备战中考数学专题《初中数学 旋转》综合检测试卷附详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战中考数学专题《初中数学 旋转》综合检测试卷附详细答案
一、旋转
1.在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。
(1)如图1,直接写出∠ABD 的大小(用含α的式子表示); (2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC=45°,求α的值。
【答案】(1)1
302α︒-(2)见解析(3)30α=︒
【解析】解:(1)1
302
α︒-。
(2)△ABE 为等边三角形。
证明如下:
连接AD ,CD ,ED ,
∵线段BC 绕点B 逆时针旋转60︒得到线段BD , ∴BC=BD ,∠DBC=60°。
又∵∠ABE=60°,
∴1
ABD 60DBE EBC 302
α∠=︒-∠=∠=︒-且△BCD 为等边三角形。
在△ABD 与△ACD 中,∵AB=AC ,AD=AD ,BD=CD ,
∴△ABD ≌△ACD (SSS )。
∴1
1BAD CAD BAC 22
α∠=∠=∠=。
∵∠BCE=150°,∴11
BEC 180(30)15022
αα∠=︒-︒--︒=。
∴BEC BAD ∠=∠。
在△ABD 和△EBC 中,∵BEC BAD ∠=∠,EBC ABD ∠=∠,BC=BD , ∴△ABD ≌△EBC (AAS )。
∴AB=BE 。
∴△ABE 为等边三角形。
(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=︒-︒=︒。
又∵∠DEC=45°,∴△DCE 为等腰直角三角形。
∴DC=CE=BC 。
∵∠BCE=150°,∴(180150)
EBC 152
︒-︒∠=
=︒。
而1
EBC 30152
α∠=︒-=︒。
∴30α=︒。
(1)∵AB=AC ,∠BAC=α,∴180ABC 2
α
︒-∠=。
∵将线段BC 绕点B 逆时针旋转60°得到线段BD ,∴DBC 60∠=︒。
∴180ABD ABC DBC 603022
αα
︒-∠=∠-∠=
-︒=︒-。
(2)由SSS 证明△ABD ≌△ACD ,由AAS 证明△ABD ≌△EBC ,即可根据有一个角等于60︒的等腰三角
形是等边三角形的判定得出结论。
(3)通过证明△DCE 为等腰直角三角形得出(180150)
EBC 152
︒-︒∠==︒,由(1)
1
EBC 302α∠=︒-,从
而1
30152
α︒-=︒,解之即可。
2.如图:在△ABC 中,∠ACB=90°,AC=BC ,∠PCQ=45°,把∠PCQ 绕点C 旋转,在整个旋转过程中,过点A 作AD ⊥CP ,垂足为D ,直线AD 交CQ 于E . (1)如图①,当∠PCQ 在∠ACB 内部时,求证:AD+BE=DE ;
(2)如图②,当CQ 在∠ACB 外部时,则线段AD 、BE 与DE 的关系为_____; (3)在(1)的条件下,若CD=6,S △BCE =2S △ACD ,求AE 的长.
【答案】(1)见解析 (2)AD=BE+DE (3)8 【解析】
试题分析:(1)延长DA 到F ,使DF =DE ,根据线段垂直平分线上的点到线段两端点的距离相等可得CE =CF ,再求出∠ACF =∠BCE ,然后利用“边角边”证明△ACF 和△BCE 全等,根据全等三角形的即可证明AF =BE ,从而得证;
(2)在AD 上截取DF =DE ,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE =CF ,再求出∠ACF =∠BCE ,然后利用“边角边”证明△ACF 和△BCE 全等,根据全等三角形
的即可证明AF =BE ,从而得到AD =BE +DE ;
(3)根据等腰直角三角形的性质求出CD =DF =DE ,再根据等高的三角形的面积的比等于底边的比求出AF =2AD ,然后求出AD 的长,再根据AE =AD +DE 代入数据进行计算即可得解. 试题解析:(1)证明:如图①,延长DA 到F ,使DF =DE .∵CD ⊥AE ,∴CE =CF ,∴∠DCE =∠DCF =∠PCQ =45°,∴∠ACD +∠ACF =∠DCF =45°.又∵∠ACB =90°,∠PCQ =45°,∴∠ACD +∠BCE =90°﹣45°=45°,∴∠ACF =∠BCE .在△ACF 和△BCE 中,
∵CE CF ACF BCE AC BC =⎧⎪
∠=∠⎨⎪=⎩
,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD +BE =AD +AF =DF =DE ,即AD +BE =DE ;
(2)解:如图②,在AD 上截取DF =DE .∵CD ⊥AE ,∴CE =CF ,
∴∠DCE =∠DCF =∠PCQ =45°,∴∠ECF =∠DCE +∠DCF =90°,∴∠BCE +∠BCF =∠ECF =90°.又∵∠ACB =90°,∴∠ACF +∠BCF =90°,∴∠ACF =∠BCE .在△ACF 和△BCE 中,
∵CE CF ACF BCE AC BC =⎧⎪
∠=∠⎨⎪=⎩
,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD =AF +DF =BE +DE ,即AD =BE +DE ;
故答案为:AD =BE +DE .
