小学五年级奥数试卷图文稿
五年级上册奥数竞赛试卷(含答案)
小学五年级奥数竞赛试卷(2)一、解答题1.计算:8﹣1.2×1.5+742÷(2.544÷2.4)=.2.计算=.3.解方程:=4.设a*b表示,计算:(2008*1004)*(1004*502)=.5.图中的大长方形分别由面积为12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形所组成.那么图中阴影部分的面积为平方厘米.6.自然数12321,90009,41014……有一个共同特征:它们倒过来写还是原来的数,那么具有这种“特征”的五位偶数有个.7.将从1开始的自然数如图排列,那么:(1)位于第10行、第10列的数是;(2)2005在第行、第列上.8.将+、、×、÷四个运算符号分别填在下面算式的方格中,每个运算符号都用上,每一格内添一个符号,使这四个算式的答数之和尽可能的大,那么这四个数之和是.□,□,□,□.9.有四个正方体,棱长分别是1,1,2,3.把它们的表面粘在一起,所得的立体图形的表面积可能取得的最小值是.10.已知两个不同的单位分数之和是,且这两个单位分数的分母都是四位数,那么这两个单位分数的分母的差的最小值是.11.从5双不同尺码的鞋子中任取4只,其中至少有2只配成一双,共有种不同的取法.12.A、B两人以相同的速度先后从车站出发,10点钟时A与车站的距离是B与车站距离的5倍,10点24分时B正好位于A与车站距离的中点,那么A是在时分出发的.2018年小学五年级奥数竞赛试卷(2)参考答案与试题解析一、解答题1.【分析】本题据四则混合运算的法则计算即可:先算乘除,再算加减,有括号的要先算括号里面的.【解答】解:8﹣1.2×1.5+742÷(2.544÷2.4)=8﹣1.2×1.25+742÷1.06,=8﹣1.8+700,=706.2.【点评】本题考查了学生对四则混合运算法则的运用.2.【分析】分母可据公式a2﹣b2=(a+b)(a﹣b)进行巧算;分母=(22﹣12)+(42﹣32)+…(1002﹣992);分子为等差数列的和可所高斯求和公式进行巧算.【解答】解:分子=(22﹣12)+(42﹣32)+…(1002﹣992)=(2+1)(2﹣1)+(4+3)(4﹣3)+…(100+99)(100﹣99),=3+7+11+…199,=(3+199)×[(199﹣3)÷4+1]÷2=202×50÷2=101×50分母=(1+2+3+…+9)×2+10=(1+9)×9÷2×2+10=90+10,=100;,=,=.故答案为:.【点评】完成本题要在了解公式a2﹣b2=(a+b)(a﹣b)及高斯求和知识的基础上进行.3.【分析】根据倒数的计算方法和分数加减法的关系解答即可.【解答】解:=1+====x+=x=【点评】考查了繁分数的化简.繁分数的化简方法:1、可利用分数与除法的关系把繁分数写成分子除以分母的形式;2、利用分数的基本性质,去掉分子、分母上分数后化为最简分数.一般情况下,分子、分母所乘上的适当非零整数为分子、分母部分的两个分数分母的最小公倍数;3、利用倒数的方法解答.4.【分析】分析题干,按给定的程序计算,a*b表示,可得2008*1004=++=2++=3;1004*502=++=2++=3.则:(2008*1004)*(1004*502)=3*3=++=2,这样解答即可.【解答】解:因为a*b表示,所以2008*1004=++=2++=3;1004*502=++=2++=3,(2008*1004)*(1004*502),=3*3,=++=2.故答案为:2.【点评】分析左右两边的区别与联系,按给定的程序计算.5.【分析】先分别求出上两块面积和下两块面积,找到它们的最大公约数,再分别求得四个小长方形的高和底边长,从而得到阴影部分底边长和高求解即可.【解答】解:上两块面积为12+36=48平方厘米,下两块面积为24+48=72平方厘米,48与72的最大公约数为24,故:面积为12平方厘米的高为2厘米,底边长为6厘米.面积为36平方厘米的高为2厘米,底边长为18厘米.面积为24平方厘米的高为3厘米,底边长为8厘米.面积为48平方厘米的高为3厘米,底边长为16厘米.阴影部分底边长为18﹣16=2 厘米2×2÷2+2×3÷2=5平方厘米阴影部分的面积为5平方厘米.故答案为:5.【点评】考查了公约数与公倍数问题,长方形的面积和三角形的面积,解题的难点是求得四个小长方形的高和底边长.6.【分析】由题意知:倒过来写还是原来的数,具有这种“特征”的五位偶数的万位和个位上可放2,4,6,8这4个数;千位和十位以及百位上均可放0﹣﹣9这10个数;再根据“排列组合”计数法即可计算出:组成倒过来写还是原来的数具有这种“特征”的五位偶数则有•=4×10×10=400个.【解答】解:••=4×10×10=400(个)故:此空为400.【点评】解答此题的关键是根据这种数的特征,分析各对称数位会出现的数字可能,把出现可能的种数相乘即可得这种特征数的个数.7.【分析】从数表可以看出,第二行第二列是5=1+4,第三行第三列13=1+4+8,第四行第四列25=1+4+8+12,第五行第五列41=1+4+8+12+16,…第n行第n列为:1+4+8+12+16+…+4×(n﹣1)=1+4×(1+2+3+…+n﹣1)=1+4×=1+2n(n﹣1);代入数据即可得解.【解答】解:第n行第n列为:1+4+8+12+16+…+4×(n﹣1),=1+4×(1+2+3+…+n﹣1),=1+4×=1+2n(n﹣1);(1)n=10,代入得:1+2×10×9=181;(2)数列写下来就是个斜三角,可以将第n行第1列表示为(1+n)*n/2,将2005开方就得到一个数在62和63之间.而用上面的规律可以知道63行1列的数为2016,与2005相差11.再沿着斜行数上去到2005.所以用63减11得到2005的行数,1加上11得到2005的列数.所以2005位于52行12列.故答案为:181,52,12.【点评】此题考查了数表中的规律.8.【分析】根据题意可知,要想使这四个算式的答数之和尽可能的大,只有这四个算式的结果尽可能的大,在分数计算中,除以一个最小的分数得到的结果最大,因最小,所以□,应填÷;在剩下的三组中,减数越小,结果越大,因为<<,所以□应填﹣,对于□和□,假设+,×与×, +进行比较大小即可.【解答】解:根据题意与分析可知,÷=,﹣=;假设+=,×=,和是+=,另一种假设×=, +=,和是+=,因,所以,□应填+,□应填×;那么这四个数的和最大就是:(÷)+(﹣)+(+)+(×)=+++=+++=.故填:.【点评】根据题意,只要这四组数都尽可能大时,它们的和才最大,再根据分数的四则运算逐步求解即可.9.【分析】如图所示的组合,取得的表面积可能最小,最小值加在一起即可.【解答】解:正视图的面积是:2×2+1+3×3=14; 俯视图的面积是:2×2+3×3=13; 侧视图的面积是:3×3=9;所以,组合体的总表面积是:(14+13+9)×2=72.答:所得的立体图形的表面积可能取得的最小值是72.故答案为:72.【点评】此题考查了图形的拆拼(切拼),画出三视图,可使问题简单明确化.10.【分析】根据题意,先把2004分解质因数,再把拆成两个不同的单位分数,再根据题意解答即可.【解答】解:根据题意,把2004分解质因数,2004=2×2×3×167,所以,2004的因数有:1,2,3,4,6,12,167,334,501,668,1002,2004.