八年级数学下册第十六章二次根式16.1二次根式第2课时二次根式的化简ppt课件新版新人教版

合集下载

人教版数学八年级下册第十六章16.1.1二次根式的定义课件

人教版数学八年级下册第十六章16.1.1二次根式的定义课件

解:(1)∵ 3 6 4 的根指数是3,∴ 3 6 4 不是二次根式. (2)∵不论x为何值,都有x2+1>0,∴ x 2 1 是二次根式.
(3)当-5a≥0,即a≤0时, - 5 a 是二次根式;
当a>0时,-5a<0,则 - 5 a 不是二次根式. ∴ 不一定是二次根式.
(4) +1(a≥0)只能称为含有二次根式的式子,不能称为 二次根式.
D.x >-1且x≠3
D. 4 个
B.
【点拨】二次根式是在初始的外在形式上定义的,不能从化简结
果上判断,如 16等都是二次根式.
4. 二次根式 a从意义上说是 a 的_算__术__平__方__根___,根据算术平方 根的意义可知,只有_非__负__数___才有算术平方根,所以二次根 式 a有意义的条件就是__a_≥__0___.
再见
1
(5)当x=-3时,( x 3)2 无意义,∴
1 ( x 3)2
也无意义;
当x≠-3时,(
x
1
3 )2
>0,∴
1 ( x 3)2
是二次根式.
1
∴ ( x 3)2 不一定是二次根式.
(6)当a=4时,a-4=0, ( - a-4)2 是二次根式;
当a≠4时,-(a-4)2<0, ( - a-4)2 不是二次根式.
8. a(a≥0)既表示一个二次根式,又表示非负数 a 的__算__术____ 平方根. a具有双重非负性,即 a___≥_____0, a____≥____0.
9. 已知 y= 2x-5+ 5-2x-3,则 2xy 的值为( A )
A. -15
B. 15
C. -125
15 D. 2
10.若实数 m,n 满足等式|m-2|+ n-4=0,且 m,n 恰好是

最新人教版八年级数学下册第16章二次根式全套课件PPT(完美版)

最新人教版八年级数学下册第16章二次根式全套课件PPT(完美版)

A≥0且B≠0.
A 1有意义的条件:
B
巩固练习
2. x取何值时,下列二次根式有意义?
(1) x 1
x≥1
(4) 1 x x>0
(2) 3x
x≤0
(5) x3
x≥0
(3) 4x2
x为全体实数
(6) 1 x2 x≠0
(7)
x 1 x3

(
x

2)0
(8)
x 2 (9) x2 1
x
∴当x=1时, x2 2x 1 在实数范围内有意义. (2)∵无论x为任何实数,-x2-2x-3=-(x+1)2-2<0, ∴无论x为任何实数, x2 2x 3 在实数范围内都无意义.
归纳小结:被开方数是多项式时,需要对组成多项式的项 进行恰当分组凑成含完全平方的形式,再进行分析讨论.
探究新知
归纳总结
一般地,我们把形如 a (a 0) 的式子叫做二 次根式. “ ”称为二次根号.
注意:a可以是数,也可以是式.
两个必备特征
①外貌特征:含有“ ” ②内在特征:被开方数a ≥0
探究新知
素养考点 1 利用二次根式的定义识别二次根式
例1 下列各式中,哪些是二次根式?哪些不是?
(1) 14 ; (2)81; (3) - 0.8 ;(4)-3x (x 0)
(1) 32

(2) -12 不是
(3)3 8
(4)4 a2
不是
不是
(5) - m (m 0) 是
(8) - x2 1
不是
(6) 2a 1 不是
(9)4 2

(7) a2 2a 3

1

16.1二次根式2课时

16.1二次根式2课时
回忆
⑴什么叫做一个数的平方根?如何表示? 一般地,若一个数的平方等于a,则 这个数就叫做a的平方根.
a的平方根是 a
⑵什么是一个数的算术平方根?如何表示?
正数的正的平方根叫做它的算术平方根. 0的算术平方根是0
用a (a≥0)表示.
求下列各数的平方根和算术平方根. 9的平方根 3 ,算术平方根
方法构想
X ≠- 1
3 2
一个式子中: 若含有几个二次根式,则要求所有被开方数大于等于0; 若含有分式,则要求分母的值不等于0; 若含有零指数或负指数次幂,则要求其底数不为0.
求下列二次根式中字母的取值范围:
1 a 1 (a≥0) 2 3 a 3 (a取任意实数)
方法构想
1 1 2 (a ) 1 2a 2
0.64的平方根 0.8 ,算术平方根
3
0.8 0
0的平方根
0 ,算术平方根
1、16的平方根是什么?16的算术平方根是什么? 2、0的平方根是什么? 3、-7有没有平方根?有没有算术平方根? 正数有算术平方根;负数没有算术平方根。
4、 7 表示什么?
表示7的算术平方根
5、 a 表示什么?a 需要满足什么条件? 为什么?
2
2
x 2 x 1,其中x=- 3
2
m4 思考:若 ( m 4 ) 2 m 4, 则 m 的取值范围是 _________ m4 思考:若 ( m 4 ) 2 4 m , 则 m 的取值范围是 _________
想一想: 甲、乙两人计算当a = - 1.5时 a -
1 )也 3, 2
且根号内含有字母的代数式叫做二次根式,为了方便起
见,我们把一个数的算术平方根(如其中 叫做二次根式,

