在0≤x ≤5范围内,当x =32时,y 取最小值,y 最小=-72;当x =5时,y 取最大值,y 最大=21.所以当0≤x ≤5时,y 的取值范围是-72≤y ≤21.
12.A
13.C 解析:∵二次函数y =ax 2
+4x +a -1有最小值2,∴a >0,y 最小值=4ac -b 24a =4a (a -1)-42
4a =2,整理得a 2-3a -4=0,解得a =-1或4.∵a >0,∴a =4.故选C.
14.D 解析:第一种情况:当二次函数的对称轴不在1≤x ≤5内时,∵在1≤x ≤5时,y 在x =1时取得最大值,∴对称轴一定在1≤x ≤5的左边,∴对称轴直线x =a -32<1,即a <5;第二种情况:当对称轴在1
≤x ≤5内时,∵-1<0,∴对称轴一定是在顶点处取得最大值,即对称轴为直线x =1,∴a -32=1,即a =5.
综上所述,a≤5.故选D.
15.5 解析:抛物线的对称轴为直线x=3a
4
.∵a≥4,∴x=
3a
4
≥3.∵抛物线开口向上,在对称轴的左侧,
y随x的增大而减小,∴当1≤x≤3时,函数取最小值-23时,x=3.把x=3代入y=2x2-3ax+4中,得18-9a+4=-23,解得a=5.
16.-4≤m≤-2 解析:∵二次函数图像关于直线x=-2对称,∴-a
2×1
=-2,∴a=4,∴y=x2+4x +5=(x+2)2+1.当y=1时,x=-2;当y=5时,x=0或-4.∵当m≤x≤0时,y有最大值5,最小值1,∴-4≤m≤-2.。