七年级数学上册知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册知识点总结七年级数学上册知识点总结
1.有理数的分类:
2.规定了原点、正方向和单位长度的直线叫做数轴;在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数大于负数只有符号不同的两个数称互为相反数
只有符号不同的两个数称互为相反数在数轴上表示互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等.0的相反数是0.在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a||a|a(a0)a(a0)※绝对值的性质:
除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥0
3.有理数的加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
3.互为相反数的两个数相加得0;
4.一个数同0相加,仍得这个数.
¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同0相乘,都得0.
3.几个:不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.
4.分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac.
5.有理数除法则:除以一个数等于乘上这个数的倒数.注意:0不能作除数.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.
※乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数;③任何数的偶数次幂都是非负数;
④1的任何次幂都得1,0的任何次幂都得0;⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的
n绝对值。
把一个大于10的数记成a×10的形式,其中1a10,n=原数的整数
位数-1,这种记数法叫做科学记数法.
6.有理数混合运算的运算顺序规定如下:先算乘方,再算乘除,最后算加减;同级运算,按照从左至右的顺序进行;如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。
7.从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字用科学计数法表示的数精确到乘号前最后一个数字在原数的位数,它的有效数字为乘号前的所有数字
8代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、...字母和运算符号外,还可以有括号;②代数式中不含有“=、>、16.直线公理:经
过两点有一条直线,并且只有一条直线.线段公理:两点间线段最短;17.角:有公共端点的两条射线组成的图形叫做角;这个公共端点叫做角的顶点;这两条射线叫做角的边.※角也可以看成是由一条射线绕着它的端点旋转而成的。
※一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。
※终边继续旋转,当它又和始边重合..时,所成的角叫做周角。
..※从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平...分线。
..※经过直线外一点,有且只有一条直线与这条直线平行。
※如果两条直线都与第三条直线平行,那么这两条直线互相平行。
※平面内,过一点有且只有一条直线与已知直线垂直。
18.※统计图的特点:
折线统计图:能够清晰地反映同一事物在不同时期的变化情况。
条形统计图:能够清晰地反映每个项目的具体数目及之间的大小关系。
扇形统计图:能够清晰地表示各部分在总体中所占的百分比及各部分之间的大小关系统计图对统计的作用:
(1)可以清晰有效地表达数据。
(2)可以对数据进行分析。
(3)可以获得许多的信息。
(4)可以帮助人们作出合理的决策。
扇形统计图扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数。
通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系。
用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.作用:能清楚地反映出各部分数同总数之间的关系与比例.扇形面积与其对应的圆心角的关系是:扇形面积越大,圆心角的度数越大。
扇形面积越小,圆心
角的度数越小。
扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比*360度制作:1求出各面积占单位一的百分率(分率).2用360(圆的度数)乘求出的分率,求应画角的度数.3画一个平面圆形4用量角器量出角度画半径.
条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。
从条形统计图中很容易看出各种数量的多少。
条形统计图一般简称条形图,也叫长条图或直条图。
条形统计图是用条形的长短来代表数量的大小,便于比较。
条形统计图又分为条形统计图和复式条形统计图,复式条形统计图由多种数据组成,用不同的颜色标出。
制作(1)根据图纸的大小,画出两条互相垂直的线条,作为纵轴和横轴(2)在水平射线(横轴)上适当分配条形的位置,确定直条的宽度和间隔。
(3)在纵轴上确定单位长度,并标出数量的标记和计量单位。
(4)根据数据的大小,画出长短不同的直条。
并标上标题。
(5)若条形太小可适当在条形内画上颜色等区分。
折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。
折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的趋势。
复式的折线统计图有图例,用不同颜色或形状的线条区别开来。
折线统计图分为单式统计图和复式统计图。
制作折线统计图的步骤是:(1)根据统计资料整理数据。
(2)先画纵轴,后画横轴,纵、横轴都要有单位,按纸面的大小来确定用一定单位表示一定的数量。
(3)根据数量的多少,在纵、横轴的恰当位置描出各点,然后把各点用线段顺序连接起来。
19.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝
对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.
