初中数学几何图形初步全集汇编含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学几何图形初步全集汇编含答案解析
一、选择题
1.下列图形中,不是三棱柱的表面展开图的是()
A.B.C.D.
【答案】D
【解析】
利用棱柱及其表面展开图的特点解题.
解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.
故选D.
2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是
A.(0,0)B.(0,1)C.(0,2)D.(0,3)
【答案】D
【解析】
【详解】
解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,
此时△ABC的周长最小,
∵点A、B的坐标分别为(1,4)和(3,0),
∴B′点坐标为:(-3,0),则OB′=3
过点A 作AE 垂直x 轴,则AE=4,OE=1
则B′E=4,即B′E=AE ,∴∠EB ′A=∠B ′AE ,
∵C ′O ∥AE ,
∴∠B ′C ′O=∠B ′AE ,
∴∠B ′C ′O=∠EB ′A
∴B ′O=C ′O=3,
∴点C′的坐标是(0,3),此时△ABC 的周长最小.
故选D .
3.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?( )
A .
B .
C .
D .
【答案】D
【解析】
分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.
详解:A 选项中,展开图下方的直角三角形的斜边长为12,不合题意;
B 选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;
C 选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;
D 选项中,展开图能折叠成一个三棱柱,符合题意;
故选:D .
点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.
4.在等腰ABC ∆中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ∆的周长最小时,P 点的位置在ABC ∆的( )
A.重心B.内心C.外心D.不能确定
【答案】A
【解析】
【分析】
连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.
【详解】
连接BP、BE,
∵AB=AC,BD=BC,
∴AD⊥BC,
∴PB=PC,
∴PC+PE=PB+PE,
+≥,
∵PB PE BE
∴当B、P、E共线时,PC+PE的值最小,此时BE是△ABC的中线,
∵AD也是中线,
∴点P是△ABC的重心,
故选:A.
【点睛】
此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.
⊥,从A地测得B地在A地的北偏东43︒5.如图,有A,B,C三个地点,且AB BC
的方向上,那么从B地测得C地在B地的()
A.北偏西43︒B.北偏西90︒C.北偏东47︒D.北偏西47︒
【答案】D
【解析】
【分析】
根据方向角的概念和平行线的性质求解.
【详解】
如图,过点B作BF∥AE,则∠DBF=∠DAE=43︒,
∴∠CBF=∠DBC-∠DBF=90°-43°=47°,
∴从B地测得C地在B地的北偏西47°方向上,
故选:D.
【点睛】
此题考查方位角,平行线的性质,正确理解角度间的关系求出能表示点位置的方位角是解题的关键.
6.如图,将矩形纸片沿EF折叠,点C在落线段AB上,∠AEC=32°,则∠BFD等于()
A.28°B.32°C.34°D.36°
【答案】B
【解析】
【分析】
根据折叠的性质和矩形的性质,结合余角的性质推导出结果即可.
【详解】
解:如图,设CD和BF交于点O,由于矩形折叠,
∴∠D=∠B=∠A=∠ECD=90°,∠ACE+∠BCO=90°,∠BCO+∠BOC=90°,
∵∠AEC=32°,
∴∠ACE=90°-32°=58°,
∴∠BCO=90°-∠ACE=32°,
∴∠BOC=90°-32°=58°=∠DOF,
∴∠BFD=90°-58°=32°.
故选B.
【点睛】
本题考查了折叠的性质和矩形的性质和余角的性质,解题的关键是掌握折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应角相等.
7.下列语句正确的是()
A.近似数0.010精确到百分位
B.|x-y|=|y-x|
C.如果两个角互补,那么一个是锐角,一个是钝角
D.若线段AP=BP,则P一定是AB中点
【答案】B
【解析】
【分析】
A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立
【详解】
A中,小数点最后一位是千分位,故精确到千分位,错误;
B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;
C中,若两个角都是直角,也互补,错误;
D 中,若点P 不在AB 这条直线上,则不成立,错误
故选:B
【点睛】
概念的考查,此类题型,若能够举出反例来,则这个选项是错误的
8.下列图形中1∠与2∠不相等的是( )
A .
B .
C .
D .
【答案】B
【解析】
【分析】
根据对顶角,平行线,等角的余角相等等知识一一判断即可.
【详解】
解:A 、根据对顶角相等可知,∠1=∠2,本选项不符合题意.
B 、∵∠1+∠2=90°,∠1与∠2不一定相等,本选项符合题意.
C .根据平行线的性质可知:∠1=∠2,本选项不符合题意.
D 、根据等角的余角相等,可知∠1=∠2,本选项不符合题意.
故选:B .
【点睛】
本题考查平行线的性质对顶角的性质,等角的余角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
9.将如图所示的Rt △ACB 绕直角边AC 旋转一周,所得几何体的主视图(正视图)是( )
A .
B .
C .
D .
【答案】D
【解析】
解:Rt △ACB 绕直角边AC 旋转一周,所得几何体是圆锥,主视图是等腰三角形. 故选D .
首先判断直角三角形ACB 绕直角边AC 旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.
10.如图,将三个同样的正方形的一个顶点重合放置,如果145∠=°,330∠=°时,那么2∠的度数是( )
A .15°
B .25°
C .30°
D .45°
【答案】A
【解析】
【分析】 根据∠2=∠BOD+EOC-∠BOE ,利用正方形的角都是直角,即可求得∠BOD 和∠EOC 的度数从而求解.
【详解】
∵∠BOD=90°-∠3=90°-30°=60°,
∠EOC=90°-∠1=90°-45°=45°,
∵∠2=∠BOD+∠EOC-∠BOE ,
∴∠2=60°+45°-90°=15°.
故选:A .
【点睛】
此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE 这一关系是解题的关键.
