管存气计算方法
管存气计算方法PDF.pdf
有加压站时,按最末一个加压站至城市配气站的管段计算其储气能力;设有中间加压站的长 输管线,可按全线计算其储气能力。
城市天然气输配系统往往利用大口径输气管线储存一定气量作为高峰负荷时增加用户 气量之用,其储气能力为储气终了时与储气开始时输气管中存气量之差、一条已投产的输气 干管的长度、容积、管线起点允许最高工作压力、终点允许最高工作压力、终点用户要求的 最低供气压力及该管线正常输气量等都是已知的,可按下列步骤计算其储气量:
高压管道储气计算公式:
V=(Vg×To)/(Po×T)×(Pm1/Z1-Pm2/Z2) Pm1=2/3×[P1max+P2max2/(P1max+ P2max)] Pm2=2/3×[P1min +2/(P1min+ P2min)] 式中:Vg 、T 分别为管道的几何体积、管道内气体平均温度; Z1——指气体在平均压力 Pm1 时的压缩系数; Z2——气体在平均压力 Pm2 时的压缩系数; Pm1——最高平均压力,即储气结束时管道内平均压力; Pm2——最低平均压力,即储气开始时管道内平均压力; Pm1——最高平均压力,即储气结束时管道内平均压力; P1max——管道起点最高压力,即储气结束时起点压力; P2max——管道终点最高压力,即储气结束时终点压力; P1min——管道起点最低压力,即储气开始时起点压力; P2min——管道终点最低压力,即储气开始时终点压力;
6
书山有路
候满足短期内做为一个气源供气。 3、用户用气量是不均衡的,长输管道应满足城市的调峰需求。根据长输管道的供气能
力和压力波动,参考用户的调峰气量,参与城市管网的日、时调峰,减少城市调峰设施的建 设,合理调度,最优化利用资源。
气量自动计算公式7.18
管存气量 波动值计 算公式
使用说明: 1.针对不同类别,选取不同的公式。 2.使用者仅可以据实填写蓝色部分的数字,注意单位,红色部分自动生成,禁止改动。 3.低压管道的放散忽略不计。 4.表压指压力表显示的压力。 5.管存气量波动值是专算 公式
新置换管道置换完以后的新增管存气量计算公式 三 管段的长度 (米) 289 表压(公斤) 2.5 管道直径 (米) 0.2 管存气量 (立方米) 31.8
管道压力变化导致管存气量波动量的计算公式 管段的长度 (米) 四 5000 33000 15000 合计 管道波动压力 表压(公斤) 1 1 1 管道直径 (米) 0.35 0.3 0.2 管存波动气量 (立方米) 480.8 2331.5 471.0 3283.3
新管道置换时的放散气量计算公式 一 放散管段的长度 (米) 289 表压(公斤) 0 管道直径 (米) 0.2 放散气量 (立方米) 27.2
分类放散 气量自动 计算公式
二
降压带气时的放散气量计算公式 (放散的前提是提前关阀降压至0.5公斤后再放散) 放散管段的长度 管道直径 放散气量 表压(公斤) (米) (米) (立方米) 289 0.5 0.2 4.5
管道内气体体积计算公式
管道内气体体积计算公式
对于直径较小、长度较长的圆筒形管道,可以使用圆筒形体积计算公式。
假设管道的直径为D,长度为L,则管道的体积可以通过以下公式计算:
V=π*(D/2)²*L
其中V是管道的体积,π是圆周率,D/2是管道的半径。
对于直径较大的管道或者管道中其中一段管道弯曲的情况,需要考虑管道的几何形状,一般可以近似为圆柱体和锥体相结合。
如果管道中存在锥体,其体积可以通过以下公式计算:
Vcone = 1/3 * π * (D1/2)² * h
其中Vcone是锥形部分的体积,D1是锥形底部的直径,h是锥形部分的高度。
如果管道是由圆柱体和锥体相连接而成的,可以将两个部分的体积相加:
Vtotal = Vcylinder + Vcone
其中Vtotal是整个管道的体积,Vcylinder是圆柱体部分的体积。
除了管道形状,管道内气体的状态也会影响体积的计算。
根据理想气体状态方程,理想气体的体积可由以下公式计算:
V=n*R*T/P
其中V是气体的体积,n是气体的物质的量,R是理想气体常量,T 是气体的温度,P是气体的压力。
综上所述,管道内气体体积的计算公式主要取决于管道的形状和气体的状态。
通过合理选择适用的公式,可以准确计算出管道内气体的体积。
燃气管道的流量计算和水力计算公式
燃气管道的流量计算和水力计算公式第一节燃气需用工况城市各类用户的用气情况是不均匀的,是随月、日、时而变化的。
这是城市燃气供应的一个特点。
用气不均匀性可以分为三种,即月不均匀性(或季节不均匀性)、日不均匀性和时不均匀性。
城市燃气需用工况与各类用户的需用工况及这些用户在总用气量中所占的比重有关。
各类用户的用气不均匀性取决于很多因素,如气候条件、居民生活水平及生活习惯机关的作息制度和工业企业的工作班次,建筑物和车间内装置用气设备的情况等,这些因素对不均匀性的影响,从理论上是推算不出来的,只有经过大量地积累资料,并加以科学的整理,才能取得需用工况的可靠数据。
1 、月用气工况影响居民生活及公共建筑用气月不均匀性的主要因素是气候条件。
气温降低则用气量增大,因为在冬季一些月份水温低,故用气量较多,又因为在冬季,人们习惯吃热食,制备食品需用的燃气量增多,需用的热水也较多。
反之,在夏季用气量将会降低。