(3)∵∠DCE =∠DCF =∠PCQ =45°,∴∠ECF =45°+45°=90°,∴△ECF 是等腰直角三角形,∴CD =DF =DE =6.∵S △BCE =2S △ACD ,∴AF =2AD ,∴AD
=
1
12
+×6=2,∴AE =AD +DE =2+6=8.
点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.
3.如图1,菱形ABCD ,AB 4=,ADC 120∠=o ,连接对角线AC 、BD 交于点O ,
()1如图2,将AOD V 沿DB 平移,使点D 与点O 重合,求平移后的A'BO V 与菱形ABCD
重合部分的面积.
()2如图3,将A'BO V 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,
①求证:BE'BF 2+=;
②求出四边形OE'BF 的面积.
【答案】()() 13?2①证明见解析3② 【解析】 【分析】
(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论; (2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论; (3)借助①的结论即可得出结论. 【详解】
()1Q 四边形为菱形,ADC 120∠=o ,
ADO 60∠∴=o ,
ABD ∴V 为等边三角形,
DAO 30∠∴=o ,ABO 60∠=o ,
∵AD//A′O , ∴∠A′OB=60°,
EOB ∴V 为等边三角形,边长OB 2=,
∴重合部分的面积:343⨯=,
()2①在图3中,取AB 中点E ,
由()1知,∠EOB=60°,∠E′O F=60°, ∴∠EOE′=∠BOF ,
又∵EO=BO ,∴∠OEE′=∠OBF=60°, ∴△OEE′≌△OBF , ∴EE′=BF ,
∴BE′+BF=BE′+EE′=BE=2;
②由①知,在旋转过程中始终有△OEE′≌△OBF,∴S△OEE′=S△OBF,
∴S
四边形OE′BF =
OEB
S3
=
V
.
【点睛】
本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.
4.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.
(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;
(2)若PA=2,PB=4,∠APB=135°,求PC的长.
【答案】(1) S阴影=(a2-b2);(2)PC=6.
【解析】
试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.
(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.
试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,
∴△PAB≌△P'CB,
∴S△PAB=S△P'CB,
S阴影=S扇形BAC-S扇形BPP′=(a2-b2);
(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,
∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,
∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;
又∵∠BP′C=∠BPA=135°,
∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.
PC==6.
考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.
5.如图1.在△ABC中,∠ACB=90°,点P为△ABC内一点.
(1)连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE.
①依题意,请在图2中补全图形;
②如果BP⊥CE,AB+BP=9,CE=33,求AB的长.
(2)如图3,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=4,AB=8时,根据此图求PA+PB+PC的最小值.
【答案】⑴①见解析,②AB=6;⑵47.
【解析】
分析:(1)①根据题意补全图形即可;
②连接BD、CD.根据平移的性质和∠ACB=90°,得到四边形BCAD是矩形,从而有CD=
-,由勾股定理求解即可;
AB,设CD=AB=x,则PB=DE=9x
(2)当C、P、M、N四点共线时,PA+PB+PC最小.由旋转的性质和勾股定理求解即可.
详解:(1)①补全图形如图所示;
②如图:连接BD、CD.
∵△BCP沿射线CA方向平移,得到△DAE,
∴BC∥AD且BC=AD,PB=DE.
∵∠ACB=90°,
∴四边形BCAD是矩形,∴CD=AB,设CD=AB=x,则PB=9x
-,
-,
DE=BP=9x
∵BP⊥CE,BP∥DE,∴DE⊥CE,
∴2
2
2
CE DE CD +=,∴()
()2
2
233
9x x +-=,
∴6x =,即AB =6;
(2)如图,当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.
