八年级初二数学 勾股定理知识点总结含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级初二数学 勾股定理知识点总结含答案
一、选择题
1.在ABC 中,AB 边上的中线3,6,8CD AB BC AC ==+=,则ABC 的面积为( )
A .6
B .7
C .8
D .9
2.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )
A .600m
B .500m
C .400m
D .300m 3.△ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( ) ①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B -∠C; ④∠A ∶∠B ∶∠C =
1∶2∶3 ;⑤111,,345a b c =
==;⑥10,a = 24,b = 26c = A .2个 B .3个 C .4个 D .5个
4.如图,□ABCD 中,对角线AC 与BD 相交于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B′,则DB′的长为( )
A .1
B 2
C .32
D 35.将6个边长是1的正方形无缝隙铺成一个矩形,则这个矩形的对角线长等于( ) A 37B 13C 3713D 37137
6.如图,设正方体ABCD-A 1B 1C 1D 1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→…,白甲壳虫爬行的路线是AB→BB 1→…,并且都遵循如下规则:所爬行的第n+2与第n 条棱所在的直线必须既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )
A .0
B .1
C .3
D .2 7.下列各组线段能构成直角三角形的一组是( )
A .30,40,60
B .7,12,13
C .6,8,10
D .3,4,6 8.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )
A .
B .
C .
D .
9.下列以线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( ) A .9,41,40a b c ===
B .5,5,52a b c ===
C .::3:4:5a b c =
D .11,12,13a b c ===
10.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB=3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( )
A .1和2之间
B .2和3之间
C .3和4之间
D .4和5之间
二、填空题
11.如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm 、3 dm 和1 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点的最短路程是 dm .
12.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.
13.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.
14.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___
15.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.
16.在等腰Rt ABC △中,90C ∠=︒,2AC =
,过点C 作直线l AB ,F 是l 上的一
点,且AB AF =,则FC =__________. 17.如图,直线423
y x =
+与x 轴、y 轴分别交于点B 和点A ,点C 是线段OA 上的一点,若将ABC ∆沿BC 折叠,点A 恰好落在x 轴上的'A 处,则点C 的坐标为______.
18.如图所示,圆柱体底面圆的半径是2π
,高为1,若一只小虫从A 点出发沿着圆柱体的
外侧面爬行到C 点,则小虫爬行的最短路程是______
19.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB , 且 BD=3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD 的长是____________.
20.已知:如图,等腰Rt OAB ∆的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ∆,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ∆,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ∆,44OA B ∆,…,则66OA B ∆的周长是______.
三、解答题
21.(1)计算:1312248233⎛⎫-+÷ ⎪ ⎪⎝; (2)已知a 、b 、c 满足2|23|32(30)0a b c +-+--=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.
22.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.
(1)经过多少秒,△BMN 为等边三角形;
(2)经过多少秒,△BMN 为直角三角形.
23.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上
述定义,“距离坐标”为(0,0)的点有1个,即点O .
(1)“距离坐标”为(1,0)的点有 个;
(2)如图2,若点M 在过点O 且与直线AB 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD = 150︒,请写出p 、q 的关系式并证明;
(3)如图3,点M 的“距离坐标”为(1,3),且∠DOB = 30︒,求OM 的长.
24.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.
(2)求证:BED CDF △≌△.
(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.
25.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0).
(1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值;
(2)若点P 恰好在∠BAC 的角平分线上,求t 的值;
(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.
26.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-
(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.
(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的
值.
(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,
64AB AC ∇=-,求BC 和AB 的长.
27.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:
(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);
(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;
(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .
①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.
28.阅读下列材料,并解答其后的问题:
我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,△ABC 的面积为S =()()()()a b c a b c a c b b c a +++-+-+-. (1)(举例应用)已知△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a =4,b =5,c =7,则△ABC 的面积为 ;
(2)(实际应用)有一块四边形的草地如图所示,现测得AB =(26+42)m ,BC =5m ,CD =7m ,AD =46m ,∠A =60°,求该块草地的面积.
29.在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.
(1)如图1,若m =8,求AB 的长;
(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ; (3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.
30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A 出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).
