五当沟实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五当沟实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)已知关于x、y的方程组的解满足3x+2y=19,则m的值为()
A. 1
B.
C. 5
D. 7
【答案】A
【考点】解二元一次方程组
【解析】【解答】解:,
①+②得x=7m,
①﹣②得y=﹣m,
依题意得3×7m+2×(﹣m)=19,
∴m=1.
故答案为:A.
【分析】观察方程组,可知:x的系数相等,y的系数互为相反数,因此将两方程相加求出x、将两方程相减求出y,再将x、y代入方程3x+2y=19,建立关于m的方程求解即可。
2、(2分)如图,工人师傅在工程施工中需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()
A. AB∥BC
B. BC∥CD
C. AB∥DC
D. AB与CD相交
【答案】C
【考点】平行线的判定
【解析】【解答】解:∵∠ABC=150°,∠BCD=30°
∴∠ABC+∠BCD=180°
∴AB∥DC
故答案为:C
【分析】根据已知可得出∠ABC+∠BCD=180°,根据平行线的判定,可证得AB∥DC。
3、(2分)关于下列问题的解答,错误的是()
A.x的3倍不小于y的,可表示为3x>y
B.m的与n的和是非负数,可表示为+n≥0
C.a是非负数,可表示为a≥0
D.是负数,可表示为<0
【答案】A
【考点】不等式及其性质
【解析】【解答】解:A、根据列不等式的意义,可知x的3倍不小于y的,可表示为3x≥ y,故符合
题意;
B 、由“m 的 与n 的和是非负数”,表示为 +n≥0,故不符合题意;
C 、根据非负数的性质,可知a≥0,故不符合题意;
D 、根据 是负数,表示为 <0,故不符合题意.
故答案为:A.
【分析】A 先表示x 的3倍与y 的, 再根据“不小于”即“大于或等于” 列出不等式即可,再作出判断即可。
B 先表示m 的与n 的和(最后求的是和)是“是非负数”即正数和0,列出不等式,再注册判断。
C “ 非负数”即正数和0, D
4、 ( 2分 ) 2010年温州市初中毕业、升学考试各学科及满分值情况如下表:
( )度.
A. 72
B. 144
C. 53
D. 106
【答案】A
【考点】扇形统计图
【解析】【解答】解:根据表格,得总分=150+150+120+100+200+30=750.
所以数学所在的扇形的圆心角=
×360°=72°.
故答案为:A
【分析】根据表格先计算总分值,从而得出数学所占的百分比,然后根据圆心角的度数=360°×数学所占的百分比即可得出结果.
5、(2分)下列图形可以由一个图形经过平移变换得到的是()
A. B. C. D.
【答案】B
【考点】平移的性质
【解析】【解答】解:A、图形的方向发生变化,不符合平移的性质,不属于平移得到,A不符合题意;
B、图形的大小没有发生变化,符合平移的性质,属于平移得到,B符合题意;
C、图形的方向发生变化,不符合平移的性质,不属于平移得到,C不符合题意;
D、图形的大小发生变化,不属于平移得到,D不符合题意.
故答案为:B
【分析】根据平移的性质,平移后的图形与原图形对应线段平行且相等或在同一条直线上,可知B正确.
6、(2分)下列计算正确的是()
A. B. C. D. (-2)3×(-3)2=72
【答案】B
【考点】实数的运算
【解析】【解答】A、,A不符合题意;
B、,B符合题意;
C、,C不符合题意;
D、(-2)3×(-3)2=-8×9=-72,D不符合题意.
故答案为:B
【分析】(1)由算术平方根的意义可得=3;
(2)由立方根的意义可得=-2;
(3)由立方根的意义可得原式=;
(4)由平方和立方的意义可得原式=-89=-72.
7、(2分)图中,同旁内角的对数为()
A. 14
B. 16
C. 18
D. 20 【答案】B
【考点】同位角、内错角、同旁内角
【解析】【解答】解:①直线AD与直线BC被直线AB所截,形成2对同旁内角;
②直线AD与直线BC被直线CD所截,形成2对同旁内角;
③直线AB与直线CD被直线AD所截,形成2对同旁内角;
④直线AB与直线CD被直线BC所截,形成2对同旁内角;
⑤直线AB与直线CD被直线AC所截,形成2对同旁内角;
⑥直线AD与直线BC被直线AC所截,形成2对同旁内角;
⑦直线AB与直线BC被直线AC所截,形成2对同旁内角;
⑧直线AD与直线CD被直线AC所截,形成2对同旁内角;
∴一共有16对同旁内角,故答案为:B.