公共建筑用气的月不均匀规律及影响因素,与各类用户的性质有关,但与居民生活用气的不均匀情况基本相似。
工业企业用气的月不均匀规律主要取决于生产工艺的性质。
连续生产的大工业企业以及工业炉用气比较均匀。
夏季由于室外气温及水温较高,这类用户的用气量也会适当降低。
建筑物供暖的用气工况与城市所在地区的气候有关。
计算时需要知道该地区月平均气温和供暖期的资料。
根据各类用户的年用气量及需用工况,可编制年用气图表。
依照此图表制订供气计划,并确定给缓冲用户供气的能力和所需的储气设施,还可预先制订在用气量低的季节维修燃气管道及设备的计划。
一年中各月的用气不均匀情况用月不均匀系数表示。
根据字面上的意义,它应该是各月的用气量与全年平均月用气量的比值,但这不确切,因为每个月的天数是在28~31天的范围内变化的。
因此月不均匀系数K1值应按下式确定全年平均日用气量该月平均日用气量1k (3-1) 12个月中平均日用气量最大的月,也即月不均匀系数值最大的月,称为计算月。
管存气计算方法
如何计算管道气存储能力例题:压力在2MPa-3MPa之间.管径为300,长度约15.6KM.如何计算管内的气量.1、管容=0.3*0.3*3.14/4*15.6*1000气量(标准立方米)=压力(bar)*管容(立方米)1MPa=10bar一般这样就可以了,再精确点就再除以一个压缩因子。
2、长输管线距离长、管径大、输送压力较高,管线具有一定的储气能力,长输管线中间设有加压站时,按最末一个加压站至城市配气站的管段计算其储气能力;设有中间加压站的长输管线,可按全线计算其储气能力。
城市天然气输配系统往往利用大口径输气管线储存一定气量作为高峰负荷时增加用户气量之用,其储气能力为储气终了时与储气开始时输气管中存气量之差、一条已投产的输气干管的长度、容积、管线起点允许最高工作压力、终点允许最高工作压力、终点用户要求的最低供气压力及该管线正常输气量等都是已知的,可按下列步骤计算其储气量:(1)根据压气站的最高工作压力或管线强度允许压力,确定储气终了时管线起点压力。
由起点压力和正常输气量按下式算出储气终了时的管线终点压力:式中Q——天然气通过能力(m3/d);(20℃,101,3kPa)D——输气管内径(cm);P1——输气管线的起点绝对压力(106Pa);P2——输气管线的终点绝对压力(106Pa);S——天然气相对密度;Tf——天然气平均绝对温度(K);L——输气管线长度(km);Z——天然气平均压缩因子。
(2)求储气开始时起点压力式中P1min——储气开始时起点绝对压力(106Pa);P2min——储气开始时终点绝对压力(106Pa);P1max——储气终了时起点绝对压力(106Pa);P2max——储气终了时终点绝对压力(106Pa);(3)计算管线的容积V=(Л/4)D2L(4)储气开始时的平均压力(5)储气终了时的平均压力(6)储气量式中Q。
——输气管线储气量(m3);(20℃,101.3kPa)V——输气管线容积(m3);To——293(K);Tm——天然气平均温度(K);Po——标准状态下的压力(101.3kPa);Z1、Z2——在Pm2、Pm2下的压缩因子;Pm1——储气终了时的平均压力(106Pa);Pm2——储气开始时的平均压力(106Pa)。
管道储气量计算公式
管道储气量计算公式V=π*(D^2-d^2)*L*P/(4*Z*T)其中V表示管道的储气量(单位为立方米);D表示管道的外径(单位为米);d表示管道的内径(单位为米);L表示管道的长度(单位为米);P表示气体的压力(单位为帕斯卡);Z表示气体压缩因子(无单位,一般认为是常数);T表示气体的温度(单位为开尔文)。
这个公式基于理想气体状态方程(PV=ZRT)和储气体密度(ρ)的定义(m/V=ρ)计算得出。
实际上,有些情况下,Z值和压力可能会通过其他的方法进行估算,而不是直接使用该公式。
针对不同的管道形状,可以将上述公式进行不同程度的简化或者修正。
以下列举几种常见的管道形状和相关公式:1.圆管:对于一个圆形截面的管道,可以根据公式简化为:V=π*(D^2)*L/42.圆弯管:对于一个有圆形截面的弯管,可以将整个弯曲部分的储气量视为一个圆柱体,并将其与缺口部分储气量相加,公式为:V = π * (D^2) * L / 4 + V_gap其中,V_gap表示缺口部分的储气量。
3.长方形管:对于一个长方形截面的管道,可以根据公式简化为:V=(b*h)*L其中,b表示长方形的宽度,h表示长方形的高度。
需要注意的是,这些公式仅仅是估算的近似值,并且基于一些假设条件。
在实际应用中,需要根据具体的工程要求和实际情况进行更为精确的计算。
另外,这些公式也未考虑管道的支撑结构和其他附加设备对储气量的影响,因此实际储气量可能会有一定的偏差。
对于更为复杂的管道系统,可能需要使用仿真软件进行模拟计算。
基于瞬态仿真的天然气管道动态管存分析
基于瞬态仿真的天然气管道动态管存分析
温凯;焦健丰;袁运栋;董楠;殷雄;樊迪;宫敬
【期刊名称】《油气与新能源》
【年(卷),期】2022(34)5
【摘要】天然气管存量直接影响着管网运行安全,同时管存计算偏差会造成输差问题,给管输企业带来经济损失。
针对现行的稳态管存计算方法在非稳定运行工况下计算误差较大的问题,基于有限容积法,建立了天然气管道瞬态流动仿真模型,并提出了动态管存计算方法。