小学数学图形计算公式
1、正方形:周长=边长×4C=4a面积=边长×边长S=a2
2、正方体:表面积=棱长×棱长×6S表=6a2体积=棱长×棱长×棱长V=a3
3、长方形周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab
4、长方体(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5三角形面积=底×高*
12s=ah
21216平行四边形面积=底×高s=ah7梯形面积=(上底+下底)×高÷2s=
(a+b)h
8.圆直径=半径×2公式:d=2r半径=直径÷2公式:r=d÷2圆的周长=圆周率×直径公式:c=πd=2πr圆的面积=半径×半径×π公式:S=πrr9.圆柱
圆柱的侧面积=底面的周长×高。
公式:S=ch=πdh=2πrh
圆柱的表面积=底面的周长×高+两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的总体积=底面积×高。
公式:V=Sh10圆锥圆锥的总体积=底面积×高×1/3公式:V=1/3Sh20
相遇问题
相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题
追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题
顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题
溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间税后利息=本金×利率×时间×(1-税率)
扩展阅读:初中数学七年级上册知识点总结
提分数学
提分数学七年级上知识清单
第一章有理数
一.正数和负数
⒈正数和负数的概念
负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意
义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
3.0表示的意义
⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数
1.有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8也是偶数,-1,-3,-5也是奇数。
2.(1)凡能写成
q(p,q为整数且p0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负p分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
提分数学
正整数正有理数正分数(2)有理数的分类:①按正、负分类:有理数零
负整数负有理数负分数正整数整数零②按有理数的意义来分:有理数负整数正分数分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数0和正整数;a>0a是正数;a<0a是负数;
a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.
三.数轴
⒈数轴的概念
规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系
⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)3.利用数轴表示两数大小
⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
提分数学
4.数轴上特殊的最大(小)数
⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数
⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a提分数学
⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。
当a>0时,-a0,那么|a|=a;②如果a0),则x=±a;
⑸互为相反数的两数的绝对值相等。
即:|-a|=|a|或若a+b=0,则|a|=|b|;|a|是重要的非负数,即
提分数学
|a|≥0;注意:|a||b|=|ab|,
abab⑹绝对值相等的两数相等或互为相反数。
即:|a|=|b|,则a=b或a=-b;
⑺若几个数的绝对值的和等于0,则这几个数就同时为0。
即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)4.有理数大小的比较
⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的数总比右边的数小,或者右边的数总比左边的数大
⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
(3)正数的绝对值越大,这个数越大;(4)正数永远比0大,负数永远比0小;(5)正数大于一切负数;
(6)大数-小数>0,小数-大数<0.5.绝对值的化简
①当a≥0时,|a|=a;②当a≤0时,|a|=-a6.已知一个数的绝对值,求这个数
一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
六.有理数的加减法.
1.有理数的加法法则
⑴同号两数相加,取相同的符号,并把绝对值相加;
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与0相加,仍得这个数。
2.有理数加法的运算律⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)
在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加“相反数结合法”;
提分数学
②符号相同的两个数先相加“同号结合法”;③分母相同的数先相加“同分母结合法”;④几个数相加得到整数,先相加“凑整法”;
⑤整数与整数、小数与小数相加“同形结合法”。
3.加法性质
一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。
即:⑴当b>0时,a+b>a⑵当b提分数学
Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)--
313217+-+-524528321137)+(-+)+(+-)55224818原式=(--
=-1+0-
=-1
Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)(+0.125)-(-3
18312)+(-3)-(-10)-(+1.25)4833121)+(-3)+(+10)+(-1)4834原式=(+)+(+3
18=+3
183121-3+10-14834=(3
31112-1)+(-3)+1044883=2
12-3+102316=-3+13
=10
16617-12+41122151761)+(-)
5151122Ⅴ.把带分数拆分后再结合(先拆分后结合)-3+10
15原式=(-3+10-12+4)+(-+
=-1+
411+1522提分数学
=-1+
815+3030=-
730Ⅵ.分组结合
2-3-4+5+6-7-8+9+66-67-68+69
原式=(2-3-4+5)+(6-7-8+9)++(66-67-68+69)
=0Ⅶ.先拆项后结合
(1+3+5+7+99)-(2+4+6+8+100)
七.有理数的乘除法
1.有理数的乘法法则
法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;
法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法则四:几个数相乘,如果其中有因数为0,则积等于0.2.倒数
乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,
用式子表示为a
1=1(a≠0),就是说aa和
111互为倒数,即a是的倒数,是a的倒数。
aaa1互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是;倒数是本身的数
a是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.注意:
①0没有倒数;
②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;
③正数的倒数是正数,负数的倒数是负数。
(求一个数的倒数,不改变这个数的性质);④倒数等于它本身的数是1或-1,不包括0。
3.有理数的乘法运算律
提分数学
⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
即ab=ba⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
即(ab)c=a(bc).⑶乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。
即a(b+c)=ab+ac4.有理数的除法法则(1)除以一个不等0的数,等于乘以这个数的倒数;注意:零不能做除数,即无意义(2)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得05.有理数的乘除混合运算
(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。
a0八.有理数的乘方
1.乘方的概念
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a中,a叫做底数,n叫做指数。
(1)a是重要的非负数,即a≥0;若a+|b|=0a=0,b=0;
0.120.01211(2)据规律2底数的小数点移动一位,平方数的小数点移动二位
101002
22n2.乘方的性质
(1)负数的奇次幂是负数,负数的偶次幂的正数;注意:当n为正奇数时:(-a)=-a或(a-b)=-(b-a),当
n为正偶数时:(-a)=a或(a-b)=(b-a).