【分析】观察图形可抽象出8个基本图形,每个基本图形有2对同旁内角,即可得出答案。
8、(2分)下列四幅图中,∠1和∠2是同位角的是()
A. (1)、(2)
B. (3)、(4)
C. (1)、(2)、(3)
D. (2)、(3)、(4)
【答案】A
【考点】同位角、内错角、同旁内角
【解析】【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故答案为:A.【分析】根据同位角的定义,两条直线被第三条直线所截形成的角中,同位角是指两个角都在第三条直线的同旁,在被截的两条直线同侧的位置的角,呈“F”型,观察图形即可得出答案。
9、(2分)如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=70°,则∠AOF 等于()
A. 35°
B. 45°
C. 55°
D. 65°
【答案】C
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【解答】∵∠B0C=∠AOD=70°,又∵OE平分∠BOC,∴∠BOE= ∠BOC=35°.∵OF⊥OE,∴∠EOF=90°.∴∠AOF=180°-∠EOF-∠BOE=55°.故答案为:C.
【分析】有角平分线性质和对顶角相等,由角的和差求出∠AOF=180°-∠EOF-∠BOE的度数.
10、(2分)64的平方根是()
A.±8
B.±4
C.±2
D.
【答案】A
【考点】平方根
【解析】【解答】解:∵(±8)2=64,
∴±。
故答案为:A.
【分析】根据平方根的意义即可解答。
二、填空题
11、(1分)如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是,嘴唇C点的坐标为
、,则此“QQ”笑脸右眼B的坐标________.
【答案】
【考点】点的坐标,坐标与图形性质
【解析】【解答】解:画出直角坐标系为,
则笑脸右眼B的坐标.
故答案为.
【分析】根据左眼A和嘴唇C点的坐标可画出适当的平面直角坐标系,则可由平面直角坐标系得到笑脸右眼B的坐标(0 ,3 ).
12、(1分)已知关于x的不等式3x-5k>-7的解集是x>1,则k的值为________.
【答案】2
【考点】不等式的解及解集
【解析】【解答】不等式可变形为:3x>5k-7,
x>,
∵关于x的不等式3x-5k>-7的解集是x>1,
∴=1,
解得:k=2.
故答案为:2.
【分析】先求出不等式的解集,再根据原不等式的解集为x>1,建立关k的方程,求解即可。
13、(1分)如图,B处在A处南偏西50°方向,C处在A处的南偏东20°方向,C处在B处的北偏东80°方向,则∠ACB=________.
【答案】80°
【考点】平行线的性质,三角形内角和定理
【解析】【解答】解:如图所示:
由题意得,∠EAB=50°,∠EAC=20°,
则∠BAC=70°,
∵BD∥AE,
∴∠DBA=∠EAB=50°,
又∵∠DBC=80°,
∴∠ABC=30°,
∴∠ACB=180°﹣70°﹣30°=80°.
故答案为:80°.
【分析】本题运用平行线的性质可知∠DBA=∠EAB=,因为∠DBC=,所以可知∠ABC=,再用三角形内角和为,可得∠ACB的度数.
14、(1分)有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由
,得3a=2b;
⑤由a2=b2,得a=b.其中正确的是________
【答案】①②④
【考点】不等式及其性质
【解析】【解答】解:①由a=b,得5﹣2a=5﹣2b,正确;
②由a=b,得ac=bc,正确;
③由a=b(c≠0),得= ,不正确;
④由,得3a=2b,正确;
⑤由a2=b2,得a=b或a=﹣b,不正确.
故答案为:①②④
【分析】利用等式的性质逐一判断,就可得出正确的序号。
15、(1分)如图,下列条件中:
①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有________ (填写所有正确的序号).
【答案】①③④
【考点】平行线的判定
【解析】【解答】解:①∵∠B+∠BCD=180°,∴AB∥CD;
②∵∠1=∠2,∴AD∥CB;
③∵∠3=∠4,∴AB∥CD;
④∵∠B=∠5,∴AB∥CD,
故答案:①③④
【分析】由平行线的判定定理,同位角相等,内错角相等,同旁内角互补,两直线都平行,可知结果.
16、(1分)如图,与图中的∠1成内错角的角是________.
【答案】∠BDC
【考点】同位角、内错角、同旁内角
【解析】【分析】解:如图,AB与CD被BD所截
∵∠1和∠BDC在AB与DC之间,且在BD两侧,
∴∠1的内错角是∠BDC.故答案为:∠BDC
【分析】内错角是由两条直线被第三条直线所截形成的两个角,它们在前两条直线的两旁,在第三条直线的内
部,
三、解答题
17、(5分)把下列各数填入相应的集合中:
﹣22,﹣|﹣2.5|,3,0,,,﹣0.121221222……(每两个1之间多一个2),,
无理数集合:{ ……};
负有理数集合:{ ……};
整数集合:{ ……};
【答案】解:无理数集合:{ ,﹣0.121221222……(每两个1之间多一个2),……};
负有理数集合:{﹣22,﹣|﹣2.5|,……};
整数集合:{﹣22,﹣|﹣2.5|,3,0,……};
【考点】实数及其分类,有理数及其分类
【解析】【分析】无理数:无限不循环小数是无理数,常见的无理数有:开不尽的平方根或立方根,无限不循环小数,π;负有理数:负整数,负分数;整数:正整数,负整数.