通过稳态管存与动态管存计算原理分析,动态管存计算方法在时间更新频率及空间步长划分上均具有显著优势;基于有限容积法,在交错网格下形成一套具有自主知识产权的天然气管道流动仿真算法,并通过与现场实测数据对比验证了该算法的准确性;通过分析在入口压力阶跃、周期性变化的情况下动态管存计算方法与传统稳态管存计算方法的差别,体现了该方法在管存计算实时性与精确度上的优势;根据分析结果,进行现行稳态管存适用性分析并提出改用动态管存计算方法以适应精细化管理要求的建议。
【总页数】12页(P122-133)
【作者】温凯;焦健丰;袁运栋;董楠;殷雄;樊迪;宫敬
【作者单位】中国石油大学(北京)城市油气输配技术北京市重点实验室;中油国际管道有限公司;中国石油工程建设有限公司
【正文语种】中文
【中图分类】TE832
【相关文献】
1.中亚天然气双线管道瞬态工况分析
2.基于GT-SUITE的天然气发动机瞬态性能仿真及优化
3.基于特征线法的输气管道泄漏瞬态仿真与分析
4.基于隐式法的天然气管道动态仿真
5.天然气管道瞬态仿真研究综述
因版权原因,仅展示原文概要,查看原文内容请购买。
临界速度气产量计算公式
临界速度气产量计算公式
临界速度气产量计算公式主要有两种,分别是以下两种:
1. 克寒气产量计算公式:
克寒气产量 = (0.0847 ×管径 ×管径 ×管径 ×管径) / (压降 ×根号(温度 ×流量))
其中,克寒气产量为单位时间内通过管道的冷气产量,克/小时;
管径为管道的内径,单位为毫米;
压降为管道的压降,单位为帕;
温度为气体温度,单位为摄氏度;
流量为气体的流量,单位为立方米/小时。
2. 麦弗氏产量计算公式:
麦弗氏产量 = (0.4712 ×管径 ×管径 ×管径 ×管径) / (压降 ×根号(温度 ×流量))
其中,麦弗氏产量为单位时间内通过管道的气体产量,麦弗氏/小时;
管径为管道的内径,单位为毫米;
压降为管道的压降,单位为帕;
温度为气体温度,单位为摄氏度;
流量为气体的流量,单位为立方米/小时。
这两个计算公式是根据管道流动的物理原理和一些经验参数推导得出的,可以用于计算临界速度下的气体产量,但具体应用时还需要结合实际情况进行修正和调整。
燃气的储存
5. 储罐必须设防雷静电接地装置。
6. 储罐的人孔应设在维修管理及制作储罐均较方便的位置,一般在罐顶及罐底各 设置一个人孔。
7. 容量较大的圆筒形罐与球形罐相比较,圆筒形罐的单位金属耗量大,但是球形 罐制造较为复杂,制造安装费用较高,一般小容量的储罐多选用圆简形罐,而 大容量的储罐多选用球形罐。
2020/2/23
按储气压力分类按密封方式分类按结构形式分类高压储气柜罐圆柱形立式或卧式球形低压储气柜罐湿式水封直立升降式螺旋升降式稀油密封即曼型man型润滑脂密封即可隆型klonne型橡胶夹布帘密封即威金斯型wiggins型2020228湿式罐是在水槽内放置钟罩和塔节钟罩和塔节随燃气进出而升降并利用水封隔断内外气体罐容积随燃气量而变化
3. 罐顶是中间拱起的,四周设有栏杆扶手。为了防止活塞倾斜,滑 轮是沿拱顶周围按一定的间距排列的,滑轮上设有一端建到活塞 而另一端连到外部平衡重块的缆绳。在一个乎衡重块上装有指针, 可以在垂直标尺上指示所储存气体的体积。
4. 在整个活塞行程中,燃气的压力基本上保持不变,可达6000Pa。
2020/2/23
4. 储气罐的燃气压力为:
5. 由于上升的塔节数日不同,重量W也就不同,因此燃气压力 P也在变化。一般为1000~4000Pa。
对于燃气低压湿式罐,随着储气量增加,储气罐内燃气压力:A
2020/2/23 A.增大 B.减小 C.不变
4
一、直立罐
1. 直立罐如图11-1所示, 它是由水槽、钟罩、塔 节、水封、导轨立柱、 导轮、增加压力的加重 装置及防止造成真空的 装置等组成。
2020/2/23
22
(四)各种类型储气柜的优缺点
2020/2/23
23
第四节 燃气储配站
管存气计算方法
如何计算管道气存储能力例题:压力在2MPa-3MPa之间.管径为300,长度约15.6KM.如何计算管内的气量.1、管容=0.3*0.3*3.14/4*15.6*1000气量(标准立方米)=压力(bar)*管容(立方米)1MPa=10bar一般这样就可以了,再精确点就再除以一个压缩因子。
2、长输管线距离长、管径大、输送压力较高,管线具有一定的储气能力,长输管线中间设有加压站时,按最末一个加压站至城市配气站的管段计算其储气能力;设有中间加压站的长输管线,可按全线计算其储气能力。
城市天然气输配系统往往利用大口径输气管线储存一定气量作为高峰负荷时增加用户气量之用,其储气能力为储气终了时与储气开始时输气管中存气量之差、一条已投产的输气干管的长度、容积、管线起点允许最高工作压力、终点允许最高工作压力、终点用户要求的最低供气压力及该管线正常输气量等都是已知的,可按下列步骤计算其储气量:(1)根据压气站的最高工作压力或管线强度允许压力,确定储气终了时管线起点压力。
由起点压力和正常输气量按下式算出储气终了时的管线终点压力:式中Q——天然气通过能力(m3/d);(20℃,101,3kPa)D——输气管内径(cm);P1——输气管线的起点绝对压力(106Pa);P2——输气管线的终点绝对压力(106Pa);S——天然气相对密度;Tf——天然气平均绝对温度(K);L——输气管线长度(km);Z——天然气平均压缩因子。
