鼓东初中2018-2019学年初中七年级上学期数学第一次月考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鼓东初中2018-2019学年初中七年级上学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)(2015•铜仁市)2015的相反数是()
A. 2015
B. -2015
C. -
D.
2.(2分)备受宁波市民关注的象山港跨海大桥在2012年12月29日建成通车,此项目总投资约77亿元,77亿元用科学记数法表示为()
A. 7.7×109元
B. 7.7×1010元
C. 0.77×1010元
D. 0.77×1011元
3.(2分)(2015•宁德)2015的相反数是()
A. B. C. 2015 D. -2015
4.(2分)(2015•六盘水)下列说法正确的是()
A. |﹣2|=﹣2
B. 0的倒数是0
C. 4的平方根是2
D. ﹣3的相反数是3
5.(2分)(2015•海南)据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是()
A. 4
B. 5
C. 6
D. 7
6.(2分)(2015•广东)|﹣2|=()
A. 2
B. ﹣2
C.
D.
7.(2分)(2015•山西)计算﹣3+(﹣1)的结果是()
A. 2
B. -2
C. 4
D. -4
8.(2分)-5的绝对值为()
A. -5
B. 5
C.
D.
9.(2分)(2015•淄博)从1开始得到如下的一列数:
1,2,4,8,16,22,24,28,…
其中每一个数加上自己的个位数,成为下一个数,上述一列数中小于100的个数为()
A. 21
B. 22
C. 23
D. 99
10.(2分)(2015•贺州)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是()
A. 0
B. 3
C. 4
D. 8
二、填空题
11.(1分)(2015•内江)如图是由火柴棒搭成的几何图案,则第n个图案中有________ 根火柴棒.(用
含n的代数式表示)
12.(1分)(2015•上海)计算:|﹣2|+2=________ .
13.(1分)(2015•巴中)a是不为1的数,我们把称为a的差倒数,如:2的差倒数为=﹣1;﹣1的差倒数是=;已知a1=3,a2是a1的差倒数,a3是a2的差倒数.a4是a3差倒数,…依此类推,则
a2015= ________.
14.(1分)(2015•衡阳)在﹣1,0,﹣2这三个数中,最小的数是________ .
15.(1分)(2015•郴州)请观察下列等式的规律:
=(1﹣),=(﹣),
=(﹣),=(﹣),

则+++…+=________ .
16.(1分)(2015•遂宁)把96000用科学记数法表示为________ .
三、解答题
17.(10分)已知A=ax2-3x+by-1,B=3-y-x+x2且无论x,y为何值时,A-2B的值始终不变.(1)分别求a、b的值;
(2)求b a的值.
18.(12分)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B
两点之间的距离AB=.
利用数轴,根据数形结合思想,回答下列问题:
(1)数轴上表示2和6两点之间的距离是________,数轴上表示1和的两点之间的距离为________
(2)数轴上表示和1两点之间的距离为________,数轴上表示和两点之间的距离为________
(3)若表示一个实数,且,化简,
(4)的最小值为________,
的最小值为________.
(5)的最大值为________
19.(10分)已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7
(1)求A等于多少?
(2)若|a+1|+(b﹣2)2=0,求A的值.
20.(10分)
(1)关于x的方程与方程的解相同,求m的值.
(2)已知关于x的多项式的值与x的值无关,求m,n的值.
21.(20分)(阅读理解)第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算.则奥运会的年份可排成如下一列数:
1896,1900,1904,1908,…
观察上面一列数,我们发现这一列数从第二项起,每一项与它前一项的差都等于同一个常数4,这一列数在数学上叫做等差数列,这个常数4叫做等差数列的公差.
(1)等差数列2,5,8,…的第五项多少;
(2)若一个等差数列的第二项是28,第三项是46,则它的公差为多少,第一项为多少,第五项为多少;(3)聪明的小雪同学作了一些思考,如果一列数a1,a2,a3,…是等差数列,且公差为d,根据上述规定,应该有:
a 2-a1=d,a3-a2=d,a4-a3= d,…
所以a 2=a1+d,
a3=a2+d=(a1+d)+d=a1+2d,
a4=a3+d=(a1+2d)+d=a1+3d,