要使这两个单位分数的分母的差的最小,这两个不同的单位分数越接近,差越小,所以,==+,分母差是:6012﹣3006=3006;==+,分母差是:5010﹣3340=1670;==+,分母差是:4676﹣3507=1169;因为,1169<1670<3006,所以,这两个单位分数的分母的差的最小值是1169.故填:1169.【点评】根据题意,由分数的拆项解答即可.11.【分析】根据题干先求出从10只鞋子中任取4只,有:C(10,4)=210种情况,如果4只鞋都不能配成一双,有5×2×2×2×2=80种情况,由此即可求出能2只配上一双的情况.【解答】解:210﹣80=130(种),答:共有130种不同的取法.故答案为:130.【点评】此题利用组合公式的计算方法得出取出鞋子的总情况,减去不能配成一双的情况,即可得出答案.12.【分析】如下图所示,因为A、B两人以相同的速度先后从车站出发,所以路程和时间成正比例,设B在10点钟时走的时间为x分钟,则A走的时间为5x分钟,24分钟后,B到车站的距离等于BA的距离,则B到车站的所用的时间的2倍等于A到车站走路所用的时间.【解答】解:因为A、B两人以相同的速度先后从车站出发,则他们的路程和时间成正比例,假设B在10点钟时走路所用的时间是x分钟,则A走路所用的时间是5x分钟;24分钟后,B到车站的距离等于BA的距离,则B到车站的所用的时间的2倍等于A到车站走路所用的时间,由此,得方程:(x+24)×2=5x+24,2x+48=5x+24,3x=24,x=8(分钟);A走了:8×5=40(分钟);10时﹣40分钟=9时20分;答:那么A在9时20分出发的.故答案为:9,20.【点评】此题考查了相遇问题.速度相同,则路程和时间成正比例.。
五年级上册数学试题-奥数:图形定稿全国通用
(2)
3
例 6.如图,从甲地到乙地有 2 条路可走,从乙地到丙地有 3 条路可走;从甲地到丁地有 4 条路可走, 从丁地到丙地有 2 条路可去。从甲地到丙地共有多少种不同的走法?
【试一试】 1、如果线段 AB 上共有 8 个点(包括 A、B 两点),那么,共有多少条线段?
2、联结 A、B、C、D 四个城市的道路如图所示: (1)从 A 城经 B 城到 C 城的不同走共有多少种? (2)从 A 城到 C 城的不同走法共有多少种?
厘米?
AE
FB
D H
【试一试】
GC
1、求出阴影部分的周长。
2、如右图,阴影部分是正方形,求出最大的长方形的周长。
5 厘米
A
B
E
H
7 厘米
C
D
E
G
当堂测试
1、下图是一个锯齿状的零件,每一个锯齿的两条线段都长 2 厘米,求这个零件的周长.
2、求图 12、图 13 的周长。
3、图 14 是一座楼房的平面图,这座楼房平面图的周长是多少米?
例 1.一个等腰三角形中,有一个内角的度数是另一个内角的 4 倍,则这个等腰三角形的顶角是 _________度。
【试一试】
1、17 点整,钟面上的分针和时针所组成的角是( )。
A、锐角
B、直角
C、钝角
D、平角
2、在直角、锐角、平角、钝角中,度数最小的角是( )。
A、 直角
B、锐角
C、平角
D、钝角
3、在一个直角三角形中,已知一个锐角是 68°,则另一个锐角是( )。
能力测试(一)…………………………………………………………………25
第六讲
割补 …………………………………………………………28
五年级奥数题:图形与面积含详细答案
.翔迪学校五年级专题强化:图形与面积年级班姓名得分一、填空题3. 下图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是______平方厘米.4. 下图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是______平方厘米.5. 在ABC∆的面积是18平方厘米,则四边形AEDC的面积=,BEBD2∆中,DCAE=,已知ABC等于______平方厘米.6. 下图是边长为4厘米的正方形,AE=5厘米、OB是______厘米.7. 如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米,那么它的宽DE是______厘米.9. 如下图,正方形ABCD的边长为12, P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,图中阴影部分的面积是______.10. 下图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD 的面积是______平方厘米.二、解答题11. 图中正六边形ABCDEF 的面积是54.PF AP 2=,BQ CQ 2=,求阴影四边形CEPQ 的面积.12. 如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.13. 一个周长是56厘米的大长方形,按图35中(1)与(2)所示意那样,划分为四个小长方形.在(1)中小长方形面积的比是: 2:1:=B A ,2:1:=C B .而在(2)中相应的比例是3:1:=''B A ,3:1:=''C B .又知,长方形D '的宽减去D 的宽所得到的差,与D '的长减去在D 的长所得到的差之比为1:3.求大长方形的面积.14. 如图,已知5=CD ,7=DE ,15=EF ,6=FG .直线AB 将图形分成两部分,左边部分面积是38,右边部分面积是65.那么三角形ADG 面积是______.五年级奥数题:图形与面积一、填空题(共10小题,每小题3分,满分30分)1.(3分)如图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是_________厘米.2.(3分)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是1.那么7,2,1三个数字所占的面积之和是_________.3.(3分)如图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是_________平方厘米.4.(3分)(2014•长沙模拟)如图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是_________平方厘米.5.(3分)在△ABC中,BD=2DC,AE=BE,已知△ABC的面积是18平方厘米,则四边形AEDC的面积等于_________平方厘米.6.(3分)如图是边长为4厘米的正方形,AE=5厘米、OB是_________厘米.7.(3分)如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米,那么它的宽DE 是_________厘米.8.(3分)如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是_________.9.(3分)如图,正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,图中阴影部分的面积是_________.10.(3分)图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD的面积是_________平方厘米.二、解答题(共4小题,满分0分)11.图中正六边形ABCDEF的面积是54.AP=2PF,CQ=2BQ,求阴影四边形CEPQ的面积.12.