微山县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微山县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为(

A .560m 3
B .540m 3
C .520m 3
D .500m 3
2. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行;③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( )A .1个 B .2个
C .3个
D .4个
3. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为


A .{1}
B .{1,2}
C .{1,2,3}
D .{0,1,2}
4. 已知点A (0,1),B (3,2),C (2,0),若=2,则||为( )
AD → DB → CD →
A .1 B.4
3
C. D .253
5. 命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1
B .∃x ∈R ,使得x 2>1
C .∃x ∈R ,使得x 2≥1
D .∀x ∈R ,都有x ≤﹣1或x ≥1
6. 直线x+y ﹣1=0与2x+2y+3=0的距离是( )A .
B .
C .
D .
7. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( )
A .1
B .2
C .3
D .4
8. 设0<a <b 且a+b=1,则下列四数中最大的是( )
A .a 2+b 2
B .2ab
C .a
D .
9. 已知函数f (x )的图象如图,则它的一个可能的解析式为(

A .
y=2B .y=log 3(x+1)C .y=4
﹣D .
y=
10.《九章算术》
是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。

问积几何?”意思为:“今
有底面为矩形的屋脊形状的多面体(如图)”,下
底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD 的距离为1丈,问它的体积是(

A .4立方丈
B .5立方丈
C .6立方丈
D .8立方丈
11.若满足约束条件,则当取最大值时,的值为( )
y x ,⎪⎪⎩

⎪⎨⎧≥≤-+≥+-0
033033y y x y x 31++x y y x +A . B . C . D .1-3-3
12.函数f (x )=cos 2
x ﹣cos 4x 的最大值和最小正周期分别为( )
A .,π
B .,
C .,π
D .,
二、填空题
13.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .
14.在(x 2﹣)9的二项展开式中,常数项的值为 .
15.过椭圆
+
=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭
圆的离心率为 . 
16.设函数有两个不同的极值点,,且对不等式32
()(1)f x x a x ax =+++1x 2x 12()()0f x f x +≤恒成立,则实数的取值范围是

17.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 . 
18.不等式恒成立,则实数的值是__________.
()2
110ax a x +++≥三、解答题
19.(本小题满分12分)
已知平面向量,,.
(1,)a x = (23,)b x x =+-
()x R ∈(1)若,求;
//a b ||a b -
(2)若与夹角为锐角,求的取值范围.
20.某城市100户居民的月平均用电量(单位:度),以,,,
[)160,180[)180,200[)200,220,,,分组的频率分布直方图如图.
[)220,240[)240,260[)260,280[]280,300(1)求直方图中的值;
(2)求月平均用电量的众数和中位数.
1111]
21.已知函数f(x)=2x2﹣4x+a,g(x)=log a x(a>0且a≠1).
(1)若函数f(x)在[﹣1,3m]上不具有单调性,求实数m的取值范围;
(2)若f(1)=g(1)
①求实数a的值;
②设t1=f(x),t2=g(x),t3=2x,当x∈(0,1)时,试比较t1,t2,t3的大小. 
22.已知函数f(x)=x3+x.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)求证:f(x)是R上的增函数;
(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.
(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))
23.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,计算得x i=80,y i=20,x i y i=184,x i2=720.
(1)求家庭的月储蓄对月收入的回归方程;
(2)判断月收入与月储蓄之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
24.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.
(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;
(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.
微山县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】A
【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y轴建立直角坐标系,易得抛物线过点(3,﹣1
),其方程为y=﹣,那么正(主)视图上部分抛物线与矩形围成的部分面积S1==2 =4,
下部分矩形面积S2=24,
故挖掘的总土方数为V=(S1+S2)h=28×20=560m3.
故选:A.
【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题.
2.【答案】B
【解析】
考点:空间直线与平面的位置关系.
【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.
3.【答案】B
【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.
由韦恩图可知阴影部分表示的集合为(C U B)∩A,
又A={1,2,3,4,5},B={x∈R|x≥3},
∵C U B={x|x<3},
∴(C U B)∩A={1,2}.
则图中阴影部分表示的集合是:{1,2}.
故选B.
【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.
4. 【答案】
【解析】解析:选C.设D 点的坐标为D (x ,y ),∵A (0,1),B (3,2),=2,AD → DB →
∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),
∴即x =2,y =,{
x =6-2x ,y -1=4-2y )
53
∴=(2,)-(2,0)=(0,),CD → 5353∴||==,故选C.CD → 02+(53)2535. 【答案】D
【解析】解:命题是特称命题,则命题的否定是∀x ∈R ,都有x ≤﹣1或x ≥1,故选:D .
【点评】本题主要考查含有量词的命题的否定,比较基础. 
6. 【答案】A
【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是: =