八年级数学下册(人教版)精品教学课件-全册

八年级数学下册(人教版)精品教学课件-全册

讲授新课
一 二次根式的概念及有意义的条件
问题1 上面问题的结果分别是 3, s, 65, h ,它们表示一些
5
正数的算术平方根.那么什么样的数有算术平方根呢?
我们知道,负数没有平方根.因此,在实数范围内开平 方时,被开方数只能是正数或0.
问题2 上面问题的结果分别是 3, s, 65, h ,分别从形式上
八年级数学下册(人教版)精品教学课件 全册
第十六章
八年级数学下(RJ) 教学课件
二次根式
16.1 二根次式
第1课时 二次根式的概念
导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.理解二次根式的概念.(重点)
2.会确定二次根式有意义时字母的取值范围.(难点)
导入新课
想一想
(1)如左图所示,礼盒的上面是正方形, 其面积为3,则它的边长是 3 .
如果其面积为S,则它的边长是 S .
(2)如左图所示,一个长方形的围 栏,长是宽的2倍,面积为130m2,则 它的宽为 65 m.
想一想
(3)一个物体从高处自由落下,落到
地面所用的时间t(单位:s)与开始落下
时离地面的高度h(单位:m)满足关系
式h=5t2.如果用含有h的式子表示t,那么t
h
为 5.
(1) ( 1.5)2;
(2) (2 5)2.
想一想:此小题 用到了幂的哪条 基本性质呢?
解: (1) ( 1.5)2 1.5;
积的乘方: (ab)2=a2b2
(2) (2 5)2 22 ( 5)2 4 5 20.
二 a2 (a 0) 的性质
归纳 要使二次根式在实数范围内有意义,即需满足被开方数≥0,列不等 式求解即可.若二次根式处在分母的位置,应同时考虑分母不为零.

人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿

人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿

人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿一. 教材分析人教版数学八年级下册16.1《二次根式的性质》(第2课时)是在学生已经掌握了二次根式的概念、性质和运算法则的基础上进行的一节内容。

本节课的主要内容是进一步探讨二次根式的性质,包括二次根式的乘除运算、合并同类二次根式等。

通过本节课的学习,使学生能够灵活运用二次根式的性质进行各种运算,提高他们的数学思维能力和解决问题的能力。

二. 学情分析在进入本节课的学习之前,学生已经对二次根式有了初步的认识和了解,能够进行一些基本的二次根式运算。

但是,对于一些复杂的二次根式运算,学生可能还存在一定的困难。

因此,在教学过程中,教师需要针对学生的实际情况,采取有效的教学方法,引导学生逐步掌握二次根式的性质,提高他们的运算能力。

三. 说教学目标1.知识与技能目标:使学生掌握二次根式的性质,能够熟练地进行二次根式的乘除运算和合并同类二次根式。

2.过程与方法目标:通过观察、分析、归纳等方法,引导学生自主探索二次根式的性质,培养他们的数学思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们克服困难的勇气和自信心,培养他们的团队协作精神。