如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.13.一个周长是56厘米的大长方形,按图中(1)与(2)所示意那样,划分为四个小长方形.在(1)中小长方形面积的比是:A:B=1:2,B:C=1:2.而在(2)中相应的比例是A':B'=1:3,B':C'=1:3.又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去在D的长所得到的差之比为1:3.求大长方形的面积.14.(2012•武汉模拟)如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG的面积是_________.2010年五年级奥数题:图形与面积(B)参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)如图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是170厘米.2.(3分)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是1.那么7,2,1三个数字所占的面积之和是25.+3+4=+7=,+3.(3分)如图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是 6.5平方厘米.左上右上,右中右下,左中右中3+×4.(3分)(2014•长沙模拟)如图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是24平方厘米.××5.(3分)在△ABC中,BD=2DC,AE=BE,已知△ABC的面积是18平方厘米,则四边形AEDC的面积等于12平方厘米.×=12×6.(3分)如图是边长为4厘米的正方形,AE=5厘米、OB是 3.2厘米.ABE==7.(3分)如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米,那么它的宽DE 是 3.2厘米.8.(3分)如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是243.9.(3分)如图,正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,图中阴影部分的面积是60.×AP+×AD+AD+AP+××12+10.(3分)图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD的面积是4平方厘米.二、解答题(共4小题,满分0分)11.图中正六边形ABCDEF的面积是54.AP=2PF,CQ=2BQ,求阴影四边形CEPQ的面积.12.如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.13.一个周长是56厘米的大长方形,按图中(1)与(2)所示意那样,划分为四个小长方形.在(1)中小长方形面积的比是:A:B=1:2,B:C=1:2.而在(2)中相应的比例是A':B'=1:3,B':C'=1:3.又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去在D的长所得到的差之比为1:3.求大长方形的面积.,的宽是大长方形宽的的长是×的长是×=x=××:==,于是=,14.(2012•武汉模拟)如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG的面积是40.S=(。
五年级奥数.几何.扇形周长与面积和弓形面积(A级).学生版
圆规和直尺圆规和直尺一块儿住进了文具盒。
圆规说:“我能画圆,你行吗?”“我横竖都会画,你行吗?”直尺很不服气。
文具盒听了,说:“别争了,谁能画一面扇形,谁就最行。
”圆规和直尺都为难了。
文具盒又说:“你俩一块儿合作,不就行了吗?” 圆规和直尺同心协力,很快画好了扇形。
从此,它们成了好朋友。
编后语:圆规和直尺各有自己的长处,也各有自己的不足,两者是不应互相瞧不起的。
后来,由于双方的真诚合作,充分发挥了各自的优势,创造了许多新的事物。
这则寓言告诉我们这样一个道理:一个人的智慧和力量是有限的,众人合作就会创造出新事物,新生活。
圆的知识:1. 当一条线段绕着它的一个端点O 在平面上旋转一周时,它的另一端点所画成的封闭曲线叫做圆,点O 叫做这个圆的圆心.2. 连结一个圆的圆心和圆周上任一点的线段叫做圆的半径.3. 连结圆上任意两点的线段叫做圆的弦.过圆心的弦叫做圆的直径.4. 圆的周长与直径的比叫做圆周率.圆周上任意两点间的部分叫做弧.5. 圆周长=直径×π.=半径×2π 圆面积=π×半径2.知识框架课前预习扇形的周长与面积和弓形面积扇形的知识:1. 扇形是圆的一部分,它是由圆心角的两条半径和圆心角所对的弧组成的图形.顶点在圆心的角叫做圆心角. 2. 我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n. 3. 扇形中的弧长= 180r nπ.扇形的周长= 180r n π+2r.扇形的面积=3602r n π =.弓形的知识:1. 弦与它所对的弧所组成的图形叫做弓形.【一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)】重点:圆与扇形的面积和周长计算公式;弓形的面积公式。
难点:计算周长时,首先要分清围成这一图形的边有哪些,再正确计算。
计算面积时,首先要根据图形组合的形式,用会求的图形的面积去求的题目所要求的图形面积。
小学五年级上册数学奥数题带答案
小学五年级上册数学奥数题带答案一、拓展提优试题1.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…2.数一数,图中有多少个正方形?3.鸡与兔共100只,鸡的脚比兔的脚多26只.那么,鸡有只.4.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.5.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距千米.6.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.7.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.8.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)9.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.10.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.11.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.12.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.13.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.14.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.15.