(2)求储气开始时起点压力式中P1min——储气开始时起点绝对压力(106Pa);P2min——储气开始时终点绝对压力(106Pa);P1max——储气终了时起点绝对压力(106Pa);P2max——储气终了时终点绝对压力(106Pa);(3)计算管线的容积V=(Л/4)D2L(4)储气开始时的平均压力(5)储气终了时的平均压力(6)储气量式中Q。
——输气管线储气量(m3);(20℃,101.3kPa)V——输气管线容积(m3);To——293(K);Tm——天然气平均温度(K);Po——标准状态下的压力(101.3kPa);Z1、Z2——在Pm2、Pm2下的压缩因子;Pm1——储气终了时的平均压力(106Pa);Pm2——储气开始时的平均压力(106Pa)。
管存气计算方法
如何计算管道气存储能力例题:压力在2MPa-3MPa之间、管径为300,长度约15.6KM、如何计算管内得气量、1、管容=0、3*0、3*3、14/4*15、6*1000气量(标准立方米)=压力(bar)*管容(立方米)1MPa=10bar一般这样就可以了,再精确点就再除以一个压缩因子。
2、长输管线距离长、管径大、输送压力较高,管线具有一定得储气能力,长输管线中间设有加压站时,按最末一个加压站至城市配气站得管段计算其储气能力;设有中间加压站得长输管线,可按全线计算其储气能力。
城市天然气输配系统往往利用大口径输气管线储存一定气量作为高峰负荷时增加用户气量之用,其储气能力为储气终了时与储气开始时输气管中存气量之差、一条已投产得输气干管得长度、容积、管线起点允许最高工作压力、终点允许最高工作压力、终点用户要求得最低供气压力及该管线正常输气量等都就是已知得,可按下列步骤计算其储气量:(1)根据压气站得最高工作压力或管线强度允许压力,确定储气终了时管线起点压力。
由起点压力与正常输气量按下式算出储气终了时得管线终点压力:ﻫﻫﻫ式中Q——天然气通过能力(m3/d);ﻫ(20℃,101,3kPa)ﻫD——输气管内径(cm);ﻫ P1——输气管线得起点绝对压力(106Pa);ﻫP2——输气管线得终点绝对压力(106Pa);ﻫS——天然气相对密度;ﻫﻫ Tf——天然气平均绝对温度(K);L——输气管线长度(km);Z——天然气平均压缩因子。
(2)求储气开始时起点压力ﻫﻫ式中 P1min——储气开始时起点绝对压力(106Pa); P2min——储气开始时终点绝对压力(106Pa);ﻫﻫ P1max——储气终了时起点绝对压力(106Pa);ﻫﻫP2max——储气终了时终点绝对压力(106Pa);(3)计算管线得容积ﻫV=(Л/4)D2L(4)储气开始时得平均压力ﻫ(5)储气终了时得平均压力ﻫﻫ(6)储气量ﻫﻫ式中Q。
——输气管线储气量(m3);ﻫ (20℃,101、3kPa)ﻫV——输气管线容积(m3);To——293(K);Tm——天然气平均温度(K);ﻫ Po——标准状态下得压力(101、3kPa);ﻫZ1、Z2——在Pm2、Pm2下得压缩因子;ﻫPm1——储气终了时得平均压力(106Pa);ﻫﻫPm2——储气开始时得平均压力(106Pa)。
天然气管存量计算公式
天然气管存量计算公式天然气是一种重要的能源资源,其管存量的计算对于能源行业的规划和管理至关重要。
天然气管存量计算公式是根据一系列参数和数据来估算储量的方法。
以下是常用的天然气管存量计算公式。
1. 非连续性储层的储量计算公式:储量 = A × h ×φ× S × (1 - Sw) × (1 - CGR) × (1 - TGR) / Bg其中,A为储层面积,h为有效厚度,φ为孔隙度,S为饱和度,Sw为含水饱和度,CGR为可燃气体释放率,TGR为投产率,Bg为天然气体积系数。
2. 连续性储层的储量计算公式:储量 = A × h ×φ× S × (1 - Sw) × (1 - CGR) × (1 - TGR) × N / Bg其中,N为储层平均孔隙体积。
3. 储层饱和度计算公式:S = (Vr - Vg) / Vr其中,Vr为储层孔隙体积,Vg为储层天然气体积。
天然气管存量计算公式的具体应用需要根据实际情况进行调整和修正。
在计算过程中,需要准确测量和获得各个参数的数值,包括储层面积、有效厚度、孔隙度、饱和度、含水饱和度、可燃气体释放率、投产率和天然气体积系数等。
此外,天然气管存量计算还需要考虑地质特征、生产数据、储层压力、气体性质等因素的影响。
因此,在实际应用中,需要结合地质勘探、数据分析和数学模型等多种方法,综合计算天然气管存量,以提高计算的准确性和可靠性。
总之,天然气管存量计算公式是评估天然气储量的重要工具,但其应用需要结合实际情况和多种参数的准确测量。
通过合理应用计算公式,可以更好地评估和管理天然气资源,为能源行业的发展提供科学依据。
天然气管存量计算公式
天然气管存量计算公式天然气的管存量(Reserves)是指天然气在地下储存的总量,它是评估能源储存和开发潜力的重要指标。
天然气管存量的计算需要考虑多个因素,包括地质构造、储层特征、气体组成、地下压力和温度等。
通常情况下,天然气管存量的计算可以通过以下公式进行估算:管存量=AxhxφxSwxGixρg其中A是储集体积(储集圈面积);h是有效厚度;φ是孔隙度;Sw是有效饱和度;Gi是地质指数;ρg是天然气的密度。