四. 说教学重难点1.教学重点:使学生掌握二次根式的性质,能够进行二次根式的乘除运算和合并同类二次根式。

2.教学难点:二次根式的乘除运算和合并同类二次根式的方法。

五. 说教学方法与手段在本节课的教学过程中,我将采用自主探索、合作交流的教学方法,引导学生通过观察、分析、归纳等方法自主学习二次根式的性质。

同时,利用多媒体教学手段,展示二次根式的运算过程,帮助学生更好地理解和掌握二次根式的性质。

六. 说教学过程1.导入:通过复习二次根式的概念和性质,为学生进入本节课的学习做好铺垫。

2.自主探索:引导学生观察、分析、归纳二次根式的性质,使学生能够自主掌握二次根式的性质。

3.合作交流:学生进行小组讨论,分享他们在自主探索过程中得到的二次根式的性质,培养学生团队协作精神。

最新人教版八年级数学下册全册完整课件

最新人教版八年级数学下册全册完整课件
初中数学
全册精品PPT课件 (2套)
每一课都有两套课件!
第十六章 二次根式
17.1.2利用勾股定理解 决简单的实际问题
16.1 二次根式
17.1.2 数轴表示根号13
16.2.1 二次根式的乘法 16.2.2 二次根式的除法 16.3.1 二次根式的加减运算 16.3.2 二次根式的混合运算
17.2.1 勾股定理的逆定 理
知识回顾 问题探究 课堂小结 随堂检测
点击“互动训练” 选择“《二次根式(1)》随堂检测”
回忆
活动一:定向导学
⑴什么叫做一个数的平方根?如何表示?
一般地,若一个数的平方等于a,则
这个数就叫做a的平方根。
a的平方根是 aa
⑵什么是一个数的算术平方根?如何表示?
若一个正数的平方等于a,则这个数就 叫做a的算术平方根。
2.一长方形围栏,长是宽的2倍,
面积为130,则它的宽为 __6_5___
h 3.h=5t2,则t=___5____
20.1.1平均数
20.1.2中位数与众数
20.2 数据的波动程度
20.3 课题学习 体质健康 测试中的数据分析 小结、构建知识体系、复 习题20
《二次根式》第一课时
知识回顾 问题探究 课堂小结 随堂检测
(1)平方根:25的平方根是±5,3的平方根是 3 , 0的平方根是0,-5没有平方根.
二次根式具备哪些特点?
(1)有二次根号;
(2)被开方数不能小于0.
知识回顾 问题探究 课堂小结 随堂检测
探究一:什么样的式子是二次根式?
重点知识★
活动3 牛刀小试,初步运用
1
例1.式子:
2,

x

人教版八年级数学下册第十六章16.2二次根的乘除课件(3课时,共61张PPT)

人教版八年级数学下册第十六章16.2二次根的乘除课件(3课时,共61张PPT)
求证: a b a b a 0,b 0.
证明:根据积的乘方法则,有 ( a b)2 ( a)2 ( b)2 ab.
∴ a b 就是ab算术平方根.
又∵ ab 表示ab算术平方根, ∴ a b ab (a 0,b 0.)
知识归纳
二次根式乘法法则:
例8 设长方形的面积为S,相邻两边长分别为a,b.
反之: ab = a b (a≥0,b≥0 ). (a≥0,b≥0 ).
我们可以运用它来进行二次根式的解题和化简.
解:(2)∵

(1)
___×___=____;
(a≥0,b≥0 ).
当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得
2 7= ?
精典例题
例1 计算:
(1) 16 81 ;(2) 12 ;(3) 4a2b3 . 解:(1) 16 81=36;
(3) 3x 1 xy = 3x 1 xy =x y.
3
3
目标导学三:二次根式的除法
我们知道,两个二次根式可以进行乘法运算,那 么,两个二次根式能否进行除法运算呢?
24 = _____ ; 3 1 = _____ .
3
2 18
合作探究
问题 计算下列各式,观察计算结果,你能发现 什么规律?
(1) 4 = 9
特殊化,从能开得尽方的 二次根式乘法运算开始思考!
2 7= ?
目标导学一:二次根式的乘法 计算下列各式:
(1) 4 9= __2_×_3__=__6__; 4 9 =___3_6___6__;
(2) 16 25 __4_×_5__=__2_0_; 16 25 =__4_0_0___2_0_; (3) 25 36=__5_×_6__=__3_0_; 25 36 =__9_0_0___3_0_.

八年级下册(初二下)数学精品课件:第十六章二次根式

八年级下册(初二下)数学精品课件:第十六章二次根式

(1)2 2; (2)3 3.
通过上面的计算,你认为二次根式除法运 算的一般步骤有哪些?
二、探究新知 3.你能化简下列二次根式吗?
3 (1) ; 100 75 (2) ; 27
3 (3) ; 5
3 2 (4) ; 27
8 (5) . 2a
二、探究新知 3.答案.
3 (1) ; 10 6 (4) ; 3
解:原式
8 6 3 6
8 6 3 6
4 3 3 2
探究新知
例1 计算:
(2) (4 2 3 6 ) 2 2.
解:原式 4 2 2 2 3 6 2 2
三、巩固新知 1.例题:
2 ( 1 . 5 ) ; (1)计算: ① 2 ( 2 5 ) ; ②
2 2 ③ (4 ) . 3
(2)化简: ①

16;