则等差数列的第n项a n多少(用含有a1、n与d的代数式表示);
(4)按照上面的推理,2008年中国北京奥运会是第几届奥运会,2050年会不会(填“会”或“不会”)举行奥运会.
22.(5分)如图所示,在数轴上A点表示数aB点表示数,且a、b满足,
点A、点B之间的数轴上有一点C,且BC=2AC,
(1)点A表示的数为________,点B表示的数为________;则C点表示的数为________.
(2)若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q运动时间为t秒.
①经过________秒后,P、Q两点重合;
②点P与点Q之间的距离PQ=1时,求t的值.________
23.(11分)如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.
我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.
(1)求a,c的值;
(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;
(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC,求t的值;
②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.24.(8分)有理数a、b、c在数轴上的位置如图,
(1)判断正负,用“>”或“<”填空:c-b________0,a+b________0,a-c________0.
(2)化简:|c-b|+|a+b|-2|a-c|.
鼓东初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)
一、选择题
1.【答案】B
【考点】相反数及有理数的相反数
【解析】【解答】根据相反数的含义,可得
2015的相反数是:﹣2015.
故选:B.
【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.2.【答案】A
【考点】科学记数法—表示绝对值较大的数
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【解答】77亿=77 0000 0000=7.7×109,
故选:A.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.【答案】D
【考点】相反数及有理数的相反数
【解析】【解答】解:2015的相反数是:﹣2015,故选:D
【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.
4.【答案】D
【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,平方根
【解析】【解答】A、|﹣2|=2,错误;
B、0没有倒数,错误;
C、4的平方根为±2,错误;
D、﹣3的相反数为3,正确,
故选D.
【分析】利用绝对值的代数意义,倒数的定义,平方根及相反数的定义判断即可.
5.【答案】C
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】∵9420000=9.42×106,
∴n=6.
故选C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于9420000有7位,所以可以确定n=7﹣1=6.
6.【答案】A
【考点】绝对值及有理数的绝对值
【解析】【解答】根据绝对值的性质可知:|﹣2|=2.故选:A
【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.
绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.7.【答案】D
【考点】有理数的加法
【解析】【解答】解:﹣3+(﹣1)=﹣(3+1)=﹣4,
故选:D.
【分析】根据同号两数相加的法则进行计算即可.
8.【答案】B
【考点】绝对值及有理数的绝对值
【解析】
【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.
【解答】-5的绝对值为5,
故选:B.
【点评】此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
9.【答案】A
【考点】探索数与式的规律
【解析】【解答】解:由题意知:1,2,4,8,16,22,24,28,…
由此可知,每4个数一组,
后面依次为36,42,44,48,56,62,64,68,76,82,84,88,96,
故小于100的个数为:21个,
故选A.
【分析】根据数字的变化,找出规律,每4个数一组,每一组数的首数字为1,16,36,56,76,96,由此可得结果.
10.【答案】B
【考点】探索数与式的规律
【解析】【解答】解:21=2,22=4,23=8,24=16,
25=32,26=64,27=128,28=256,
…,
末位数字以2,4,8,6循环,
原式=2+22+23+24+…+22015﹣1=﹣1=22016﹣3,
∵2016÷4=504,
∴22016末位数字为6,
则2+22+23+24+…+22015﹣1的末位数字是3,
故选B
【分析】观察已知等式,发现末位数字以2,4,8,6循环,原式整理后判断即可得到结果.
二、填空题
11.【答案】2n(n+1)
【考点】探索图形规律
【解析】【解答】解:依题意得:n=1,根数为:4=2×1×(1+1);
n=2,根数为:12=2×2×(2+1);
n=3,根数为:24=2×3×(3+1);

n=n时,根数为:2n(n+1).
故答案为:2n(n+1).
【分析】本题可分别写出n=1,2,3,…,所对应的火柴棒的根数.然后进行归纳即可得出最终答案.12.【答案】4
【考点】绝对值及有理数的绝对值,有理数的加法
【解析】【解答】解:原式=2+2
=4.
故答案为4.
【分析】先计算|﹣2|,再加上2即可.
13.【答案】-
【考点】倒数,探索数与式的规律
【解析】【解答】解:a1=3,a2是a1的差倒数,即a2==﹣,a3是a2的差倒数,即a3==,a4是a3差倒数,即a4=3,
…依此类推,
∵2015÷3=671…2,
∴a2015=﹣.
故答案为:﹣.
【分析】根据差倒数定义表示出各项,归纳总结即可得到结果.
14.【答案】-2
【考点】有理数大小比较
【解析】【解答】解:根据有理数比较大小的方法,可得
﹣2<﹣1<0,
所以在﹣1,0,﹣2这三个数中,最小的数是﹣2.
故答案为:﹣2.
【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
15.【答案】
【考点】探索数与式的规律
【解析】【解答】解:+++…+
=(1﹣)+(﹣)+(﹣)+…+(﹣)
=(1﹣+﹣+﹣+…+﹣)
=(1﹣)