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.【参考答案】一、拓展提优试题1.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.2.解:通过有规律的数,得出:(1)边长为1的正方形有4×3=12(个);(2)边长为2的正方形有6个;(3)边长为3的正方形有2个.(4)以小正方形的对角线为边的正方形有8个;(5)以对角线的一半为边长的正方形是17个;(6)以3个对角线的一半为边长的正方形有1个.所以图中共有正方形:12+6+2+8+17+1=46(个).答:图中有46个正方形.3.解:设鸡有x只,则兔就有100﹣x只,根据题意可得方程:2x﹣4×(100﹣x)=26,2x﹣400+4x=26,6x=426,x=71,答:鸡有71只.故答案为:71.4.解:依题意可知:当第一次过后,小张剩余194只铅笔,小李剩余19只钢笔.当第二次过后,小张剩余188只铅笔,小李剩余18只钢笔.当第三次过后,小张剩余182只铅笔,小李剩余17只钢笔.当第四次过后,小张剩余176只铅笔,小李剩余16只钢笔.正好是11倍.故答案为:四5.解:顺水速度为:24+3+3=30(千米/小时);甲、乙两港相距:5÷(+),=5÷,=(千米);答:甲、乙两港相距千米.故答案为:.6.解:第5小时开始时有:164÷2+2=84(个)第4小时开始时有:84÷2+2=44(个)第3小时开始时有:44÷2+2=24(个)第2小时开始时有:24÷2+2=14(个)第1小时开始时有:14÷2+2=9(个)答:最开始的时候有 9个细胞.故答案为:9.7.解:根据分析,在2000~2020之间排除掉奇数,剩下的偶数还可以排除掉不能被3整除的偶数,最后只剩下:2004、2010、2016,再将三个数分别分解质因数得:2004=2×2×3×167;2010=2×3×5×67;2016=2×2×2×2×2×3×3×7,显然2014和2010的质因数在1~9中不到7个,不符合题意,排除,符合题意的只有2016,此时2016的因数分别是:2、3、4、6、7、8、9.故答案是:2016.8.解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是 151.故答案为:151.9.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.10.解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42(个),将42分解成3个数字相乘42=2×3×7.=a×b2×c6.如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是=11×32×26=6336.=3663=11×37×32.因数的个数共2×2×3=12(个).故答案为:12个.11.解:依题意可知:要满足是六合数.分为是3的倍数和不是3的倍数.如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240.如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可.大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;2010是(1,2,3,5,6倍数)不符合题意;2016是(1,2,3,4,6,7,8,9倍数)满足题意.2016<2240;故答案为:201612.解:665=19×7×5,因为长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,所以长、宽、高分别是19、7、5,(19×7+19×5+7×5)×2=(133+95+35)×2=263×2=526,答:它的表面积是526.故答案为:526.13.解:依题意可知:经过了乘以3,再逆序排列,再加上2得到的数字是2015.那么要求原来的数字可以逆向思维求解.2015﹣2=2013,再逆序变成3102,再除以3得3102÷3=1034.故答案为:103414.解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.15.解:由定义可知:x@1.3=11.05,(x+5)1.3=11.05,x+5=8.5,x=8.5﹣5=3.5故答案为:3.5。
五年级上册数学奥数题带答案一
五年级上册数学奥数题带答案一一、拓展提优试题1.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.2.数一数,图中有多少个正方形?3.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是,余数是.4.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打折.5.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.6.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.7.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.8.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.9.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.10.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.11.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.12.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).13.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.14.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.15.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.【参考答案】一、拓展提优试题1.解:如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知S ABCM=S CDEN=S EF AK=六边形面积,根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,△AKP,△CMQ,△ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ,=,则=,=,由鸟头定理可知道3×KP×AP=RP×PQ,综上可得:PR=2KP=RE,那么由三角形AEK是六边形面积的,且S△APK ,=S△AKES△APK=S ABCDEF=47,所以阴影面积为47×3=141故答案为141.2.解:通过有规律的数,得出:(1)边长为1的正方形有4×3=12(个);(2)边长为2的正方形有6个;(3)边长为3的正方形有2个.(4)以小正方形的对角线为边的正方形有8个;(5)以对角线的一半为边长的正方形是17个;(6)以3个对角线的一半为边长的正方形有1个.