(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度;
(2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ;
(3)点E 在边AC 上运动时,求∠EDF 的度数;
(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【分析】
本题考查三角形的中线定义,根据条件先确定ABC 为直角三角形,再根据勾股定理求得228AC BC = ,最后根据12
ABC AC BC ∆=
⋅求解即可. 【详解】 解:如图,在ABC 中,AB 边上的中线,
∵CD=3,AB= 6,
∴CD=3,AB= 6,
∴CD= AD= DB ,
12∠∠∴=,34∠=∠ ,
∵1234180∠+∠+∠+∠=︒,
∴1390∠+∠=︒,
∴ABC 是直角三角形,
∴22236AC BC AB +==,
又∵8AC BC +=,
∴22264AC AC BC BC +⋅+=,
∴22264()643628AC BC AC BC ⋅=-+=-=,
又∵12ABC AC BC ∆=⋅, ∴128722ABC S ∆=
⨯=, 故选B.
【点睛】本题考查三角形中位线的应用,熟练运用三角形的中线定义以及综合分析、解答问题的能力,关键要懂得:在一个三角形中,如果获知一条边上的中线等于这一边的一半,那么就可考虑它是一个直角三角形,通过等腰三角形的性质和内角和定理来证明一个三是直角三角形.
2.B
解析:B
【分析】
由于BC ∥AD ,那么有∠DAE=∠ACB ,由题意可知∠ABC=∠DEA=90°,BA=ED ,利用AAS 可证△ABC ≌△DEA ,于是AE=BC=300,再利用勾股定理可求AC ,即可求CE ,根据图可知从B 到E 的走法有两种,分别计算比较即可.
【详解】
解:如右图所示,
∵BC ∥AD ,
∴∠DAE=∠ACB ,
又∵BC ⊥AB ,DE ⊥AC ,
∴∠ABC=∠DEA=90°,
又∵AB=DE=400m ,
∴△ABC ≌△DEA ,
∴EA=BC=300m ,
在Rt △ABC 中,22AB BC +=500m ,
∴CE=AC-AE=200,
从B 到E 有两种走法:①BA+AE=700m ;②BC+CE=500m ,
∴最近的路程是500m .
故选B .
【点睛】
本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法.
3.D
解析:D
【分析】
根据勾股定理的逆定理,三角形的内角和定理,分别对每个选项进行判断,即可得到答案.
【详解】
解:∵222a c b -=,得222a b c =+,符合勾股定理逆定理,则①正确;
∵2()()0a b a b c -++=,得到222a c b +=,符合勾股定理逆定理,则②正确; ∵∠A =∠B -∠C ,得∠B=∠A+∠C ,
∵∠A+∠B+∠C=180°,
∴∠B=90°,故③正确;
∵∠A ∶∠B ∶∠C =1∶2∶3,∠A+∠B+∠C=180°, ∴318090123
C ∠=︒⨯=︒++,故④正确; ∵222111
()()()45
3+≠,则⑤不能构成直角三角形,故⑤错误;
∵222102426+=,则⑥能构成直角三角形,故⑥正确;
∴能构成直角三角形的有5个;
故选择:D.
【点睛】
本题考查了勾股定理的逆定理,以及三角形的内角和定理,解题的关键是熟练掌握用勾股定理的逆定理和三角形内角和定理进行判断三角形是直角三角形. 4.B
解析:B
【解析】
【分析】
如图,连接BB′.根据折叠的性质知△BB′E 是等腰直角三角形,则2.又B′E 是BD 的中垂线,则DB′=BB′.
【详解】
∵四边形ABCD是平行四边形,BD=2,
∴BE=1
2
BD=1.
如图2,连接BB′.
根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.
∴∠BEB′=90°,
∴△BB′E是等腰直角三角形,则BB′=2BE=2,
又∵BE=DE,B′E⊥BD,
∴DB′=BB′=2.
故选B.
【点睛】
考查了平行四边形的性质以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
5.C
解析:C
【分析】
如图1或图2所示,分类讨论,利用勾股定理可得结论.
【详解】
当如图1所示时,AB=2,BC=3,
∴AC=22
23=13
;
当如图2所示时,AB=1,BC=6,
∴22
1+6=37
故选C.