下面对于以上公式的参数进行详细解释:1.储集体积(A)是指地下储存区域的几何体积。
通过对勘探数据、地质模型和地震资料的分析,可以确定储存区域的面积。
2.有效厚度(h)是指天然气储存区域中具有可用天然气储存潜力的岩石层的厚度。
通过地质勘探和地震勘探技术,可以确定该参数。
3.孔隙度(φ)是指岩石层中的孔隙空间占总体积的比例。
通过岩石圈和物理实验可以确定该参数。
4.有效饱和度(Sw)是指天然气储存区域中天然气占据的有效体积占总体积的比例。
通过地质导航和地球物理实验技术可以确定该参数。
5.地质指数(Gi)是对天然气聚集程度的定量评价指标,是根据油气分区统计和勘探评价结果进行评估得到的。
6.天然气密度(ρg)是指天然气在地下储存状态下的密度。
一般情况下,天然气的密度可以根据温度和压力来计算。
此外,天然气管存量计算还需要考虑开发上的可采储存率和可采资源量。
可采储存率是指在天然气的储存区域内,能够经济合理地实现气体开采的比例。
可采资源量是指在已知勘探结果和工业技术条件下,经济、可行地开采和利用的天然气总量。
综上所述,天然气管存量的计算是一个综合考虑地质、物理、经济等多个因素的复杂过程。
通过以上所述的公式和参数,可以初步估计天然气储存区域的潜力和开发可行性,为后续的天然气开采和利用提供参考依据。
储罐内气体浓度计算公式
储罐内气体浓度计算公式
在计算储罐内气体浓度时,需要考虑气体的泄漏速率以及储罐
内气体的扩散情况。
根据气体扩散的速率和储罐内的混合情况,可
以使用Fick定律或者质量守恒方程来计算气体在储罐内的浓度分布。
另外,还需要考虑气体在储罐内的混合情况,包括对流、扩散
和反应等因素。
这些因素会影响储罐内气体浓度的分布情况,需要
进行详细的分析和计算。
总的来说,储罐内气体浓度的计算涉及到多个因素,需要综合
考虑理想气体状态方程、Fick定律、质量守恒方程以及气体在储罐
内的混合情况等因素,进行综合分析和计算。
具体的计算公式会根
据实际情况而有所不同,需要根据具体情况进行详细的分析和计算。
天然气长输管道管存计算方法研究
天然气长输管道管存计算方法研究朱瑞华;郭伟【摘要】目前,大多数管存计算公式采用稳态方法,精度较低。
为精确计算管道管存,应精确计算存气管道气体温度、压力及压缩因子。
文中将管段内气体由起点至终点参数动态变化看作一个多变指数为n的热力学参数变化过程,依据气体流动状态方程、运动方程推导出新的管存计算公式,计算过程采用分段计算累加的方法。
经实例计算,与其他计算公式及TGNET软件模拟结果进行对比,推导公式计算精度较高。
%At present , most of stock volume calculation formula adopts steady state method , and the accuracy is relative low.In order to calculate the stock volume of pipeline accurately , the gas temperature , pressure and compression factor of the gas pipeline should be calculated precisely .In this paper , the parameters dynamic change of gas stocked in the pipeline ( from start-ing point to the end point ) were considered as changing process of thermodynamic parameters with polytropic exponent of n.Ac-cording to the gas state equation of flow and the equation of motion , new volume calculation formula was deduced .The calcula-tion process adopted the method of subsection computing accumulation .By practical calculation , comparing with results calculated by other calculation formula and TGNET software simulation , computational accuracy of the derived formula is relative high.【期刊名称】《管道技术与设备》【年(卷),期】2016(000)006【总页数】3页(P56-58)【关键词】管存;多变过程;运动方程;状态方程;输气管道【作者】朱瑞华;郭伟【作者单位】中石油中亚天然气管道有限公司,北京 100007;中石油中亚天然气管道有限公司,北京 100007【正文语种】中文【中图分类】TE8天然气长输管道管存是指管道中实际储存的天然气在标态下的体积,是反映管道运行时的压力、温度、运行配置以及运行效率的综合指标,是控制管道进出气体平衡的重要指标。