( 5) 2 ;
(3.14 π ) 2 .
三、巩固新知
2.做一做: 教材第4页练习第1、2题.
绿色圃中学资源网
追问:在进行二次根式的乘除运算时,需要注意 什么?
需要注意的是:运算结果要化成最简形式.
复习旧知
问题2.二次根式的加减运算法则是什么?
a c b c (a b) c
追问:二次根式的加减运算法则的依据是什么?
加减法则的依据是:乘法分配律.
探究新知
例1 计算:
(1) ( 8 3) 6;
四、总结归纳
1.二次根式乘法法则.
2.二次根式乘法的运算步骤. 3.二次根式化简的方法.
五、布置作业 1.必做题: 教材习题16.2第1、6、7题. 2.选做题: 教材习题16.2第9题.
第十六章 二次根式

人教版下册课件:16.1二次根式性质

人教版下册课件:16.1二次根式性质

解:由二次根式的意义可知:
25x3 y4 0, y4 0, x 0.
25x3 y4 25 y4 x3
5y2 x x
5xy2 x
广丰实验中学饶绍仁
19
议一议
1. x 1 x 1 x 1 此式成立的条件_________.
ab2
ab2
a
a
b
b2
2∣b∣ ba
a
(a
(a 0,b
0,b 0)
0)
b a (a 0,b 0)
一般来说,如果二次根式里被开方数是几个因
式的乘积,其中有的因式是完全平方式,则这
样的因式可用它的非负平方根代替后移到根号
外面.
广丰实验中学饶绍仁
6
观察思考
若(x 3)0 1 有意义,则x __2_且_ x 3
x 2 广丰实验中学饶绍仁
27
课堂检测
(1) 27 15
(2) a2 b
3) a3 (b 0) b
(4) 1 ab
(5) 18x3 (6) 12 y2 ( y 0)
广丰实验中学饶绍仁
28
课堂检测
(7).化简二次根式
1 x
结果是. 1 x
广丰实验中学饶绍仁
30
2
2 3

___23___6_,
2

2 3

___23__6__
3 3 ___34 __6_, 3 3 __34__6__
8
8
4
4
8 15
__15____
4
4
8 15
_1_5____

【人教版】八年级数学下册(全书)课件(含本书所有课时)精美立体PPT

【人教版】八年级数学下册(全书)课件(含本书所有课时)精美立体PPT
只有真正坚持过,你才可以坦然地说一 句“尽 人事, 听天命 ”。 不留遗憾,不负此生。
内容涵盖小学、初中、高中三个学段 所有德育活动的主题班会
定义 形如 a (a≥0)的式子叫做二次根式; 其中“ ”称为二次根号,a称为被开方数(式).
例1 判断下列各式是否为二次根式,并说明理由.
(1)3 64 ;(2) x2 1 ;(3) -5a ;(4) a +1(a≥0);
1 你 的 恒 心 ,与 你的意 愿有关 很多时候,不能坚持并不是因为我们不 能吃苦 ,只是 因为我 们做某 件事情 的意愿 不强。 我的体力和耐力都不好,长跑常常是忍 着头痛 恶心硬 撑到最 后。 因为这个原因,每次跑步前我都有很大 的心理 压力。 加上那 些立下 的瘦身 目标常 常不能 三两天 见效, 所以每 一次都 是心血 来潮地 开始, 虎头蛇 尾地结 束。 可最近这一年,我却很积极地把晨跑坚 持了下 来。 并不是突然间变坚强,而是因为一个特 别不起 眼的理 由:能 够一个 人呆一 会儿。 自从荣升为两个孩子的妈妈后,我经常 忙乱到 连上厕 所都觉 得是一 种奢侈 。 一大早,把没起床的孩子交给家人,换 上运动 鞋,在 空旷的 街道上 吹吹凉 风,吸 吸那尚 未被污 染的空 气,戴 上耳机 ,听几 首喜欢 的歌…… 尽管只有短短的半个小时,但这一切都 让我足 够迷恋 。 虽然我仍然会在跑出四五百米之后心跳 加快, 头疼, 手臂和 腿都酸 困地抬 不起来 。可对 我来说 ,只要 能出去 ,其他 都不是 什么大 事。 原先看起来无法克服的困难,现在只要 稍稍放 慢脚步 ,调整 呼吸, 不一会 儿便能 缓解了 。 坚持就是痛苦和心理需求博弈的过程。 如果痛 苦更明 显,坚 持就会 变得艰 难;如 果心理 需求更 胜,坚 持就只 是自我 成全的 必经之 路而已 。