【点睛】
本题主要考查图形的拼接,数形结合,分类讨论是解答此题的关键.
6.D
解析:D
【分析】
先确定黑、白两个甲壳虫各爬行完第2017条棱分别停止的点,再根据停止点确定它们之间的距离.
【详解】
根据题意可知黑甲壳虫爬行一圈的路线是AA 1→A 1D 1→D 1C 1→C 1C→CB→BA ,回到起点. 乙甲壳虫爬行一圈的路线是AB→BB 1→B 1C 1→C 1D 1→D 1A 1→A 1A .
因此可以判断两个甲壳虫爬行一圈都是6条棱,
因为2017÷6=336…1,
所以黑、白两个甲壳虫各爬行完第2017条棱分别停止的点都是A 1,B.
,
故选D .
【点睛】
此题考查了立体图形的有关知识.注意找到规律:黑、白甲壳虫每爬行6条边后又重复原来的路径是解此题的关键.
7.C
解析:C
【分析】
根据勾股定理的逆定理解答即可.
【详解】
A 、∵222304060+≠,∴该选项的三条线段不能构成直角三角形;
B 、∵22271213+≠,∴该选项的三条线段不能构成直角三角形;
C 、∵2226810+=,∴该选项的三条线段能构成直角三角形;
D 、∵222346+≠,∴该选项的三条线段不能构成直角三角形;
故选:C .
【点睛】
此题考查勾股定理的逆定理,掌握勾股定理的逆定理的计算法则及正确计算是解题的关键.
8.B
解析:B
【分析】
“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.
【详解】
“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:
故选B.
【点睛】
本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.
9.D
解析:D
【分析】
根据直角三角形的判定,符合a 2+b 2=c 2即可;反之不符合的不能构成直角三角形.
【详解】
解:A 、因为92+402=412,故能构成直角三角形;
B 、因为52+52=(252
,故能构成直角三角形; C 、因为()()()222
345x x x +=,故能构成直角三角形;
D 、因为112+122≠152,故不能构成直角三角形;
故选:D .
【点睛】
本题考查的是勾股定理的逆定理,当三角形中三边满足222a b c +=关系时,则三角形为直角三角形. 10.C
解析:C
【分析】
利用勾股定理求出AB 的长,再根据无理数的估算即可求得答案.
【详解】
由作法过程可知,OA=2,AB=3,
∵∠OAB=90°,
∴22222313OA AB +=+=,
∴P 13 ∵91316< ∴3134<<,
即点P 所表示的数介于3和4之间,
故选C.
【点睛】
本题考查了勾股定理和无理数的估算,熟练掌握勾股定理的内容以及无理数估算的方法是解题的关键.
二、填空题
11.【解析】
试题分析:将台阶展开,如图,
331312,5,AC BC =⨯+⨯==222169,AB AC BC ∴=+=13,AB ∴=即蚂蚁爬行的最短线路为13.dm
考点:平面展开:最短路径问题.
12.210或213或32
【分析】 在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .
【详解】
∵90ACB ︒∠=,4,2AC BC ==,
∴25AB =,
情况一:当25AD AB ==时,作AE CE ⊥于E
∴ 1122BC AC AB AE ⋅=⋅,即455AE =,1455
DE = ∴22855CE AC AE =
-= ∴22213CD CE DE =+=
情况二:当25BD AB ==时,作BE CE ⊥于E ,
∴1122BC AC AB BE ⋅=⋅,即455BE =,1455
DE = ∴22255CE BC BE =
-= ∴22210CD CE DE =+=
情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E
∴1122
BC AC AB BE ⋅=⋅, ∴455BE =
35CE ∴= ∵ABD △为等腰直角三角形
∴152
BF DF AB === ∴955
DE DF E F DF BE ''=+=+= 2535555CE EE CE BF CE ''=-=-=-
= ∴2232CD CE E D ''=+=
故答案为:210或213或32
【点睛】
本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键. 13.48
【分析】
用a 和b 表示直角三角形的两个直角边,然后根据勾股定理列出正方形面积的式子,求出2S 的面积.