气量自动计算公式7.18
管存气量 波动值取不同的公式。 2.使用者仅可以据实填写蓝色部分的数字,注意单位,红色部分自动生成,禁止改动。 3.低压管道的放散忽略不计。 4.表压指压力表显示的压力。 5.管存气量波动值是专门为外环次高压设计应用。
管存 气量计算 公式
新置换管道置换完以后的新增管存气量计算公式 三 管段的长度 (米) 289 表压(公斤) 2.5 管道直径 (米) 0.2 管存气量 (立方米) 31.8
管道压力变化导致管存气量波动量的计算公式 管段的长度 (米) 四 5000 33000 15000 合计 管道波动压力 表压(公斤) 1 1 1 管道直径 (米) 0.35 0.3 0.2 管存波动气量 (立方米) 480.8 2331.5 471.0 3283.3
新管道置换时的放散气量计算公式 一 放散管段的长度 (米) 289 表压(公斤) 0 管道直径 (米) 0.2 放散气量 (立方米) 27.2
分类放散 气量自动 计算公式
二
降压带气时的放散气量计算公式 (放散的前提是提前关阀降压至0.5公斤后再放散) 放散管段的长度 管道直径 放散气量 表压(公斤) (米) (米) (立方米) 289 0.5 0.2 4.5
浅论利用燃气管道管储调峰及提升管储的方法
浅论利用燃气管道管储调峰及提升管储的方法作者:钟震文章来源:深圳市燃气集团股份有限公司天然气工程建设分公司2011-6-9管储调峰应用背景介绍随着城镇燃气行业的蓬勃发展,气源供应也越来越显紧张。
上游气源供应商为产输平稳,制定了各种条款制度来限制下游城镇燃气运营企业,基本上都对下游用户的用气总量和提气速率做出了限定,要求下游城镇燃气企业最大年、季、月、日、小时提气量、最大提气速率等指标不能超过一定值。
超提倍付已是上游对下游限制的惯用手法。
针对各种超提(如瞬时提气速率超额,日累计用量超额)处理,往往带有惩罚性质,大多是成多倍价格额外收取费用。
城镇居民用气具有自身特点,存在着日、季度的周期性变化,不可能保持平稳用气。
用户的周期性不均衡用气给城镇燃气运营企业带来极大的难度。
城镇燃气企业即使能保证年、月、日总量不超标,但也很难保证小时不超提,更保证不了瞬时不超提。
城镇燃气运营企业为应对超提问题,常常出高价购买现货。
然而,城镇燃气向居民用户的销售价格基本是政府定价,不能随便涨跌。
大量的现货购买会给城镇燃气运行企业带来巨大的经济负担。
很多用气高峰时段,城镇燃气营运商都是高买低卖来为城镇居民提供气源的,这也是城镇燃气行业普遍效益不好的重要原因之一。
由于预测购买现货量往往与实际用户需求量存在差距,经常出现现货购买过多或过少问题。
现货购买多了用不了,还需额外增加保管费用;现货购买少了,还需向上游气源供应商超提,或者是限制下游用户使用量,无论哪种方式,都会给企业造成一定的损失或负面影响。
超提倍付给下游城镇燃气营运企业带来极大的商业难题。
既要保证城镇工商业居民的正常用气,又不能超过上游气源提供商的最大提气要求,还要受照付不议合同的约束。
如何满足城镇居民用户对燃气用气高峰的需求,又尽量减少高价格购买的“现货”。
为降低现货购买和超提给企业带来的经济损失,很多城镇燃气运营商都投资大量资金建设调峰站、储气库、设臵缓冲罐等方式来应对。
天然气公司供销气差管理制度
XXXX燃气有限公司运行管理部供销气差管理制度编号:版号:2020・1・1XXXX燃气有限公司运行管理部2020年1月1日发布2020年6月31日实施供销气差管理制度第一条供销气差率计算方法及要求为了正确反映公司计量管理水平,准确的衡量红牙合孔板流量计输出气量与各用气点流量计的运行状况,XXXX燃气运行部对供销气差率计算方法统一规定如下:1.供销气差率计算方法规定供销气差率二[(当期门站进气量土管道存气量差值—民用户用气量-工商户用气量-自用气量)/(当期门站进气量土管道存气量差值)]X100%。
其中:(1)门站进气量以当期红牙合门站孔板计量表的读数为准(2)库存气量以所有管道内存气量为基准(按管道长度、管径、压力来分开计算):当管道压力增高存气量增加时,计算时减去管道存气量差值;当库存气量减少时,计算时加上库存气量差值。
(计算累计供销气差率时,不考虑中间月份的库存气量差值,只计算累计时间两端的库存气量差值)(3)民用户用气量为普表总用气量和远传表摊销气量之和普表用户的日均用气量二抄表总气量/抄表总户数(包括零位户数)/抄表周期(天数);普表总用气量二普表用户的日均用气量X普表总数X抄表周期(天数);注:零位户数为当月表没有走字的用户。
(4)工商户用气量以当期实际用量为准。
自用气量用来反映成员公司内部的自用气量情况,以燃气表读数为依据,若没有计量仪器,不允许计入自用气量。
2.用气量抄收时间规定普表抄表周期为一般为一个月,用户数量较大,在一个月难以全部抄表的,抄表周期可为2个月(普表用户月用气量=普表户总数X抄表总气量/抄表户数)。
民用户抄表应按周期进行,杜绝抄表周期不稳定现象(过短或过长),严禁抄表员随意估算用户气量;工商户抄表时间定为每月25日;计量门站进气量的流量计抄表时间定为每月25日(若与上游流量计对比,可以根据上游结算日期再单独抄表),库存气量差值的计算时间定为每月25日。