故选:A . 
7. 【答案】B
【解析】解:根据题意,M ∩N={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R}∩{(x ,y )|x 2﹣y=0,x ∈R ,y ∈R}═{(x ,y )|
}
将x 2﹣y=0代入x 2+y 2=1,得y 2+y ﹣1=0,△=5>0,所以方程组有两组解,
因此集合M ∩N 中元素的个数为2个,故选B .
【点评】本题既是交集运算,又是函数图形求交点个数问题 
8. 【答案】A
【解析】解:∵0<a <b 且a+b=1
∴∴2b >1
∴2ab ﹣a=a (2b ﹣1)>0,即2ab >a 又a 2+b 2﹣2ab=(a ﹣b )2>0∴a 2+b 2>2ab
∴最大的一个数为a 2+b 2故选A
9. 【答案】C
【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log 3(x+1),y=
的值域均含4,
即y=4不是它们的渐近线,
函数y=4﹣
的值域为(﹣∞,4)∪(4,+∞),
故y=4为函数图象的渐近线,故选:C
【点评】本题考查的知识点是函数的图象,函数的值域,难度中档. 
10.【答案】【解析】解析:
选B.如图,设E 、F 在平面ABCD 上的射影分别为P ,Q ,过P ,Q 分别作GH ∥MN ∥AD 交AB 于G ,M ,交DC 于H ,N ,连接EH 、GH 、FN 、MN ,则平面EGH 与平面FMN 将原多面体分成四棱锥E ­AGHD 与四棱锥F ­MBCN 与直三棱柱EGH ­FMN .
由题意得GH =MN =AD =3,GM =EF =2,EP =FQ =1,AG +MB =AB -GM =2,
所求的体积为V =(S 矩形AGHD +S 矩形MBCN )·EP +S △EGH ·EF =×(2×3)×1+×3×1×2=5立方丈,故选
131312
B.
11.【答案】D 【



考点:简单线性规划.
12.【答案】B
【解析】解:y=cos2x﹣cos4x=cos2x(1﹣cos2x)=cos2x•sin2x=sin22x=,
故它的周期为=,最大值为=.
故选:B.
二、填空题
13.【答案】 .
【解析】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),
故斜率为=,
∴由斜截式可得直线l的方程为,
故答案为.
【点评】本题考查直线的斜率公式,直线方程的斜截式.
14.【答案】 84 .
【解析】解:(x 2﹣)9的二项展开式的通项公式为 T r+1
=
•(﹣1)r •x 18﹣3r ,
令18﹣3r=0,求得r=6,可得常数项的值为T 7
===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.
15.【答案】 .
【解析】解:由题意知点P 的坐标为(﹣c ,
)或(﹣c ,﹣),∵∠F 1PF 2=60°,∴=,
即2ac=b 2=(a 2﹣c 2).∴e 2+2e ﹣=0,
∴e=或e=﹣(舍去).故答案为:
.【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.
16.【答案】1(,1],22
⎡⎤-∞-⎢⎥⎣⎦ 【解析】
试题分析:因为,故得不等式,即12()()0f x f x +≤()()
()332212121210x x a x x a x x ++++++≤,由于()()()()()2
21212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦
,令得方程,因 , 故()()2'321f x x a x a =+++()'0f x =()23210x a x a +++=()2410a a ∆=-+>,代入前面不等式,并化简得,解不等式得或,()12122133x x a a
x x ⎧+=-+⎪⎪⎨⎪=⎪⎩
()1a +()22520a a -+≥1a ≤-122a ≤≤因此, 当或时, 不等式成立,故答案为. 1a ≤-122a ≤≤()()120f x f x +≤1(,1],22⎡⎤-∞-⎢⎥⎣⎦
考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.
【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数的到函数,令考虑判别式大于零,根据韦达定理求出()f x ()'0f x =的值,代入不等式,得到关于的高次不等式,再利用“穿针引线”即可求得实1212,x x x x +12()()0f x f x +≤数的取值范围.111]
17.【答案】 [0,2] .
【解析】解:命题p :||x ﹣a|<3,解得a ﹣3<x <a+3,即p=(a ﹣3,a+3);
命题q :x 2﹣2x ﹣3<0,解得﹣1<x <3,即q=(﹣1,3).
∵q 是p 的充分不必要条件,
∴q ⊊p ,∴