【详解】
解:本图是由八个全等的直角三角形拼成的,设这个直角三角形两个直角边中较长的长度为a ,较短的长度为b ,即图中的AE a =,AH b =,
则()221S AB a b ==+,2222S HE a b ==+,()2
23S TM a b ==-, ∵123144S S S ++=,
∴()()22
22144a b a b a b ++++-= 22222222144a b ab a b a b ab ++++++-=
2233144a b +=
2248a b +=,
∴248S =.
故答案是:48.
【点睛】
本题考查勾股定理,解题的关键是要熟悉赵爽弦图中勾股定理的应用.
14.5或13
【分析】
根据已知可得题意中的图是一个勾股图,可得S P +S Q =S K 为从而易求S K .
【详解】
解:如下图所示,
若A=S P =4.B=S Q =9,C=S K ,
根据勾股定理,可得
A+B=C ,
∴C=13.
若A=S P =4.C=S Q =9,B=S K ,
根据勾股定理,可得
A+B=C ,
∴B=9-4=5.
∴S K 为5或13.
故答案为:5或13.
【点睛】
本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.
15.103. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,
CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()2
3S NG NF =-,12310S S S ++=,即可得出答案.
【详解】
∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形
∴CG=NG ,CF=DG=NF
∴()2
222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =
()2
2232S NG NF NG NF NG NF =-=+-
∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF =
故2103
S = 故答案为
103
. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质.
16.31+或31-
【解析】
如图,l AB ,2AC =,作AD l ⊥于点D ,
∴1AD =,
∵2AF AB ==
=,且F 有2个,
∴12DF DF ===
∵1DC AD ==,
∴111CF CD DF =+=
221CF DF CD =-=.
点睛:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答,考查了学生的空间想象能力.
17.(0,
34). 【分析】 由423
y x =+求出点A 、B 的坐标,利用勾股定理求得AB 的长度,由此得到53122
OA '=
-=,设点C 的坐标为(0,m ),利用勾股定理解得m 的值即可得到答案. 【详解】 在423
y x =+中,当x=0时,得y=2,∴A (0,2) 当y=0时,得4203x +=,∴32x =-,∴B(32
-,0), 在Rt △AOB 中,∠AOB=90︒,OA=2,OB=
32,
∴52AB =
==, ∴53122
OA '=-=, 设点C 的坐标为(0,m )
由翻折得ABC A BC '≌,
∴2A C AC m '==-,
在Rt A OC '中, 222A C OC A O ''=+,
∴222(2)1m m -=+,解得m=
34, ∴点C 的坐标为(0,
34). 故答案为:(0,
34
). 【点睛】
此题考查勾股定理,翻折的性质,题中由翻折得ABC A BC '≌是解题的关键,得到OC
与A’C 的数量关系,利用勾股定理求出点C 的坐标.
18.5 【分析】 先将图形展开,再根据两点之间线段最短可知. 【详解】
圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C 是边的中点,矩形的宽即高等于圆柱的母线长.
∵AB=π•
2π=2,CB=1. ∴AC= 22AB +BC = 222=5+1,
故答案为:5.
【点睛】 圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决. 19.3或3或15
【分析】
根据直角三角形的性质求出BC ,勾股定理求出AB ,根据直角三角形的性质列式计算即可.
【详解】
解:如图
∵∠B=90°,∠A=30°,
∴BC=12AC=12
×8=4, 由勾股定理得,22228443AC BC -=-=
43333AD ∴==
当点P 在AC 上时,∠A=30°,AP=2PD ,
∴∠ADP=90°,
则AD 2+PD 2=AP 2,即(32=(2PD )2-PD 2,
解得,PD=3,
当点P 在AB 上时,AP=2PD ,
∴
当点P 在BC 上时,AP=2PD ,
设PD=x ,则AP=2x ,
由勾股定理得,BP 2=PD 2-BD 2=x 2-3,
()(22
223x x ∴-=-
解得,
故答案为:3
【点睛】
本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.