3.民用户抄表率规定民用户抄表率应达到95%以上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何计算管道气存储能力例题:压力在2MPa-3MPa之间.管径为300,长度约15.6KM.如何计算管内的气量.1、管容=0.3*0.3*3.14/4*15.6*1000气量(标准立方米)=压力(bar)*管容(立方米)1MPa=10bar一般这样就可以了,再精确点就再除以一个压缩因子。
2、长输管线距离长、管径大、输送压力较高,管线具有一定的储气能力,长输管线中间设有加压站时,按最末一个加压站至城市配气站的管段计算其储气能力;设有中间加压站的长输管线,可按全线计算其储气能力。
城市天然气输配系统往往利用大口径输气管线储存一定气量作为高峰负荷时增加用户气量之用,其储气能力为储气终了时与储气开始时输气管中存气量之差、一条已投产的输气干管的长度、容积、管线起点允许最高工作压力、终点允许最高工作压力、终点用户要求的最低供气压力及该管线正常输气量等都是已知的,可按下列步骤计算其储气量:(1)根据压气站的最高工作压力或管线强度允许压力,确定储气终了时管线起点压力。
由起点压力和正常输气量按下式算出储气终了时的管线终点压力:式中Q——天然气通过能力(m3/d);(20℃,101,3kPa)D——输气管内径(cm);P1——输气管线的起点绝对压力(106Pa);P2——输气管线的终点绝对压力(106Pa);S——天然气相对密度;Tf——天然气平均绝对温度(K);L——输气管线长度(km);Z——天然气平均压缩因子。
(2)求储气开始时起点压力式中P1min——储气开始时起点绝对压力(106Pa);P2min——储气开始时终点绝对压力(106Pa);P1max——储气终了时起点绝对压力(106Pa);P2max——储气终了时终点绝对压力(106Pa);(3)计算管线的容积V=(Л/4)D2L(4)储气开始时的平均压力(5)储气终了时的平均压力(6)储气量式中Q。
——输气管线储气量(m3);(20℃,101.3kPa)V——输气管线容积(m3);To——293(K);Tm——天然气平均温度(K);Po——标准状态下的压力(101.3kPa);Z1、Z2——在Pm2、Pm2下的压缩因子;Pm1——储气终了时的平均压力(106Pa);Pm2——储气开始时的平均压力(106Pa)。
一、天然气管道系统的分类目前,天然气的供应主要向管道输气方向发展,由长输管道的高压管道输配系统和城市管道输配系统组成。
“西气东输”工程的天然气管道采用高压输气技术,提供给下游各城市的天然气压力较传统压力有很大的提高。
而随着城市天然气供应规模的扩大、用户的增多,原有城市管网的中、低压输配系统已经不能满足日常的调峰,因此,城市的天然气输配系统已经向多级压力级的配气系统发展,逐步形成城市外围一级高压天然气输气管道、城市二级中、低压天然气管道和高压球罐混合调峰系统,有利于满足不同用户的压力需求,同时降低城市内部输配管网的运行压力,增加管网气量调度能力等。
目前国内一些大城市输配系统已经尝试采用多级系统,以保证满足用户的不均匀用气。
二、天然气用量的不均匀性在城市燃气供应系统中城市用气量随着城市民用、工业等用户的用气特点,每月、每日、每时都在变化,高峰、低谷相差悬殊。
另外还存在着发生突发事件所引起的用气短缺。
为了解决用气不均衡的矛盾,城市必须建立储气设施。
1、生产周期的不均匀城市天然气输配系统中用户的用气量,会随季节、行业的周期生产规模和设备、人们的日常生活习惯等因素发生波动。
其中居民用气具有用气稳定,波动不大,用量较小的特点,易于预测和调节,只要合理配置少量储气设施,城市燃气公司能够自行处理日、时调峰。
而工业用户则不同,用气量较大,在生产旺季的用气量往往是淡季的几倍以上,一般生产周期很难预测。
如果仅仅靠城市燃气系统解决,这就需要很大的投资,而且闲置率过高。
这关系到月、季度等长期的峰值调节,这是管道生产调度中首要考虑的。
2、事故的不可预测长输管道在向城市天然气输配系统供气时,因管道、设备损坏以及无法抗拒的因素而引起的非正常停、限气,都将直接影响下游的供气可靠性,因此需考虑气源的事故调峰。
三、天然气的调峰和储存1、城市天然气输配系统城市天然气输配系统中时、日调峰一般采用储气设施储存一定量的天然气来解决。
储气设施根据储气压力的不同,可分为低压储气和高压储气,高压储气又可分为高压球罐储气、高压管束或高压管道储气和地下储气库储气。
对于天然气来讲,由于上游长输管道的供给压力较高,为充分利用其压力,一般采用高压储气,包括管道和储罐存气,也就是通过城市的外围一级管网建设来调峰。
1.1、高压管道储气长输管道有一定的储气能力,可以补偿城市用气高峰用气量。
城市天然气输配系统中的用气量是不均匀的,它是随着时间变化的,当城市燃气用气量大于供气量时,管道压力下降,弥补供气量的不足。
当城市燃气用气量小于供气量时,管道压力上升,储存多余的天然气量。
当地选择管道的起终点压力的波动范围和管道直径,可使其具有一定的储气调峰能力。