所以图中共有正方形:12+6+2+8+17+1=46(个).答:图中有46个正方形.3.解:设除数为b,商和余数都是c,这个算式就可以表示为:47÷b=c…c,即b×c+c=47,c×(b+1 )=47,所以c一定是47的因数,47的因数只有1和47;c为47肯定不符合条件,所以c=1,即除数是46,余数是1.故答案为:46,1.4.解:设这种饮料每杯10,两杯售价是20元,实际用了:10+10×,=10+5,=15(元),15÷20=0.75=75%,所以是打七五折;故答案为:七五.5.解:正方体的棱长应是5,4,3的最小公倍数,5,4,3的最小公倍数是60;所以,至少需要这种长方体木块:(60×60×60)÷(5×4×3),=216000÷60,=3600(块);答:至少需要这种长方体木3600块.故答案为:3600.6.解:(1)三角形有:8+4+4=16(个);(2)正方形有:20+10+4+1=35(个),故答案为:16,35.7.解:第5小时开始时有:164÷2+2=84(个)第4小时开始时有:84÷2+2=44(个)第3小时开始时有:44÷2+2=24(个)第2小时开始时有:24÷2+2=14(个)第1小时开始时有:14÷2+2=9(个)答:最开始的时候有 9个细胞.故答案为:9.8.解:如图:连接正方形的一条对角线,延长DA,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半16÷2=8答:阴影部分的面积是8.故答案为:8.9.解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.10.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12011.解:6÷2=3(组)11时30分﹣8是=3时30分=210分210×2÷3=420÷3=140(分钟)答:每人打了140分钟.故答案为:140.12.解:可以组成下列质数:2、3、5、7、61、89,一共有6个.答:用1、2、3、5、6、7、8、9这8个数字最多可以组成 6个质数.故答案为:6.13.解:彤彤给林林6张,林林有总数的;林林给彤彤2张,林林有总数的;所以总数:(6+2)÷(﹣)=96,林林原有:96×﹣6=66,故答案为:66.14.解:根据分析:这个数除以2,3,4,5均余1,那么这个数减去1后就能同时被2,3,4,5整除;2,3,4,5的最小公倍数是60,则这个数为60的倍数加1.又因为这个数大于1,所以这个数最小是61.故答案为:61.15.解:10÷2=5(颗)18÷2=9(颗)此时A有:26﹣10+9=25(颗)此时C有:25×4=100(颗)原来C有:100﹣9﹣5=86(颗)答:松鼠C原有松果 86颗.故答案为:86.。
五年级奥数图形与面积A含详细答案
2010年五年级奥数题:图形与面积(A)一、填空题(共10小题,每小题3分,满分30分)1.(3分)如图,把三角形ABC的一条边AB延长1倍到D,把它的另一边AC延长2倍到E,得到一个较大的三角形ADE,三角形ADE的面积是三角形ABC面积的_________倍.2.(3分)如图,在三角形ABC中,BC=8厘米,AD=6厘米,E、F分别为AB和AC的中点.那么三角形EBF的面积是_________平方厘米.3.(3分)如图,,那么,三角形AED的面积是三角形ABC面积的_________.4.(3分)如图,三角形ABC的面积是30平方厘米,D是BC的中点,AE的长是ED的长的2倍,那么三角形CDE的面积是_________平方厘米.5.(3分)现有一个5×5的方格表(如图)每个小方格的边长都是1,那么图中阴影部分的面积总和等于_________.6.(3分)如图正方形ABCD边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.阴影部分甲与阴影部分乙的面积差是_________平方厘米.7.(3分)如图所示,一个矩形被分成A、B、C、D四个矩形.现知A的面积是2cm2,B的面积是4cm2,C的面积是6cm2.那么原矩形的面积是_________平方厘米.A BC D8.(3分)(2011•杭州模拟)有一个等腰梯形,底角为450,上底为8厘米,下底为12厘米,这个梯形的面积应是_________平方厘米.9.(3分)已知三角形ABC的面积为56平方厘米、是平行四边形DEFC的2倍,那么阴影部分的面积是_________平方厘米.10.(3分)(2012•中山市模拟)下图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是_________.二、解答题(共4小题,满分0分)11.已知正方形的面积是50平方厘米,三角形ABC两条直角边中,长边是短边的2.5倍,求三角形ABC的面积.12.如图,长方形ABCD中,AB=24cm,BC=26cm,E是BC的中点,F、G分别是AB、CD的四等分点,H为AD上任意一点,求阴影部分面积.13.有两张正方形纸,它们的边长都是整厘米数,大的一张的面积比小的一张多44平方厘米.大、小正方形纸的边长分别是多少?14.用面积为1,2,3,4的四张长方形纸片拼成如图所示的一个长方形.问:图中阴影部分面积是多少?2010年五年级奥数题:图形与面积(A)参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)如图,把三角形ABC的一条边AB延长1倍到D,把它的另一边AC延长2倍到E,得到一个较大的三角形ADE,三角形ADE的面积是三角形ABC面积的6倍.考点:三角形面积与底的正比关系.分析:要求三角形ADE的面积是三角形ABC面积的多少倍,可连接BE,然后根据题意可得:AC=AE,根据△ABC和△ABE等高,即△ABC的面积是△ABE面积的,即△ABC有1份,则△ABE 有3份,因为AB=BD得出△ABE=△BDE,所以△BDE也有3份,然后根据问题解答即可.解答:解:(1×3×2)÷1,=6(倍);答:三角形ADE的面积是三角形ABC面积的6倍;故答案为:6.点评:此题应结合题意,作出一条辅助线,然后根据三角形的面积特点进行分析、解答即可.2.(3分)如图,在三角形ABC中,BC=8厘米,AD=6厘米,E、F分别为AB和AC的中点.那么三角形EBF的面积是6平方厘米.考点:组合图形的面积.分析:根据三角形的面积公式可先求出三角形ABC的面积,再根据F是边AC的中点,那么三角形ABF的面积等于三角形BCF的面积,即三角形ABF的面积等于三角形ABC的面积,又因为E是边AB的中点,那么三角形EFB的面积就等于三角形AEF的面积,即三角形EFB的面积等于三角形ABF的面积,即三角形EFB的面积等于三角形ABC的面积,列式解答即可得到答案.解答:解:三角形ABC的面积为:8×6÷2=24(平方厘米);三角形EBF的面积为:×24=6(平方厘米);答;三角形EBF的面积为6平方厘米.故答案为:6.点评:此题主要考查的是三角形的面积公式.3.(3分)如图,,那么,三角形AED的面积是三角形ABC面积的.考点:三角形面积与底的正比关系.分析:(1)先看△AEC和△ABC的面积关系:BC边上的高,既是△AEC的高也是△ABC的高,已知BE=BC,则EC=BC,根据三角形的面积公式可得:△AEC是△ABC的面积的;(2)同理,可以推理出△AED和△AEC的面积关系是:△AED是△AEC的面积的;由上述两个结论即可解决问题.