六安市高级中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六安市高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. i 是虚数单位,计算i+i 2+i 3=( )
A .﹣1
B .1
C .﹣i
D .i
2. 已知双曲线的渐近线与圆x 2+(y ﹣2)2
=1相交,则该双曲线的离心率的取值范围是( )
A .(
,+∞) B .(1,
) C .(2.+∞) D .(1,2)
3. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )
A .
B .﹣
C .2
D .﹣2
4. 为得到函数的图象,只需将函数y=sin2x 的图象( )
A .向左平移个长度单位
B .向右平移个长度单位
C .向左平移
个长度单位
D .向右平移
个长度单位
5. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,
N ,P 的关系( )
A .M P N =⊆
B .N P M =⊆
C .M N P =⊆
D .M P N == 6. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25
B .20,15,15
C .10,10,30
D .10,20,20
7. =( ) A .2 B .4 C .π D .2π
8. 已知向量=(1,n ),=(﹣1,n ﹣2),若与共线.则n 等于( )
A .1
B .
C .2
D .4
9. 若命题p :∀x ∈R ,2x 2﹣1>0,则该命题的否定是( )
A .∀x ∈R ,2x 2﹣1<0
B .∀x ∈R ,2x 2﹣1≤0
C .∃x ∈R ,2x 2﹣1≤0
D .∃x ∈R ,2x 2﹣1>0
10.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )
A.10B.11C.12D.13
【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.
11.已知两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,则实数a等于()
A.1或﹣3 B.﹣1或3 C.1或3 D.﹣1或﹣3
12.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则,类比这个结论可
知:四面体S﹣ABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体S﹣ABC的体积为V,则r=()
A.B.
C.D.
二、填空题
13.设p:实数x满足不等式x2﹣4ax+3a2<0(a<0),q:实数x满足不等式x2﹣x﹣6≤0,已知¬p是¬q的必要非充分条件,则实数a的取值范围是.
14.(若集合A⊊{2,3,7},且A中至多有1个奇数,则这样的集合共有个.
15.命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是.
16.若双曲线的方程为4x2﹣9y2=36,则其实轴长为.
17.函数f(x)=的定义域是.
18.在(2x+)6的二项式中,常数项等于(结果用数值表示).
三、解答题
19.已知函数且f(1)=2.
(1)求实数k的值及函数的定义域;
(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.
20.已知p :﹣x 2+2x ﹣m <0对x ∈R 恒成立;q :x 2+mx+1=0有两个正根.若p ∧q 为假命题,p ∨q 为真命题,求m 的取值范围.
21.已知函数f (x )=的定义域为A ,集合B 是不等式x 2﹣(2a+1)x+a 2
+a >0的解集.
(Ⅰ) 求A ,B ;
(Ⅱ) 若A ∪B=B ,求实数a 的取值范围.
22.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,
设函数()()2n f x x R =??a b
的图象关于点(,1)12
p
对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;
(II )若()()4
f x f p
£对一切实数恒成立,求)(x f y 的单调递增区间.
【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.
235
(Ⅱ)若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”.由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.
24.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是增函数.若
p∨q为真命题,p∧q为假命题,求实数a的取值范围.
六安市高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】A
【解析】解:由复数性质知:i2=﹣1
故i+i2+i3=i+(﹣1)+(﹣i)=﹣1
故选A
【点评】本题考查复数幂的运算,是基础题.
2.【答案】C
【解析】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交
∴圆心到渐近线的距离小于半径,即<1
∴3a2<b2,
∴c2=a2+b2>4a2,
∴e=>2
故选:C.
【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.
3.【答案】A
【解析】解:设幂函数y=f(x)=xα,把点(,)代入可得=α,
∴α=,即f(x)=,
故f(2)==,
故选:A.
4.【答案】A
【解析】解:∵,
只需将函数y=sin2x的图象向左平移个单位得到函数的图象.
故选A.
【点评】本题主要考查诱导公式和三角函数的平移.属基础题.
5. 【答案】A 【解析】
试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以M P N =⊆.
考点:两个集合相等、子集.1 6. 【答案】B
【解析】解:每个个体被抽到的概率等于=
,则高一、高二、高三年级抽取的人数分别为
800×
=20,600×
=15,600×
=15,
故选B .
【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.
7. 【答案】A
【解析】解:∵(﹣cosx ﹣sinx )′=sinx ﹣cosx ,
∴
=
=2.
故选A .
8. 【答案】A
【解析】解:∵向量=(1,n ),=(﹣1,n ﹣2),且与共线. ∴1×(n ﹣2)=﹣1×n ,解之得n=1 故选:A
9. 【答案】C
【解析】解:命题p :∀x ∈R ,2x 2
﹣1>0,
则其否命题为:∃x ∈R ,2x 2
﹣1≤0,
故选C ;
【点评】此题主要考查命题否定的定义,是一道基础题;
10.【答案】C
【解析】由题意,得甲组中78888486929095
887
m +++++++=,解得3m =.乙组中888992<<,
所以9n =,所以12m n +=,故选C .