高压管道储气计算公式:V=(Vg ×To)/(Po×T)×(Pm1/Z1-Pm2/Z2)Pm1=2/3×[P1max+P2max2/(P1max+ P2max)]Pm2=2/3×[P1min+2/(P1min+ P2min)]式中:Vg、T分别为管道的几何体积、管道内气体平均温度;Z1——指气体在平均压力Pm1时的压缩系数;Z2——气体在平均压力Pm2时的压缩系数;Pm1——最高平均压力,即储气结束时管道内平均压力;Pm2——最低平均压力,即储气开始时管道内平均压力;P——最高平均压力,即储气结束时管道内平均压力;m1——管道起点最高压力,即储气结束时起点压力;P1maxP——管道终点最高压力,即储气结束时终点压力;2maxP——管道起点最低压力,即储气开始时起点压力;1min——管道终点最低压力,即储气开始时终点压力;P2min根据上述管道储气能力的计算公式,分别分析管道直径、管道长度、起点压力、终点压力对高压管道储气的影响:随着管道输气量的增加,储气量逐渐减小。
这是因为输气量增加,阻力损失增大,储气压差减小,因此管道储气量逐渐减小。
起点压力越高,口径越大,储气量就越大。
因此,提高管道的运行压力,可以大大提高管道的储气能力以及输气能力。
1.2、高压储罐储气城市天然气输配系统中的用气量随着时间变化的,当城市燃气用气量大于供气量时,通过高压储罐来弥补供气量的不足。
当城市燃气用气量小于供气量时,高压储罐储存多余的天然气量。
恰当地确定高压储罐的进出口压力和几何容积,可使城市燃气系统本身具有一定的储气调峰能力。
高压储罐储气计算公式:V=V c(P-P c)/P o参数说明:V——储气罐的有效储气容积(m3);V c——储气罐的几何容积(m3);P——最高工作压力(MPa);P c——储气罐最低允许压力(MPa);P0——大气压(MPa)。
2、高压管道储气与高压球罐储气的比较由于地上储罐需要占用城市土地,单位储量基建费用和其他储气方式相比又比较高,因此在国外的大城市中,特别是需要储气量很大的城市,已逐渐用其他方式,如地下储气库和管道储气代替。
目前,国内制造的高压球罐最大容积为5000立方米,如有进口钢材,可以加工制造1万立方米球罐。
天然气管道运行压力起始压力2.0Mpa,输出压力1.0Mpa,DN1000管道,长度为60公里,缓冲储存能力在40W方左右;高压球罐几何容积1000立方米,进口压力1.6Mpa,出口压力0.8Mpa,储气量约为0.8万立方米。
如果在城市输配管网中使用的话,可以降至0.2Mpa,也就是其调峰范围在1.4W方左右。
四、管道的调峰必要性和可行性城市天然气输配系统与气源、长输管线和城市管网供应方面的关系主要表现在城市门站的供气条件和调峰等方面。
长输管线采用的高压管道可以参与城市日、时调峰,合理分配和调度可以实行对季度和月用气量的调峰。
1、长输管线的调峰能力在燃气输配系统中因为用户用气时刻波动,所以需要合理配置储气调峰设施,以保证不间断的、稳定的向用户供气,保证公司和用户的正常生产运营。
城市燃气输配系统中的日、时调峰如果有一定的储存设施可以由城市燃气公司自行解决,长输管线不参与解决城市供气短期调峰问题。
一般日用量不超过10万Nm3的城市可建立1—2个100m3高压储罐就可以解决,但是对于用量上百万的城市就需要建立较大的储存设施。
如天津大港油田利用油田的油气层结构,建设地下储气库。
进行天然气加压反注采油储气,用于解决城市供气的季节调峰。
目前国内实现天然气供应的城市只能通过建设大量的高压球罐来解决城市用气的日、时调峰。
季节调节只能依靠长输管线和控制大的工业用户的生产周期来调节。
季节调峰问题,大多数城市受条件(资金、环境等)所限无法自行解决,因此在市场经济的形势下,应依靠长输管线,合理处理好上下游的供应和提取的衔接,充分利用长输高压管线的能力,实现上、中、下游资源的合理配置,共同解决城市的供气压力和调峰。
2、长输管线参与城市日、时调峰天然气供应需要形成管网,以便合理调度并形成连续、稳定、安全的供气保障。
天然气供需预测表明,2010年前后,我国除开发利用国内天然气资源外,需进口管输天然气400亿立方米,到2020年进口量将大幅增加。
为此需建设输气干线,构建大量支线供气管网,根据全国天然气输气管网的规划及建设计划,全国的天然气供应最终将形成区域化和网络化,长输干线不仅可以解决下游城市的季节性用气不均衡问题,而且为长输管线参与城市日、时调峰提供了可能。
3、随着城市燃气供应规模的扩大,各类用户的增多,输配系统往往需要采用三级系统(高压、中压、低压)及多级系统(超高压、高压、中压、低压)才能满足要求。
采用三级以上压力级制有利于满足不同用户的压力需求,降低城市内部输配管网的运行压力,增加管网气量调度能力,提高储气的经济性等。
来气压力一般不低于 1.0MPa,对于多级系统,来气压力一般不低于2.5MPa,甚至可以高达5.0MPa以上。
目前国外一些大城市输配系统普遍采用多级系统,超高压城市外环管网作为满足流量输送和部分储气的需要的手段而建设。
而且超高压外环的压力级制和高压管网的压力级差一般较大。
另外,在城市燃气供应系统中,必须解决供需平衡问题,做为城市上游长输管线一般解决城市季节不均衡和部分日用气不均衡,而城市小时用气不均衡目前主要通过城市自身解决。
建设一定规模的储气设施是解决日、时不均衡的主要手段。
目前常用的储气手段是高压球罐储气和城市高压外环储气等,主要依据上游长输管线输送压力来确定方案。
3.1、高压球罐对上游输送压力的要求压力(P):1.0MPa<P<1.6MPa如压力低于1.0MPa,将降低球罐的有效利用率,增大储罐站的投资。