18、(5分)如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,求∠2的度数.
【答案】解:过点D作DG∥b,
∵a∥b,且DE⊥b,
∴DG∥a,
∴∠1=∠CDG=25°,∠GDE=∠3=90°
∴∠2=∠CDG+∠GDE=25°+90°=115°.
【考点】平行线的性质
【解析】【分析】做DG//a//b,因为两直线平行,同位角相等,同旁内角互补,可知∠2=∠1+∠3,即可求出∠2的度数.
19、(5分)若∠EFD=110°,∠FED=35°,ED平分∠BEF,那么AB与CD平行吗?请说明你的理由.
【答案】解:AB与CD平行.理由如下:
∵ED平分∠BEF,
∴∠FED=∠BED=35°,
∴∠BEF=70°.
∵∠BEF+∠EFD=70°+110°=180°,
∴AB∥CD
【考点】平行线的判定
【解析】【分析】因为ED是∠BEF的角平分线,所以∠BEF=,这样∠BEF+∠EFD=,同旁内角互补,两直线平行.
20、(5分)解不等式组并将解集在数轴上表示出来.
【答案】解:,
解①得:x≥﹣3,
解②得:x<2.
不等式组的解集是:﹣3≤x<2
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组
【解析】【分析】先分别求得两个不等式的解集,再在数轴上表示出两个解集,两个解集的公共部分即为不等式组的解集.
21、(5分)若(x−3y+6)2+|4x−2y−3|=0 ,试求x与y的值.
【答案】解:依题可得:
,
(1)×4-(2)得:
10y=27,
∴y=,
将y=代入(1)得:
x=.
∴.
【考点】解二元一次方程组,非负数之和为0
【解析】【分析】根据平方根和绝对值的非负性得一个二元一次方程组,解之即可得出答案.
22、(10分)如图已知直线CB∥OA,∠C=∠OAB=100°,点E、点F在线段BC上,满足∠FOB=∠AOB=α,OE平分∠COF.
(1)用含有α的代数式表示∠COE的度数;
(2)若沿水平方向向右平行移动AB,则∠OBC:∠OFC的值是否发生变化?若变化找出变化规律;若不变,求其比值.
【答案】(1)解:∵CB∥OA,∴∠C+∠AOC=180°.
∵∠C=100°,∴∠AOC=80°.
∴∠EOB=∠EOF+∠FOB= ∠COF+ ∠FOA
= (∠COF+∠FOA)= ∠AOC=40°.
又OE平分∠COF,
∴∠COE=∠FOE=40°﹣α;
(2)解:∠OBC:∠OFC的值不发生改变.
∵BC∥OA,
∴∠FBO=∠AOB,
又∵∠BOF=∠AOB,
∴∠FBO=∠BOF,
∵∠OFC=∠FBO+∠FOB,
∴∠OFC=2∠OBC,
即∠OBC:∠OFC=∠OBC:2∠OBC=1:2= .
【考点】角的平分线,平行线的性质,平移的性质
【解析】【分析】(1)根据CB∥OA,可得∠C与∠OCA的关系,再根据∠C=∠OAB=100°,根据∠FOB=∠AOB,OE平分∠COF,即可得到∠EOB=∠BOF+∠EOF,及可求得答案;
(2)根据∠FOB=∠AOB,即可得到∠AOB:∠AOF=1:2,再根据CB∥OA,可得∠AOB=∠OBF,∠AOF=∠OFC,进而得出结论.
23、(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。
24、(5分)已知一个正数的两个平方根分别是a和2a-9,求a的值,并求这个正数.
【答案】解:∵一个正数有两个平方根,且互为相反数,
∴a+2a-9=0,
解得:a=3,
将a=3带入a和2a-9,
得到3和-3,
32=9,
∴这个正数是9
【考点】平方根
【解析】【分析】根据平方根的意义:一个正数有两个平方根,且互为相反数,从而得出关于a的方程,求解
得出a的值,从而得出这个数的两个平方根,进一步得出这个正数。
25、(5分)若单项式与的和仍是单项式,求m,n的值.
【答案】解:∵单项式与的和仍是单项式,
∴单项式与是同类项,
∴,
解得:
【考点】解二元一次方程组,同类项
【解析】【分析】由题意可知这两个单项式是同类项,根据同类项的概念列出m、n的方程组,据此解答即可。