20.28
+ 【分析】
依次求出在Rt △OAB 中,OA 1Rt △OA 1B 1中,OA 2OA 1)2;依此
类推:在Rt △OA 5B 5中,OA 6=(
2)6,由此可求出△OA 6B 6的周长. 【详解】
∵等腰Rt OAB ∆的直角边OA 的长为1,
∴在Rt △OA 1B 1中OA 1=
2OA =2,
在22Rt OA B ∆中OA 2=
2OA 1=(2)2, …
故在Rt △OA 6B 6中OA 6=2OA 5=(2
)6= OB 6
66A B OB 6
故△OA 6B 6+2×)6+2×18
故答案为:
28
+ 【点睛】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现
的规律解决问题.
三、解答题
21.(1)4
23
;(2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,
【分析】
(1)根据二次根式的加减法法则、除法法则和二次根式的性质求出即可;
(2)先根据绝对值,偶次方、算术平方根的非负性求出a 、b 、c 的值,再根据勾股定理的逆定理得出三角形是直角三角形,再求出面积即可.
【详解】
解:(1)⎛÷ ⎝
=÷
=÷ =423
; (2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,
理由是:
∵a 、b 、c 满足2|a (c 0-=,
∴a ﹣=0,﹣b =0,c 0,
∴a =,b =,c
∵,,
∴以a 、b 、c 为边能组成三角形,
∵a =,b =,c
∴a 2+b 2=c 2,
∴以a 、b 、c 为边能构成直角三角形,直角边是a 和b ,
则此三角形的面积是
12⨯. 【点睛】
此题考查了计算能力,掌握二次根式的加减法法则、除法法则和二次根式的性质,绝对值,偶次方、算术平方根的非负性,勾股定理的逆定理是解题的关键.
22.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.
【分析】
(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解
之可得;
(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=
12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=
12
BN 列方程求解可得. 【详解】
解 (1)设经过x 秒,△BMN 为等边三角形,
则AM =x ,BN =2x ,
∴BM =AB -AM =30-x ,
根据题意得30-x =2x ,
解得x =10,
答:经过10秒,△BMN 为等边三角形;
(2)经过x 秒,△BMN 是直角三角形,
①当∠BNM =90°时,
∵∠B =60°,
∴∠BMN =30°, ∴BN =
12BM ,即2x =12
(30-x), 解得x =6;
②当∠BMN =90°时,
∵∠B =60°,
∴∠BNM =30°,
∴BM =12BN ,即30-x =12
×2x , 解得x =15, 答:经过6秒或15秒,△BMN 是直角三角形.
【点睛】
本题考查勾股定理的逆定理,等边三角形的判定.
23.(1)2;(2)2q p =
;(3)OM =【分析】
(1)根据“距离坐标”的定义结合图形判断即可;
(2)过M 作MN ⊥CD 于N ,根据已知得出MN q =,OM p =,求出∠MON =60°,根
据含30度直角三角形的性质和勾股定理求出MN p =
=即可解决问题;
(3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点,首先证明OM OE OF EF ===,求出
2MF =,23ME =,然后过F 作FG QM ⊥,交QM 延长线于G ,根据含30度直角三角形的性质求出1FG =,3MG =,再利用勾股定理求出EF 即可.
【详解】
解:(1)由题意可知,在直线CD 上,且在点O 的两侧各有一个,共2个, 故答案为:2;
(2)过M 作MN CD ⊥于N ,
∵直线l AB ⊥于O ,150BOD ∠=︒,
∴60MON ∠=︒,
∵MN q =,OM p =,
∴1122NO MO p =
=, ∴2232MN MO NO p =
-=, ∴3q p =; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点.
∴OFP OMP △≌△,OEQ OMQ △≌△,
∴FOP MOP ∠=∠,EOQ MOQ ∠=∠,OM OE OF ==,
∴260EOF BOD ∠=∠=︒,
∴△OEF 是等边三角形,
∴OM OE OF EF ===,
∵1MP =,3MQ =
∴2MF =,3ME =,
∵30BOD ∠=︒,
∴150PMQ ∠=︒,
过F 作FG QM ⊥,交QM 延长线于G ,
∴30FMG ∠=︒,
在Rt FMG △中,112FG MF ==,则3MG =, 在Rt EGF 中,1FG =,33EG ME MG =+=,
∴22(33)127EF =+=,
∴27OM =.