由旋转可得:△AMN ≌△APB ,∴PB =MN . 易得△APM 、△ABN 都是等边三角形,∴PA =PM , ∴PA +PB +PC =PM +MN +PC =CN , ∴BN =AB =8,∠BNA =60°,∠PAM =60°, ∴∠CAN =∠CAB +∠BAN =60°+60°=120°, ∴∠CBN =90°.
在Rt △ABC 中,易得:2222=8443BC AB AC -=-=, ∴在Rt △BCN 中,22486447CN BC BN =
+=+=.
点睛:本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.
6.在平面直角坐标系中,O 为原点,点A (0,4),点B (﹣2,0),把△ABO 绕点A 逆时针旋转,得△AB′O′,点B 、O 旋转后的对应点为B′、O′. (1)如图①,若旋转角为60°时,求BB ′的长; (2)如图②,若AB′∥x 轴,求点O′的坐标;
(3)如图③,若旋转角为240°时,边OB 上的一点P 旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标(直接写出结果即可)
【答案】(1
)2)点O′
的坐标为(
5
,
5
+4);(3)点P′
的坐标为(﹣5
,36
5. 【解析】
分析:(1)由点A 、B 的坐标可得出AB 的长度,连接BB ′,由旋转可知:AB =AB ′,∠BAB ′=60°,进而可得出△ABB ′为等边三角形,根据等边三角形的性质可求出BB ′的长; (2)过点O ′作O ′D ⊥x 轴,垂足为D ,交AB ′于点E ,则△AO ′E ∽△ABO ,根据旋转的性质结合相似三角形的性质可求出AE 、O ′E 的长,进而可得出点O ′的坐标;
(3)作点A 关于x 轴对称的点A ′,连接A ′O ′交x 轴于点P ,此时O ′P +AP ′取最小值,过点O ′作O ′F ⊥y 轴,垂足为点F ,过点P ′作PM ⊥O ′F ,垂足为点M ,根据旋转的性质结合解直角三角形可求出点O ′的坐标,由A 、A ′关于x 轴对称可得出点A ′的坐标,利用待定系数法即可求出直线A ′O ′的解析式,由一次函数图象上点的坐标特征可得出点P 的坐标,进而可得出OP 的长度,再在Rt △O ′P ′M 中,通过解直角三角形可求出O ′M 、P ′M 的长,进而可得出此时点P ′的坐标.
详解:(1)∵点A (0,4),点B (﹣2,0),∴OA =4,OB =2,∴AB
. 在图①中,连接BB ′.
由旋转可知:AB =AB ′,∠BAB ′=60°,∴△ABB ′为等边三角形,∴BB ′=AB
(2)在图②中,过点O ′作O ′D ⊥x 轴,垂足为D ,交AB ′于点E . ∵AB ′∥x 轴,O ′E ⊥x 轴,∴∠O ′EA =90°=∠AOB .
由旋转可知:∠B ′AO ′=∠BAO ,AO ′=AO =4,∴△AO ′E ∽△ABO ,
AE AO ='O E BO ='
AO AB
,即4AE ='2O E
∴AE
,O ′E
∴O ′D
+4,∴点O ′的坐标为
). (3)作点A 关于x 轴对称的点A ′,连接A ′O ′交x 轴于点P ,此时O ′P +AP ′取最小值,过点O ′作O ′F ⊥y 轴,垂足为点F ,过点P ′作PM ⊥O ′F ,垂足为点M ,如图3所示. 由旋转可知:AO ′=AO =4,∠O ′AF =240°﹣180°=60°,∴AF =12AO ′=2,O ′F
AO
∴点O ′(﹣
6).
∵点A (0,4),∴点A ′(0,﹣4).
设直线A ′O ′的解析式为y =kx +b ,将A ′(0,﹣4)、O ′(﹣
6)代入y =kx +b ,得:
46b b =-⎧⎪⎨-+=⎪⎩
,解得:4
k b ⎧=⎪⎨⎪=-⎩
,∴直线A ′O ′的解析式为y =
﹣
3x ﹣4.
当y=0时,有﹣53
3
x﹣4=0,解得:x=﹣
43
5
,∴点P(﹣
43
5
,0),
∴OP=O′P′=43.