=.
故答案为:.
【分析】观察算式可知=(﹣)(n为非0自然数),把算式拆分再抵消即可求解.16.【答案】9.6×104
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:把96000用科学记数法表示为9.6×104.
故答案为:9.6×104.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
三、解答题
17.【答案】(1)解:由题意,
∵无论为何值时,的值始终不变∴∴
(2)解:由(1)得代入中,得=4 故答案为4
【考点】代数式求值,有理数的乘方
【解析】【分析】(1)根据整式加减混合运算的方法求出A-2B=(a-2)x2+(b+2)y-7,根据A-2B的值始终不变,可得a-2=0,b+2=0解方程即可求解。

(2)把a,b的值代入计算即可。

18.【答案】(1)4;3
(2);
(3)8
(4)7;6
(5)4
【考点】数轴及有理数在数轴上的表示,绝对值及有理数的绝对值,整式的加减运算
【解析】【解答】解:(1)数轴上表示2和6两点之间的距离,
数轴上表示1和的两点之间的距离;
(2 )数轴上表示和1两点之间的距离,
数轴上表示和两点之间的距离;
(3 )∵,
∴;
(4 )∵的几何意义为到-3与到4的距离和,
∴取最小值时,在-3与4之间,即最小值,
同理可得的最小值为6;
(5 )∵取最大值时,最小,
∴,,
∴最大值.
【分析】(1)(2)根据数轴上表示的任意两点间的距离等于这两个点所表示的数的差的绝对值即可得出答案;(3)根据x的取值范围,根据有理数的减法法则判断出绝对值符号里面运算结果的正负,再根据绝对值的意义去掉绝对值符号,再合并同类项即可;
(4)根据题意表示x与-3距离和x与4的距离的和,要求距离和的最小值,根据两点之间距离最短从而得出当x介于-3 与4之间的任意一个位置的时候,其和就是最短的,根据有理数的减法法则判断出绝对值符号里面运算结果的正负,再根据绝对值的意义去掉绝对值符号即可;同理算出
的最小值;
(5)取最大值时,最小,根据绝对值的非负性即可得出,,从而代入
即可算出答案。

19.【答案】(1)解:∵A﹣2B=A﹣= ,∴A=
(2)解:依题意得:,,解得:,.原式A=

【考点】利用整式的加减运算化简求值
【解析】【分析】(1)利用被减数等于差加减数,将B代入,就可得出A=7a2-7ab+2(-4a2+6ab+7),再利用去括号法则去括号,然后合并同类项。

(2)根据几个非负数之和为0,则这几个数是0,建立关于a、b的方程,求出方程的解,再将a、b的值代入(1)中化简的代数式求值。

20.【答案】(1)解:(x-16)=-6,x-16=-12,x=16-12,x=4,把x=4代入得,
2+ =0,∴m=-6
(2)解:∵多项式-2x2+mx+nx2-5x-1的值与x的取值无关,∴-2+n=0,m-5=0,∴n=2,m=5
【考点】整式的加减运算,一元一次方程的解
【解析】【分析】(1)首先求出方程的解,然后将x的值代入方程即可算出m的值;
(2)由于多项式是关于x的多项式,将m,n作为常数合并同类项,根据关于x的多项式
的值与x的值无关,故含x的项的系数都应该为0,从而列出方程,求解即可。

21.【答案】(1)解:由等差数列2,5,8,…可知,公差为3,所以第四项是8+3=11,第五项是11+3=14 (2)解:由题意得:公差=46-28=18;第一项为:28-18=10,第五项为:46+18+18=82
(3)解:a2=a1+d,a3=a2+d=(a1+d)+d=a1+2d=a1+(3-1)d,a4=a3+d=(a1+2d)+d=a1+(4-1)d,…则等差数列的第n项a n= a1+(n-1)d
(4)解:设第n届奥运会时2008年,由于每4年举行一次,∴数列{a n}是以1896为首项,4为公差的等差数列,∴a n=2008=1896+4(n-1),解得n=29,故2008年中国北京奥运会是第29届奥运会,令a n=2050,得1896+4
(n-1)=2050,解得n= ,∵n是正整数,∴2050年不会举行奥运会.
【考点】探索数与式的规律
【解析】【分析】(1)根据等差数列的定义,用第二项减去第一项即可算出公差,用第三项加上公差算出第四项,用第四项加上公差算出第五项;
(2)根据等差数列的定义,用第三项减去第二项即可算出公差,用第二项减去公差即可算出第一项,第5项就在第三项上连加两个公差即可;
(3)根据发现的规律,等差数列的第n项a n= a1+(n-1)d ;
(4)设第n届奥运会时2008年,由于每4年举行一次,数列{a n}是以1896为首项,4为公差的等差数列,根据(3)得出的通用公式即可列出方程2008=1896+4(n-1),求解即可;然后将a n=2050 代入a n= a1+(n-1)d ,求解根据结果是否是正整数即可得出结论。