人教初中数学八年级下册 16.1《二次根式》二次根式的概念和性质课件1

人教初中数学八年级下册 16.1《二次根式》二次根式的概念和性质课件1

通常把形如 m a(a 0)的式子也叫做二
次根式,如 3 2, 2a b2 1 等. 24
例题1 化简二次根式:
1 72; 2 12a3; 3 18x2 x 0.
注意判断根号 内字母的取值 范围,
25
例题2 化简二次根式:
1 a;
3
2 5 ;
2x
3 b2 b 0;
aa 0.
29
9a
4 a 1.
a
注意判断根号内 字母的取值范围,
26
写出下列等式成立的条件:
1 (x 2)(x 6) x 2 x 6
2 y 2 y 2
6 y 6 y
27
小结
1.掌握化简二次根式的两个基本步骤: ⑴ 将二次根式中的分母化去; ⑵ 把二次根式中所含的完全平方因式移
不要忽略 4
说一说:
下列各式是二次根式吗?
(1) 32, (2) 6, (3) 12, (4) - m (m≤0), (5) xy (x,y 异号), (6) a2 1 , (7) 3 5
在实数范围内,负数没有平方根
5
a2 1
3 -2
2a 1
a
a 12
你能用魔法师变出的这些代数式 作为被开方数构造二次根式吗?
6
例 1 x是怎样的实数时,式子 x 3
在实数范围内有意义?
试一试(2) x是怎样的实数时,下列各式 在实数范围内有意义?
(1) 2x ; (2) 2x 5 ; (3) 3 x
7
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0
(3) 4x2x为全体实数(4) 1 x

人教版八年级数学下册第十六章《二次根式1》优课件 (3)

人教版八年级数学下册第十六章《二次根式1》优课件 (3)
课件说明
• 本课通过现实问题提出二次根式要研究的问题,通 过用字母表示算术平方根中的被开方数,把算术平 方根一般化,得到二次根式的概念、二次根式有意 义的条件、二次根式的非负性.
• 学习目标: 1.根据算术平方根的意义了解二次根式的概念;知 道被开方数必须是非负数的理由; 2.能用二次根式表示实际问题中的数量和数量关系.
a
_第_二__象限.
4、2+ 3- X的最小值为_2,此时x=_3_
5.已知: a-b+ 6 、 a+ b-8互为相反数.
则a=_1_,b=_7__.
6.要使下列式子有意义,x需要满足 什么条件?
(1) 3 - x (2) x+3+8-x
(3) 1
2x -5
(4) x-2+2-x
(5) x2-2x+1 (6)
1-x
(7 )x+ 5+3-2+ x (+ x 20)
求二次根式中字母的取值范围的基本依据:
①被开方数不小于零;
②分母中有字母时,要保证分母不为零。
你会做
1.若 a-2+2b-7=0,则 a+2b = _3__
2.已知a、b为实数,且满足
a=2 b-1+1-2 b+ 1则a+b
=1_21_
3、已知 - 1 有意义,则A(a, - a )在
请你说说对二次根式 a 的认识!
1. a 表示a的算术平方根.
2. a可以是数,也可以是式.
3. 形式上含有二次根号 4.二次根式有意义的条件是被开方数 (式)大于等于零.
性质1:非负双重性a≥0, a ≥0
1.下列各式是二次根式吗?

二次根式初中数学原创课件

 二次根式初中数学原创课件

当a ≥ -1 时, + 在实
(3)


数范围内有意义.
例题学习1
例1
求下列二次根式中字母 a 的取值范围:
解:(2)由
(1) +
(2)
(3)




>0,得

a<

当a <

时,


.


在实

数范围内有意义.
例题学习1
例1
求下列二次根式中字母 a 的取值范围:
用 (a ≥0)表示.
平方根的性质:
① 正数有两个平方根且互为相反数;
② 0 有一个平方根就是0本身;
③ 负数没有平方根.
1. 16的平方根是什么?16的算术平方根是什么?
2. 0的平方根是什么?0的算术平方根是什么?
3. -7有没有平方根?有没有算术平方根?
新知探索
表示什么?
表示非负数a的算术平方根.
解:(3)当a 为任意实数
(1) +
时,都有 (a -3)2 ≥0.
(2)
(3)



当a为任意实数时,

− 都有意义.
跟踪练习1
1. 求下列二次根式中字母 x 的取值范围:
(1)
(2)


(3) −
解:(1) x为任意实数.
(2) x >0.
(3) x≤0.
故a的值为1.
3. 若(2x+4y)2+
− =0, 求4x - y 的值.
解:因为 (2x+4y)2 ≥ 0,
− ≥ 0,它们和为0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档