解答:解:(1)已知BE=BC,则EC=BC,根据三角形面积公式可得:△AEC是△ABC的面积的;(2)已知CD=AC,则AD=AC,根据三角形面积公式可得:△AED是△AEC的面积的;所以△AED=△AEC=△ABC=△ABC.答:三角形AED的面积是三角形ABC面积的.故答案为:.点评:此题是考查了高相等的情况下,三角形的面积与这条高所在的底成正比关系的灵活应用.4.(3分)如图,三角形ABC的面积是30平方厘米,D是BC的中点,AE的长是ED的长的2倍,那么三角形CDE的面积是5平方厘米.考点:组合图形的面积.分析:因为等底等高的三角形的面积相等,所以三角形ADC的面积=三角形ABD的面积=三角形ABC 的面积的一半;又因AE:ED=2:1,所以S△CAE:S△CDE=2:1,从而可求三角形CDE的面积.解答:解:S△ABD=S△ADC=S△ABC=×30=15(平方厘米);S△CAE:S△CDE=2:1,S△CDE=S△ADC=×15=5(平方厘米);答:三角形CDE的面积是5平方厘米.故答案为:5.点评:此题主要考查等底等高的三角形的面积相等.5.(3分)现有一个5×5的方格表(如图)每个小方格的边长都是1,那么图中阴影部分的面积总和等于10.考点:组合图形的面积.分析:根据图形分别求出三个三角形的面积,相加即可求出图中阴影部分的面积总和.解答:解:2×3÷2+3×2÷2+4×2÷2,=3+3+4,=10.故答案为:10.点评:考查了组合图形的面积,解决此题的关键是分别得到三个三角形的面积.6.(3分)如图正方形ABCD边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.阴影部分甲与阴影部分乙的面积差是60平方厘米.考点:组合图形的面积.分析:根据题意可阴影部分甲的面积等于正方形ABCD的面积减去长方形EFMN;阴影部分乙的面积等于长方形EFGH减去长方形EFMN;再用阴影部分甲减去阴影部分乙就可得到答案,列式解答.解答:解:阴影部分甲的面积:10×10﹣(EF×EM),阴影部分乙的面积:8×5﹣(EF×EM),阴影部分甲﹣阴影部分乙的面积,=10×10﹣(EF×EM)﹣[8×5﹣(EF×EM)]=100﹣(EF×EM)﹣40+(EF×EM)=100﹣40,=60(平方厘米);答:阴影部分甲与阴影部分乙的面积差是60平方厘米.故填:60.点评:解答此题的关键是图形中的空白部分的即在正方形中也在长方形中,在计算中可以相互抵消.7.(3分)如图所示,一个矩形被分成A、B、C、D四个矩形.现知A的面积是2cm2,B的面积是4cm2,C的面积是6cm2.那么原矩形的面积是24平方厘米.A BC D考点:组合图形的面积.分析:图中的四个矩形是大矩形是被两条直线分割后得到的,矩形的面积等于一组邻边的乘积,从横的方向来看,两个相邻矩形的倍比关系是一致的,B是A的两倍,那么D也是C的两倍,从而求出D的面积,然后把A、B、C、D的面积加在一起即可.解答:解:由题意知:B是A的两倍,那么D也是C的两倍,所以D的面积是2×6=12(cm2),从而原矩形的面积是:2+4+6+12=24(cm2),故答案为:24.点评:此题考查组合图形的面积.8.(3分)(2011•杭州模拟)有一个等腰梯形,底角为450,上底为8厘米,下底为12厘米,这个梯形的面积应是20平方厘米.考点:梯形的面积.分析:根据等腰图形的面积公式可得,只要求出梯形的高就可以解决问题,作出梯形的两条高,根据等腰梯形的性质,可将这个底角为450的梯形分成了两个等腰直角三角形,由此可以得出梯形的高为2厘米.解答:解:梯形的高:(12﹣8)÷2,=4÷2,=2(厘米),梯形的面积:(8+12)×2÷2,=20×2÷2,=20(平方厘米),答:梯形的面积为20平方厘米.故答案为:20.点评:画出梯形的两条高将梯形分成两个直角三角形和长方形,是解决此类问题到的关键.9.(3分)已知三角形ABC的面积为56平方厘米、是平行四边形DEFC的2倍,那么阴影部分的面积是14平方厘米.考点:组合图形的面积.分析:①三角形ABC的面积为56平方厘米、是平行四边形DEFC的2倍,所以平行四边形DEFC的面积=56÷2=28(平方厘米);②△AED与平行四边形DEFC是等底等高的,根据三角形面积公式和平行四边形的面积公式可得,△AED的面积=平行四边形DEFC一半,由此即可计算得出阴影部分的面积.解答:解:根据分析可得:56÷2=28(平方厘米),28÷2=14(平方厘米),答:阴影部分的面积是14平方厘米.故答案为:14.点评:抓住图形中潜在的条件:得出等底等高的三角形与平行四边形的面积关系.10.(3分)(2012•中山市模拟)下图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是97.考点:组合图形的面积.分析:因为长方形的面积等于△ABC与△ECD的面积和,所以△ABC与△ECD重叠部分的面积等于长方形未被这两个三角形盖住部分的面积和,即S=49+35+13=97.解答:解:如图:因为长方形的面积等于△ABC与△ECD的面积和,所以△ABC与△ECD重叠部分的面积等于长方形未被这两个三角形盖住部分的面积和,即:S=49+35+13=97.故答案为:97.点评:本题主要考查对三角形和长方形面积的计算及其之间关系的掌握,以及观察分析能力.二、解答题(共4小题,满分0分)11.已知正方形的面积是50平方厘米,三角形ABC两条直角边中,长边是短边的2.5倍,求三角形ABC的面积.考点:长方形、正方形的面积;三角形的周长和面积.分析:根据图形可知,正方形的边长是三角形的一条较长的直角边,设正方形的边长为a,三角形ABC 两条直角边中,长边是短边的2.5倍,则短边b=a÷2.5,然后利用三角形的面积公式解答.解答:解:正方形面积=a2=50平方厘米,即正方形的边长为a,那么三角形另一条直角边为b,长边是短边的2.5倍,a=2.5b,则b=a÷2.5,三角形面积=ab÷2;=a×a÷2.5÷2,=a2÷5,=50÷5,=10(平方厘米);答:三角形ABC的面积是10平方厘米.点评:此题主要考查正方形和三角形的面积计算方法,解答关键是利用等量代换来求出三角形的面积.12.如图,长方形ABCD中,AB=24cm,BC=26cm,E是BC的中点,F、G分别是AB、CD的四等分点,H为AD上任意一点,求阴影部分面积.考点:组合图形的面积.分析:此题是求图中组合图形的面积,可以利用辅助线将它转换成规则图形,如图,连接BH,将阴影部分分成了三个三角形,求出这三个三角形面积和即可解决问题.利用三角形面积公式进行解决.解答:解:如图,连接BH,AB=CD=24厘米,BC=AD=26厘米,因为F、G分别是四等分点,所以BF=AB==6(厘米),DG=24=6(厘米),S△BFH+S△DHG,=BF×AH DG×HD,=,=3×AH+3×DH,=3×(AH+DH),=3×AD,=3×26,=78(平方厘米),因为E是BC的中点,BE=13厘米,S△BEH=×13×24=156(平方厘米),78+156=234(平方厘米),答:阴影部分的面积为234平方厘米.点评:组合图形的面积计算,转化成规则图形的面积计算时解题的关键.13.有两张正方形纸,它们的边长都是整厘米数,大的一张的面积比小的一张多44平方厘米.大、小正方形纸的边长分别是多少?考点:长方形、正方形的面积.分析:可以分别设出这两个正方形的边长,然后进行讨论,如果有小数的情况就舍去,是整数的就保留,从而可以得到答案.