【点睛】
本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.
24.(1)90°;(2)证明见解析;(3)变化,234l +≤<.
【分析】
(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求
DAE=∠DEA=30°,由三角形内角和定理可求解;
(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;
(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.
【详解】
解:(1)∵△ABC 是等边三角形,
∴AB=AC=BC=2,∠ABC=∠ACB=60°,
∵AD=DE
∴∠DAE=∠DEA=30°,
∴∠ADB=180°-∠BAD-∠ABD=90°,
故答案为:90°;
(2)∵AD=DE=DF ,
∴∠DAE=∠DEA ,∠DAF=∠DFA ,
∵∠DAE+∠DAF=∠BAC=60°,
∴∠DEA+∠DFA=60°,
∵∠ABC=∠DEA+∠EDB=60°,
∴∠EDB=∠DFA ,
∵∠ACB=∠DFA+∠CDF=60°,
∴∠CDF=∠DEA ,
在△BDE 和△CFD 中
∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩
,
∴△BDE ≌△CFD (ASA )
(3)∵△BDE ≌△CFD ,
∴BE=CD ,
∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,
当D 点在C 或B 点时,
AD=AC=AB=2,
此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;
当D 点在BC 的中点时,
∵AB=AC ,
∴BD=112
BC =
,AD ==
此时22l AD =+=
综上可知24l +≤<.
【点睛】
本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.
25.(1) 2516;(2)83t =或6;(3)当153,5,210t =或194
时,△BCP 为等腰三角形. 【分析】
(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;
(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12
t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194
t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程
2234352
t --=
⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,
4AC cm ∴=,
(1)设存在点P ,使得PA PB =,
此时2PA PB t ==,42PC t =-,
在Rt PCB 中,222PC CB PB +=,
即:222(42)3(2)t t -+=, 解得:2516t =, ∴当2516
t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,
此时72BP t =-,24PE PC t ==-,541BE =-=,
在Rt BEP 中,222PE BE BP +=, 即:222(24)1(72)t t -+=-,
解得:83
t =, 当6t =时,点P 与A 重合,也符合条件,
∴当83
t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,
当P 在AC 上时,BCP 为等腰三角形,
PC BC ∴=,即423t -=,
12
t ∴=, 当P 在AB 上时,BCP 为等腰三角形,
CP PB =①,点P 在BC 的垂直平分线上,
如图2,过P 作PE BC ⊥于E ,
1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194
t =, PB BC =②,即2343t --=,
解得:5t =,
PC BC =③,如图3,过C 作CF AB ⊥于F ,
12
BF BP ∴=, 90ACB ∠=︒,
由射影定理得;2BC BF AB =⋅,
即2234352
t --=⨯, 解得:5310t =
, ∴当15319,5,2104
t =或时,BCP 为等腰三角形. 【点睛】
本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.
26.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =73
【分析】
(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;
(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;
(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.
【详解】
(1)已知如图:AO 为BC 上的中线,
在Rt AOC ∆中,
AO 2-OC 2=AC 2
因为81AB AC ∇=
所以AO 2-OC 2=81
所以AC 2=81
所以AC=9.
(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,
在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,
在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,
∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =
12
AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =
222212663AB AE -=-=, ∴DE =AD +AE =12,
在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=
+=
∴BA ∇BC =BD 2﹣CD 2=216;
(3)作BD ⊥CD,
因为24ABC S ∆=,8AC =,
所以BD=26ABC S AC ∆÷=,
因为64AB AC ∇=-,AO 是BC 边上的中线,
所以AO 2-OC 2=-64,
所以OC 2-AO 2=64,
由因为AC 2=82=64,
所以OC 2-AO 2= AC 2
所以∠OAC=90°
所以OA=24228322ABC S AC ∆⨯
÷=⨯÷= 所以OC=22228373AC OA +=+=
所以BC=2OC=273,
在Rt △BCD 中, CD=()2
222276163BC BD -=-= 所以AD=CD-AC=16-8=8
所以AB=22228610AD BD +=+=
【点睛】
考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.