11.【答案】A
【解析】解:两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,
所以=
≠
,
解得 a=﹣3,或a=1.
故选:A .
12.【答案】 C
【解析】解:设四面体的内切球的球心为O , 则球心O 到四个面的距离都是R , 所以四面体的体积等于以O 为顶点,
分别以四个面为底面的4个三棱锥体积的和.
则四面体的体积为
∴R= 故选C .
【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).
二、填空题
13.【答案】
.
【解析】解:∵x 2﹣4ax+3a 2
<0(a <0),
∴(x﹣a)(x﹣3a)<0,
则3a<x<a,(a<0),
由x2﹣x﹣6≤0得﹣2≤x≤3,
∵¬p是¬q的必要非充分条件,
∴q是p的必要非充分条件,
即,即≤a<0,
故答案为:
14.【答案】6
【解析】解:集合A为{2,3,7}的真子集有7个,奇数3、7都包含的有{3,7},则符合条件的有7﹣1=6个.
故答案为:6
【点评】本题考查集合的子集问题,属基础知识的考查.
15.【答案】.
【解析】解:因为全称命题的否定是特称命题所以,命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是:
.
故答案为:.
16.【答案】6.
【解析】解:双曲线的方程为4x2﹣9y2=36,即为:
﹣=1,
可得a=3,
则双曲线的实轴长为2a=6.
故答案为:6.
【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.17.【答案】{x|x>2且x≠3}.
【解析】解:根据对数函数及分式有意义的条件可得
解可得,x>2且x≠3
故答案为:{x|x>2且x≠3}
18.【答案】240
【解析】解:由(2x+)6,得
=.
由6﹣3r=0,得r=2.
∴常数项等于.
故答案为:240.
三、解答题
19.【答案】
【解析】解:(1)f(1)=1+k=2;
∴k=1,,定义域为{x∈R|x≠0};
(2)为增函数;
证明:设x1>x2>1,则:
=
=;
∵x1>x2>1;
∴x1﹣x2>0,,;
∴f(x1)>f(x2);
∴f(x)在(1,+∞)上为增函数.
20.【答案】
【解析】解:若p为真,则△=4﹣4m<0,即m>1 …
若q为真,则,即m≤﹣2 …
∵p∧q为假命题,p∨q为真命题,则p,q一真一假
若p真q假,则,解得:m>1 …
若p假q真,则,解得:m≤﹣2 …
综上所述:m≤﹣2,或m>1 …
21.【答案】
【解析】解:(Ⅰ)∵,化为(x﹣2)(x+1)>0,解得x>2或x<﹣1,∴函数f(x)=的
定义域A=(﹣∞,﹣1)∪(2,+∞);
由不等式x2﹣(2a+1)x+a2+a>0化为(x﹣a)(x﹣a﹣1)>0,又a+1>a,∴x>a+1或x<a,
∴不等式x2﹣(2a+1)x+a2+a>0的解集B=(﹣∞,a)∪(a+1,+∞);
(Ⅱ)∵A∪B=B,∴A⊆B.
∴,解得﹣1≤a≤1.
∴实数a的取值范围[﹣1,1].
22.【答案】
23.【答案】
【解析】解:(Ⅰ)解法一:
依题意有,
答案一:∵∴从稳定性角度选甲合适.
(注:按(Ⅱ)看分数的标准,5次考试,甲三次与乙相当,两次优于乙,所以选甲合适.
答案二:∵乙的成绩波动大,有爆发力,选乙合适.
解法二:因为甲5次摸底考试成绩中只有1次90,甲摸底考试成绩不低于90的概率为;
乙5次摸底考试成绩中有3次不低于90,乙摸底考试成绩不低于90的概率为.
所以选乙合适.
(Ⅱ)依题意知5次摸底考试,“水平相当”考试是第二次,第三次,第五次,记为A,B,C.“水平不相当”考试是第一次,第四次,记为a,b.
从这5次摸底考试中任意选取2次有ab,aA,aB,aC,bA,bB,bC,AB,AC,BC共10种情况.
恰有一次摸底考试两人“水平相当”包括共aA,aB,aC,bA,bB,bC共6种情况.
∴5次摸底考试成绩统计,任意抽查两次摸底考试,恰有一次摸底考试两人“水平相当”概率.
【点评】本题主要考查平均数,方差,概率等基础知识,运算数据处理能力、运算求解能力、应用意识,考查化归转化思想、或然与必然思想.
24.【答案】
【解析】解:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,
等价于a≥x2﹣x在x∈[2,4]恒成立,
而函数g(x)=x2﹣x在x∈[2,4]递增,
其最大值是g(4)=4,
∴a≥4,
若p为真命题,则a≥4;
f(x)=x2﹣ax+1在区间上是增函数,
对称轴x=≤,∴a≤1,
若q为真命题,则a≤1;
由题意知p、q一真一假,
当p真q假时,a≥4;当p假q真时,a≤1,
所以a的取值范围为(﹣∞,1]∪[4,+∞).。