解答:解:设大的正方形纸边长为a厘米,小的为b厘米,由题意b2﹣a2=44 (b+a)(b﹣a)=44 因其边长都是整厘米数,那么(b+a)与(b﹣a)也均为整厘米数而44分解成两个整数相乘只有3种情况,即44×1、22×2、11×4,由此可分别讨论:第一种情况:b+a=44 b﹣a=1 解得a=21.5,b=22.5,不符合题意,舍去;第二种情况:b+a=22 b﹣a=2 解得a=10,b=12,符合题意;第三种情况:b+a=11 b﹣a=4 解得a=3.5,b=7.5,不符合题意,舍去;综上所述,大的正方形纸边长为12厘米,小的为10厘米.答:大、小正方形纸的边长分别是12厘米、10厘米.点评:此题的关键是分情况讨论正方形的边长.14.用面积为1,2,3,4的四张长方形纸片拼成如图所示的一个长方形.问:图中阴影部分面积是多少?考点:组合图形的面积.分析:设面积为1的长方形长、宽分别为a、b,则ab=1,根据面积公式分别计算面积为2、3、4的长、宽,用a、b表示阴影部分的面积,即可解题.解答:解:设面积为1的长方形长、宽分别为a、b,则ab=1,面积为2的长方形宽为a,长为,面积为3的长方形和面积为4的长方形的长相等,则宽的比例为3:4,故面积为3的长方形的宽为,长为,BD=﹣b.阴影部分的面积为△ABD和△BCD面积之和,所以阴影部分的面积为,答:图中阴影部分面积是.点评:本题考查了长方形面积的计算,考查了三角形面积的计算,本题中求BD的长是解题的关键.====Word行业资料分享--可编辑版本--双击可删====源-于-网-络-收-集。
五年级上册数学试题-奥数:图形定稿(无答案)全国通用
目录第一讲图形的计数(一) (2)第二讲图形的计数(二) (7)第三讲角的计算 (11)第四讲巧求周长 (14)第五讲图形的分与合 (20)能力测试(一) (25)第六讲割补 (28)第七讲平移、旋转、对称 (33)第八讲添辅助线 (38)第九讲等积变形 (43)第十讲格点与面积 (48)能力测试(二) (53)第一讲图形的计数(一)图形的计数问题,实际上就是数几何图形中线段、角、三角形、四边形等的个数问题。
在对图形计数时,通常采用的是枚举法,即把所要计数的对象一一列举出来,然后计算它的总和。
用枚举法计数时需注意:(1)弄清被数图形的特性与变化规律;(2)要按一定的顺序去数,做到不遗漏、不重复。
例1.下图中有多少条线段?【试一试】下图中各有多少条线段?(1)(2)例2.下面图形中有几个角?【试一试】下图中各有多少个角?(1) (2)例3.下图中共有多少个三角形?【试一试】数一数图中共有多少个三角形?A B C D EOD C B AA B ED C A B C DE FA B C D E F F G HI A B C DAB CA E DBC OE F D A B C O例4.右图中有多少个三角形?【试一试】数一数,图中有多少个三角形?(1)例5.下图中各有多少个长方形?【试一试】下图中各有多少个长方形?(1)(2)例6.如图,从甲地到乙地有2条路可走,从乙地到丙地有3条路可走;从甲地到丁地有4条路可走,从丁地到丙地有2条路可去。
从甲地到丙地共有多少种不同的走法?(2【试一试】1、如果线段AB 上共有8个点(包括A 、B 两点),那么,共有多少条线段?2、联结A 、B 、C 、D 四个城市的道路如图所示:(1)从A 城经B 城到C 城的不同走共有多少种?(2)从A 城到C 城的不同走法共有多少种?当堂测试1、数一数下图中各有多少条线段?2、数一数下图中有多少个锐角?3、数一数下图中各有多少个三角形。
小学五年级奥数竞赛数学竞赛试卷及答案图文百度文库
小学五年级奥数竞赛数学竞赛试卷及答案图文百度文库一、拓展提优试题1.如图,在等腰直角三角形ABC中,斜边AB上有一点D,已知CD=5,BD 比AD长2,那么三角形ABC的面积是.2.甲乙两人分别从AB两地同时出发相向而行,当甲走到一半时,乙将速度提高一倍,结果两人在距离B地1200米处相遇,并且最后同时到达,那么两地相距米3.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.4.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.5.用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.6.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.7.如图:平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是平方厘米.8.用0、1、2、3、4这五个数字可以组成个不同的三位数.9.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.10.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.11.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).12.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.13.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?14.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.15.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.【参考答案】一、拓展提优试题1.解:作CE ⊥AB 于E .∵CA =CB ,CE ⊥AB ,∴CE =AE =BE ,∵BD ﹣AD =2,∴BE +DE ﹣(AE ﹣DE )=2,∴DE =1,在Rt △CDE 中,CE 2=CD 2﹣DE 2=24,∴S △ABC =•AB •CE =CE 2=24,故答案为242.2800[解答] 设两地之间距离为S 。
奥数试卷 五年级小数乘除法
五年级小数乘除法账错了学校举办趣味知识比赛,快要结束了,王老师在准备奖品时,忽然发现有的奖品数目不够,就对参加比赛的李明说:“李明,你去商店买5支铅笔,7支圆珠笔,8个笔记本和4个文具盒,这是30元。
”李明接过钱,邀了王华一起去买东西。
来到商店,李明就对售货员说:“买5支铅笔,7支圆珠笔,8个笔记本和4个文具盒。
”售货员小姐把东西一一拿出来,算了一会儿说:“一共29.10元。
”“铅笔多少钱一支?”王华问。
“4角一支。
”“圆珠笔呢?”“1元2角。
”王华正准备继续问笔记本和文具盒的价格,一旁的李明立即说道:“那你一定算错了。
”“怎么可能呢?你还不知道文具盒和笔记本的价格呢!”售货员小姐一脸的惊讶,“不需要知道它们的价格就知道你算错了,”李明肯定地说,“不信你再算算看。
”“笔记本1元一本,文具盒2.5元一只,”接着售货员将信将疑地又把账算了一遍,“果然算错了,应为28.40元,这下对了吗?”售货员问李明。
这下李明没有立即回答,而是心算了一段时间后才说:“对了。
”然后付了钱。
回校的途中,王华问:“李明,你是不是前几天在这儿问过笔记本和文具盒的价格,所以知道她算错了?”李明笑着说:“其实我并不知道价格,但不管怎么说都不会出现29.10元这个钱数。