22.【答案】(1)-3;9;1
(2)2;分三种情况:如果点P在点Q的左边,由题意得3t+1+8-t=12,解得t= ;如果t<4时,点
P在点Q的右边,由题意得3t-1+8-t=12,解得t= ;如果4<t<8时,点P到达点B,停止运动,此时
QB=1,由题意得8-t=1,解得t=7.即当t= 或或7秒时,点P与点Q之间的距离为1个单位长度.【考点】数轴及有理数在数轴上的表示,绝对值及有理数的绝对值,一元一次方程的实际应用-几何问题
【解析】【解答】解:(1)∵|2a+6|+|b-9|=0,
∴2a+6=0,b-9=0,
∴a=-3,b=9,
即点A表示的数为-3,点B表示的数为9;
设C点表示的数为x,则-3<x<9,根据BC=2AC,
得9-x=2[x-(-3)],
解得x=1.
即C点表示的数为1;
(2 )根据题意得,
AC=AP-CQ
∴3t-t=3+1
解得,t=2;
【分析】(1)利用几个非负数之和为0,则每一个数都是0,求出a、b的值,就可得出点A,B表示的数,再根据BC=2AC求出点C表示的数。

(2)①根据路程=速度×时间,可得出AP=2t,CQ=t,根据AC=AP-CQ,列方程求出t的值;②分三种情况讨论:如果点P在点Q的左边;如果t<4时,点P在点Q的右边;如果4<t<8时,点P到达点B,停止运动,此时QB=1,分别建立关于t的方程,求出t的值。

23.【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30
(2)-70或
(3)解:①如下图所示:当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,
点A,B之间每秒缩小1个单位长
度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果AB=BC,那么AB-BC=0,此时t=
秒, b.点A,C在相遇时,AB=BC,
点A,C之间每秒缩小5个单位长
度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC大于AC,不符合条件. 综上所述,
t= ②当时间为t时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.
【考点】数轴及有理数在数轴上的表示,整式的加减运算,线段的长短比较与计算,几何图形的动态问题
【解析】【解答】解:(2)分三种情况讨论,
•当点D在点A的左侧,
∵CD=2AD,
∴AD=AC=50,
点C点表示的数为-20-50=-70,
‚当点D在点A,C之间时,
∵CD=2AD,
∴AD= AC= ,
点C点表示的数为-20+ =- ,
ƒ当点D在点C的右侧时,
AD>CD与条件CD=2AD相矛盾,不符合题意,
综上所述,D点表示的数为-70或;
【分析】(1)根据多项式x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。

(2)分三种情况:当点D在点A的左侧;当点D在点A,C之间时;当点D在点C的右侧时,根据CD=2AD,及点A、C表示的数,就可求出点D表示的数。

(3)①根据题意画出图形,当t=0时,AB=21,BC=29 ,分情况讨论:a.点A,C在相遇前时;b.点A,C在相遇时,AB=BC ,分别求出符合题意的t的值即可;②当时间为t时,点A表示得数为-20+2t,点B 表示得数为1+t,点C表示得数为30+3t,建立方程求出m的值即可。

24.【答案】(1)>;<;<
(2)解:原式=c-b+[-(a+b)]-[-(a-c)]=c-b-a-b+a-c=-2b
【考点】有理数大小比较,绝对值的非负性
【解析】【解答】解:(1)由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,
∴c-b>0,a+b<0,a-c<0;
【分析】(1)由a、b、c在数轴上的位置可得,a<0,b>0,c>0,且|b|<|a|<|c|;所以c-b>0,a+b<0,a-c <0;
(2)由(1)中的结论和接单子绝对值的非负性可化简得,原式= c-b+[-(a+b)]-[-(a-c)]=-2b 。

相关文档
最新文档