11.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()
A.左转80°B.右转80°C.左转100°D.右转100°
【答案】B
【解析】
【分析】
如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.
【详解】
如图,延长AB到D,过C作CE//AD,
∵此时需要将方向调整到与出发时一致,
∴此时沿CE方向行走,
∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,
∴∠A=60°,∠1=20°,
AM∥BN,CE∥AB,
∴∠A=∠2=60°,∠1+∠2=∠3
∴∠3=∠1+∠2=20°+60°=80°,
∴应右转80°.
故选B.
【点睛】
本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.
12.如图,AB CD ∥,BF 平分ABE ∠,且BF DE P ,则ABE ∠与D ∠的关系是( )
A .2ABE D ∠=∠
B .180ABE D ∠+∠=︒
C .90ABE
D ∠=∠=︒
D .3AB
E D ∠=∠
【答案】A
【解析】
【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.
【详解】
证明:如图,延长DE 交AB 的延长线于G ,
//AB CD Q ,
D G ∴∠=∠,
//BF DE Q ,
G ABF ∴∠=∠,
D ABF ∴∠=∠,
BF Q 平分ABE ∠,
22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.
故选:A .
【点睛】
本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.
13.已知直线m ∥n ,将一块含30°角的直角三角板按如图所示方式放置(∠ABC =30°),并且顶点A ,C 分别落在直线m ,n 上,若∠1=38°,则∠2的度数是( )
A .20°
B .22°
C .28°
D .38°
【答案】B
【解析】
【分析】 过C 作CD ∥直线m ,根据平行线的性质即可求出∠2的度数.
【详解】
解:过C 作CD ∥直线m ,
∵∠ABC =30°,∠BAC =90°,
∴∠ACB =60°,
∵直线m ∥n ,
∴CD ∥直线m ∥直线n ,
∴∠1=∠ACD ,∠2=∠BCD ,
∵∠1=38°,
∴∠ACD =38°,
∴∠2=∠BCD =60°﹣38°=22°,
故选:B .
【点睛】
本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.
14.如果α∠和β∠互余,下列表β∠的补角的式子中:①180°-β∠,②90°+α∠,③2α∠+β∠,④2β∠+α∠,正确的有( )
A .①②
B .①②③
C .①②④
D .①②③④ 【答案】B
【解析】
【分析】
根据互余的两角之和为90°,进行判断即可.
【详解】
∠β的补角=180°﹣∠β,故①正确;
∵∠α和∠β互余,∴∠β=90°-∠α,∴∠β的补角=180°﹣∠β=180°﹣(90°-∠α)=90°+α∠,故②正确;
∵∠α和∠β互余,∠α+∠β=90°,∴∠β的补角=180°﹣∠β=2(∠α+∠β)﹣∠β=2∠α+∠β,故③正确;
∵∠α+∠β=90°,∴2∠β+∠α=90°+∠β,不是∠β的补角,故④错误.
故正确的有①②③.
故选B.
【点睛】
本题考查了余角和补角的知识,解答本题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.
15.下列说法中,正确的个数为( )
①过同一平面内5点,最多可以确定9条直线;
②连接两点的线段叫做两点的距离;
=,则点B是线段AC的中点;
③若AB BC
④三条直线两两相交,一定有3个交点.
A.3个B.2个C.1个D.0个
【答案】D
【解析】
【分析】
根据直线交点、两点间距离、线段中点定义分别判断即可得到答案.
【详解】
①过同一平面内5点,最多可以确定10条直线,故错误;
②连接两点的线段的长度叫做两点的距离,故错误;
=,则点B不一定是线段AC的中点,故错误;
③若AB BC
④三条直线两两相交,可以都交于同一点,故错误;
故选:D.
【点睛】
此题考查直线交点、两点间距离定义、线段中点定义,正确理解定义是解题的关键.
16.下列说法中不正确的是()
①过两点有且只有一条直线
②连接两点的线段叫两点的距离
③两点之间线段最短
④点B在线段AC上,如果AB=BC,则点B是线段AC的中点
A.①B.②C.③D.④
【答案】B
【解析】
【分析】
依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.
【详解】
①过两点有且只有一条直线,正确;
②连接两点的线段的长度叫两点间的距离,错误
③两点之间线段最短,正确;
④点B在线段AC上,如果AB=BC,则点B是线段AC的中点,正确;
故选B.
17.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.B.
C.D.
【答案】A
【解析】
【分析】
根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.
【详解】
A、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;
B、图中∠α=∠β,不一定互余,故本选项错误;
C、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;
D、图中∠α+∠β=180°,互为补角,故本选项错误.
故选:A.
【点睛】
此题考查余角和补角,熟记概念与性质是解题的关键.
18.如图,某河的同侧有A,B两个工厂,它们垂直于河边的小路的长度分别为
BD km
=,这两条小路相距5km.现要在河边建立一个抽水站,把水送到=,3
AC km
2
A,B两个工厂去,若使供水管最短,抽水站应建立的位置为()
A.距C点1km处B.距C点2km处C.距C点3km处D.CD的中点处【答案】B
【解析】
【分析】
作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则
PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.
【详解】
作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.
根据PCE PDB ∆∆:,设PC x =,则5PD x =-,
根据相似三角形的性质,得 PC CE PD BD =,即253
x x =-, 解得2x =.
故供水站应建在距C 点2千米处. 故选:B .
【点睛】
本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.
19.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是( )
A .态
B .度
C .决
D .切 【答案】A
【解析】
【分析】 正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.
【详解】
正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.
故选A .
【点睛】
注意正方体的空间图形,从相对面入手,分析及解答问题.
20.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()
A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补
C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等
【答案】D
【解析】
【分析】
【详解】
解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;
因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.。