27.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析
【分析】
(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;
(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论;
②先求出CD=CB=a ,AD=CD=a ,DB=AB-AD=c-a ,DG=BG=
12(c-a ),AG=12
(a+c ),两个直角三角形中利用勾股定理建立方程即可得出结论.
【详解】
解:(1)如图1,假设Rt△ABC是类勾股三角形,
∴ab+a2=c2,
在Rt△ABC中,∠C=90°,根据勾股定理得,a2+b2=c2,
∴ab+b2=a2+b2,
∴ab=a2,
∴a=b,
∴△ABC是等腰直角三角形,
∴等腰直角三角形是类勾股三角形,
即:原命题是假命题,
故答案为:假;
(2)∵AB=BC,AC>AB,
∴a=c,b>c,
∵△ABC是类勾股三角形,
∴ac+a2=b2,
∴c2+a2=b2,
∴△ABC是等腰直角三角形,
∴∠A=45°,
(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,
∴∠ABC=64°,
根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,
∵把这个三角形分成两个等腰三角形,
∴(Ⅰ)、当∠BCD=∠BDC时,
∵∠ABC=64°,
∴∠BCD=∠BDC=58°,
∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;
(Ⅱ)、当∠BCD=∠ABC=64°时,
∴∠BDC=52°,
∴∠ACD=20°,∠ADC=128°,
∴△ACD是等腰三角形,此种情况不成立;
(Ⅲ)、当∠BDC=∠ABC=64°时,
∴∠BCD=52°,
∴∠ACD=∠ACB﹣BCD=32°=∠BAC,
∴△ACD是等腰三角形,
即:分割线和顶角标注如图2所示,
Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;Ⅲ、分∠BAC,同(Ⅱ)的方法,判断此种情况不成立;
②如图3,在AB边上取点D,连接CD,使∠ACD=∠A
图3
作CG⊥AB于G,
∴∠CDB=∠ACD+∠A=2∠A,
∵∠B=2∠A,
∴∠CDB=∠B,
∴CD=CB=a,
∵∠ACD=∠A,
∴AD=CD=a,
∴DB=AB﹣AD=c﹣a,
∵CG⊥AB,
∴DG=BG=1
2
(c﹣a),
∴AG=AD+DG=a+1
2
(c﹣a)=
1
2
(a+c),
在Rt△ACG中,CG2=AC2﹣AG2=b2﹣[1
2
(c+a)]2,
在Rt△BCG中,CG2=BC2﹣BG2=a2﹣[1
2
(c﹣a)]2,
∴b2﹣[1
2
(a+c)]2=a2﹣[
1
2
(c﹣a)]2,
∴b2=ac+a2,
∴△ABC是“类勾股三角形”.
【点睛】
此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,新定义“类勾股三角形”,分类讨论的数学思想,解本题的关键是理解新定义.
28.(1)46(2)(123+24+510)m2
【分析】
(1)由已知△ABC的三边a=4,b=5,c=7,可知这是一个一般的三角形,故选用海伦-奏九韶公式求解即可;(2)过点D作DE⊥AB,垂足为E,连接BD.将所求四边形的面积转化为三个三角形的面积的和进行计算.
【详解】
(1)解:△ABC的面积为S=()()()()
a b c a b c a c b b c a
+++-+-+-
=
(457)(457)(475)(574)
+++-+-+-
=46
故答案是:46;
(2)解:如图:过点D作DE⊥AB,垂足为E,连接BD(如图所示)在Rt△ADE中,
∵∠A=60°,
∴∠ADE=30°,
∴AE=1
2
AD=6
∴BE=AB﹣AE=62﹣6=2
DE2222
(46)(26)62
AD AE
-=-=
∴BD2222
BE DE(42)(62)226
+=+=
∴S△BCD 1
(57226)(57226)(22675)(22657)510 4
+++-+-+-=
∵S△ABD=11
642)6212324 22
AB DE
⋅=⨯⨯=
∴S四边形ABCD=S△BCD+S△ABD=12324510
+
答:该块草地的面积为(12324510
+m2.【点睛】。