”“啊,你不知道价格,那你是怎么断定的?”王华来了兴趣。
“因为总价格等于各单价乘以各数量的和。
而售货员说,铅笔是4角钱一支,圆珠笔1元2角一支,把它都化成分,即40分和120分。
而8本笔记本,4只文具盒,这些数都可以被4整除,所以我就断定售货员把账算错了。
”“如果她算出来是28.80元,不是判断不出来了吗?”“所以在她说总价格为28.40元时,我在判断它能被4整除后,并不能判定是对的,而是又重新用各单价与各数量计算了一遍,才敢断定是对的,用这种方法如果算出来不符合,那可以判断是错的,但如果符合并不能判断一定是对的,这是这种方法的弱点,但我们用这种方法可以早一点做出判断。
五年级奥数试卷考卷终审稿)
五年级奥数试卷考卷文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]五年级奥数期末考试卷姓名:成绩:一、判断(对的打√,错的打×,共10分)1、平均数=总数量÷总份数()2、总数量=平均数×总份数()3、总份数=总数量×平均数()4、两次亏数的差÷两次分得的差=参与分配对象总数()5、盈与亏的和÷两次分得的差=参与分配对象总数()二、平均数1、小明前几次数学测验的平均成绩是84分,这次要考100分,才能把数学平均成绩提高到86分,问这是他第几次数学测验?三、等差数列1、求等差数列1,4,7,10,13,...的第20项和第80项。
四、长方形、正方形的周长和面积1、求下列图形的周长。
(单位:厘米)11242、下图所示为一个大长方形被分成四个小长方形,其中三个小长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
五、数数图形1、数数下面图中有()个长方形?2、数数下面图中有()个正方形?3、数数下面图中有几个正方形?()个()个4、从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?六、尾数和余数1、写出除1095后余3的全部三位数。
2、555…55÷13,当商是整数时,余数是几?2001个5七、数阵、周期问题1、将1-6六个数分别填入下图的○内,使每边上的三个○内数的和相等。
2、将1-9填入下图的○中,使横、竖行五个数相加的和都等于25。
3、将1-9九个数分别填入右图○内,使外三角形边上的○内数字和等于里面三角形边上○内数字的和。
4、将1-6六个数分别填入下图的○内,使每边上的三个○内数的和相等。
○○○○○○5、小数点后面第100个数字是多少?八、一般应用题1、五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来三人的存款数,原来每人存款多少?2、甲和乙拿出同样多的钱买相同的铅笔若干支,分铅笔时,甲拿了13支,乙拿了7支,因此,甲又给了乙6元钱。
【经典】小学五年级奥数题100图文百度文库
【经典】小学五年级奥数题100图文百度文库一、拓展提优试题∆的面积等于5平方厘1.如图所示,P为平行四边形ABDC外一点。
已知PCD米,PAB∆的面积等于11平方厘米。
则平行四边形ABCD的面积是2.先将从1开始的自然数排成一列:123456789101112131415…然后按一定规律分组:1,23,456,7891,01112,131415,…在分组后的数中,有一个十位数,这个十位数是.3.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.4.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.5.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.6.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.7.李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是米/分钟.8.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.9.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.10.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.11.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.12.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.13.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.14.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.15.松鼠A 、B 、C 共有松果若干,松鼠A 原有松果26颗,从中拿出10颗平分给B 、C ,然后松鼠B 拿出自己的18颗松果平均分给A 、C ,最后松鼠C 把自己现有松果的一半平分给A 、B ,此时3只松鼠的松果数量相同,则松鼠C 原有松果 颗.【参考答案】一、拓展提优试题1.12[解答]作PF AB ⊥,由于//AB DC ,所以PF CD ⊥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级奥数试卷集团文件版本号:(M928-T898-M248-WU2669-I2896-
小学五年级奥数试卷
姓名得分
1、一班开学第一天每两位同学见面互相握手问候一次,全班40人
共握手多少
次?次。
2、一个等差数列的第2项是2.8,第三项是3.1,求这个等差数列的第15项。
第15项是。
3、五年级二班有36名学生,班长吴虹去给大家买图画本,每人一本。
回来后忘了数钱,只记得是◇1.1□元。
问:每本图画本为
元。
4、东油库存油是西油库存油的6倍,若两油库各增加30吨油后,东油库存油就将是西油库存油量的3倍,两油库原来各存油多少吨?
东油库原来存油吨,西油库原来存油吨。
5、一个六位数ABCDEK,乘以E之后,原数为KABCDE,求原数是多少(
不同字母代表不同数字)原数为。
6、清泉小学500人参加运动会入场式,每20人一行,两行之间距离3米,主席台18米,他们以每分钟30米的速度通过主席台,需要
分钟。
个。
8、5 / 7可以化成循环小数,问这个循环小数的小数点后面第1995位上的数字是几?这个数字是。
9、一个三角形的三条边长是三个连续的两位偶数,且它们的尾数之和能被7整除,求这个三角形的最大周长。
周长是。
10、有一个分数,如果分子分母都加上1,则分数变为1 / 2,如分子分母都减1,则分数变为2 / 5,求这个分数。
这个分数。
11、有一天,某城市的珠宝店被盗走了价值数万元的钻石。
报案后,经过三个月的侦察,查明作案人肯定是甲、乙、丙、丁中的一人。
经过审讯,这四个人的口供如下:
甲:钻石被盗的那天,我在别的城市,所以我不是罪犯。
乙:丁是罪犯。
丙:乙是盗窃犯,三天前,我看见他在黑市上卖一块钻石。
丁:乙同我有仇,有意诬陷我。
因为口供不一致,无法判定谁是罪犯。
经过测慌试验知道,这四人中只有一人说的是真话,那么谁是罪犯呢?
罪犯是。
12、清风小学五年级有253人,学校组织了数学小组、朗诵小组、舞蹈小组,规定每人至少参加一个小组,最多参加二个小组,那么至少有几个人参加的小组完全相同
人。