解得0≤a ≤2,
则实数a 的取值范围是[0,2].
故答案为:[0,2].
【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题
18.【答案】1
a =【解析】
试题分析:因为不等式恒成立,所以当时,不等式可化为,不符合题意;()2110ax a x +++≥0a =10x +≥当时,应满足,即,解得.1
0a ≠20
(1)40a a a >⎧⎨∆=+-≤⎩20
(1)0a a >⎧⎨-≤⎩1a =考点:不等式的恒成立问题.
三、解答题
19.【答案】(1)2或2).
(1,0)(0,3)- 【解析】
试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量的夹角为锐角的充要条件是且不共线,由此可得范围.,a b 0a b ⋅> ,a b 试题解析:(1)由,得或,//a b 0x =2x =-当时,,,0x =(2,0)a b -=- ||2a b -=
当时,,.2x =-(2,4)a b -=- ||a b -= (2)与夹角为锐角,,,,
0a b ∙> 2230x x -++>13x -<<
又因为时,,
0x =//a b 所以的取值范围是.
(1,0)(0,3)- 考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积可得向量的夹角公式,当为锐角时,,但当cos a b a b θ⋅= cos 0θ>cos 0
θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是且不同0a b a b
⋅> ,a b 向,同样两向量夹角为钝角的充要条件是且不反向.0a b a b
⋅< ,a b 20.【答案】(1);(2)众数是,中位数为.
0.0075x =230224【解析】
试题分析:(1)利用频率之和为一可求得的值;(2)众数为最高小矩形底边中点的横坐标;中位数左边和右边的直方图的面积相等可求得中位数.1
试题解析:(1)由直方图的性质可得,(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=∴.
0.0075x =
考点:频率分布直方图;中位数;众数.
21.【答案】
【解析】解:(1)因为抛物线y=2x 2﹣4x+a 开口向上,对称轴为x=1,
所以函数f (x )在(﹣∞,1]上单调递减,在[1,+∞)上单调递增,
因为函数f (x )在[﹣1,3m]上不单调,
所以3m >1,…(2分)
得,…(3分)
(2)①因为f (1)=g (1),所以﹣2+a=0,…(4分)
所以实数a的值为2.…
②因为t1=f(x)=x2﹣2x+1=(x﹣1)2,
t2=g(x)=log2x,
t3=2x,
所以当x∈(0,1)时,t1∈(0,1),…(7分)
t2∈(﹣∞,0),…(9分)
t3∈(1,2),…(11分)
所以t2<t1<t3.…(12分)
【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.22.【答案】
【解析】解:(1)f(x)是R上的奇函数
证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),
∴f(x)是R上的奇函数
(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,
f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)2+x22+1]
<0恒成立,
因此得到函数f(x)是R上的增函数.
(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),
∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),
∴不等式进一步可化为f(m+1)<f(3﹣2m),
∵函数f(x)是R上的增函数,
∴m+1<3﹣2m,

23.【答案】
【解析】解:(1)由题意,n=10,=x i=8,=y i=2,
∴b==0.3,a=2﹣0.3×8=﹣0.4,
∴y=0.3x﹣0.4;
(2)∵b=0.3>0,
∴y与x之间是正相关;
(3)x=7时,y=0.3×7﹣0.4=1.7(千元).
24.【答案】
【解析】解:(Ⅰ)因为“数学与逻辑”科目中成绩等级为B的考生有10人,
所以该考场有10÷0.25=40人,
所以该考场考生中“阅读与表达”科目中成绩等级为A的人数为:
40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3人;
(Ⅱ)该考场考生“数学与逻辑”科目的平均分为:
×=2.9;
(Ⅲ)因为两科考试中,共有6人得分等级为A,又恰有两人的两科成绩等级均为A,
所以还有2人只有一个科目得分为A,
设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A的同学,
则在至少一科成绩等级为A的考生中,随机抽取两人进行访谈,基本事件空间为:
Ω={{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件.
设“随机抽取两人进行访谈,这两人的两科成绩等级均为A”为事件B,所以事件B中包含的基本事件有1个,
则P(B)=.
【点评】本小题主要考查统计与概率的相关知识,具体涉及到频率分布直方图、平均数及古典概型等内容. 。

相关文档
最新文档