(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。
nnnnnnnn九.有理数的混合运算
做有理数的混合运算时,应注意以下运算顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
十.科学记数法
把一个大于10的数表示成a10的形式(其中1a10,n是正整数),这种记数法是科学记数法
-9-
n提分数学
近似数的精确位:一个近似数,四舍五入到那一位,就说这个近
似数的精确到那一位.
有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原
则.
特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.
等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.
第二章整式的加减
一.用字母表示数(代数初步知识)
1.代数式:用运算符号“+-÷”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式;用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc。
2.代数式书写规范:
(1)数与字母相乘,或字母与字母相乘中通常使用“”乘,或省略不写;(2)数与数相乘,仍应使用“”乘,不用“”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;13(4)带分数与字母相乘时,要把带分数改成假分数形式,如a1应写成a;
223(5)在代数式中出现除法运算时,一般用分数线将被除式和
除式联系,如3÷a写成的形式;
a提分数学
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做
a-b和b-a.
出现除式时,用分数表示;
(7)若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是:a-b;a与b差的平方是:(a-b);
(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数
是:n-1、n、n+1;
(4)若b>0,则正数是:a+b,负数是:-a-b,非负数是:a,非正数是:-a.
2222222二.整式
1.单项式:表示数与字母的乘积的代数式叫单项式。
单独的一个数或一个字母也是代数式。
2.单项式的系数:单项式中的数字因数;单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;
3.单项式的次数:一个单项式中,所有字母的指数和
4多项式:几个单项式的和叫做多项式。
每个单项式叫做多项式的项,不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
常数项的次数为0。
注意:(若a、b、c、p、q是
常数)ax+bx+c和x+px+q是常见的两个二次三项式.
5整式:单项式和多项式统称为整式,即凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:整式2
2单项式多项式.
注意:分母上含有字母的不是整式。
6.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,
叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.
提分数学
三.整式的加减
1.合并同类项
2同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
3合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
4合并同类项的步骤:(1)准确的找出同类项;(2)运用加法交换律,把同类项交换位置后结合在一起;(3)利用法则,把同类项的系数相加,字母和字母的指数不变;(4)写出合并后的结果。
5去括号去括号的法则:
(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;(2)括号前面是“”号,把括号和它前面的“”号去掉,括号里各项的符号都要改变。
6添括号法则:添括号时,若括号前边是“+”号,括号里的各项
都不变号;若括号前边是“-”号,括号
里的各项都要变号.
7整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项;整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.
8整式加减的步骤:(1)列出代数式;(2)去括号;(3)添括号(4)合并同类项。
第三章一元一次方程
1等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3方程:含未知数的等式,叫方程.
4一元一次方程的概念:只含有一个未知数(元)(含未知数项的系数不是零)且未知数的指数是1(次)的整式方程叫做一元一次方程。
一般形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).最简形式:ax=b(x是未知数,a、b是已知数,且a≠0)
1注意:未知数在分母中时,它的次数不能看成是1次。
如3x,它不是一元一次方程。
x5解一元一次方程
提分数学
方程的解:能使方程左右两边相等的未知数的值叫做方程的解;注意:“方程的解就能代入”验算!解方程:求方程的解的过程叫做解方程。
等式的性质:(1)等式两边都加上或减去同一个数或同一个整式,。