在Rt△O′P′M中,∠MO′P′=60°,∠O′MP′=90°,∴O′M=1
2
O′P′=
23
,
P′M=3
O′P′=
6
5
,∴点P′的坐标为(﹣23+
23
,6+
6
5
),即(﹣
8336
5
,).
点睛:本题考查了函数图象及旋转变换、待定系数法求一次函数解析式、等边三角形的判定与性质、一次函数图象上点的坐标特征以及解直角三角形,解题的关键是:(1)利用等边三角形的性质找出BB′的长;(2)通过解直角三角形求出AE、O′E的长;(3)利用两点之间线段最短找出当O′P+AP′取得最小值时点P的位置.
7.如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y
轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.
(Ⅰ)当t=2时,求点M的坐标;
(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;
(Ⅲ)当t为何值时,BC+CA取得最小值.
【答案】(1)(1,2);(2)S=3
2
t+8(0≤t≤8);(3)当t=0时,BC+AC有最小值
【解析】
试题分析:(I)过M作MG⊥OF于G,分别求OG和MG的长即可;
(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=1
2
t,
AF=MG=2,分别表示EC和BE的长,代入面积公式可求得S与t的关系式;并求其t的取值范围;
(III)证明△ABO∽△CAF,根据勾股定理表示AC和BC的长,计算其和,根据二次根式的意义得出当t=0时,值最小.
试题解析:解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2.∵M
是AB的中点,∴G是AO的中点,∴OG=1
2
OA=1,MG是△AOB的中位线,
∴MG=1
2OB=
1
2
×4=2,∴M(1,2);
(II)如图1,同理得:OG=AG=1
2
t.∵∠BAC=90°,
∴∠BAO+∠CAF=90°.∵∠CAF+∠ACF=90°,∴∠BAO=∠ACF.∵∠MGA=∠AFC=90°,
MA=AC,∴△AMG≌△CAF,∴AG=CF=1
2
t,AF=MG=2,∴EC=4﹣
1
2
t,BE=OF=t+2,
∴S△BCE=1
2EC•BE=
1
2
(4﹣
1
2
t)(t+2)=﹣
1
4
t2+
3
2
t+4;
S△ABC=1
2
•AB•AC=
1
2
1
4
t2+4,∴S=S△BEC+S△ABC=
3
2
t+8.
当A与O重合,C与F重合,如图2,此时t=0,当C与E重合时,如图3,AG=EF,即
1 2t=4,t=8,∴S与t之间的函数关系式为:S=
3
2
t+8(0≤t≤8);
(III)如图1,易得△ABO∽△CAF,∴AB
AC
=
OB
AF
=
OA
FC
=2,∴AF=2,CF=
1
2
t,由勾股定理
得:AC
BC∴BC+AC=()
,∴当t=0时,BC+AC有最小值.
点睛:本题考查了几何变换综合题,知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.
8.在正方形ABCD中,连接BD.
(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.
(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.
①依题意补全图1;
②用等式表示线段BM、DN和MN之间的数量关系,并证明.
(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF 分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)
【答案】(1)45°;(2)①补图见解析;②BM、DN和MN之间的数量关系是
BM2+MD2=MN2,证明见解析;(3)答案见解析.
【解析】
(1)利用等腰直角三角形的性质即可;
(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用
勾股定理得到FB2+BM2=FM2,再判断出FM=MN即可;
(3)利用△CEF周长是正方形ABCD周长的一半,判断出EF=EG,再利用(2)证明即可.解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,
∵AE⊥BD,∴∠ABE=∠BAE=45°,
(2)①依题意补全图形,如图1所示,
②BM、DN和MN之间的数量关系是BM2+MD2=MN2,
将△AND绕点D顺时针旋转90°,得到△AFB,
∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,
∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,
∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,
在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,
∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,
∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,
∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,
∵FB2+BM2=FM2,∴DN2+BM2=MN2,
(3)如图2,
将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,
∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,
∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF
∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,
∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,
∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到
DN2+BM2=MN2.
“点睛”此题是四边形综合题,主要考查了正方形的性质、旋转的性质,三角形的全等,判断出(△AFN≌△ANM,得到FM=MM),是解题的关键.
9.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).
(1)当点N落在边BC上时,求t的值.
(2)当点N到点A、B的距离相等时,求t的值.
(3)当点Q沿D→B运动时,求S与t之间的函数表达式.
(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.
【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)
t=1或
【解析】
试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;
(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.
(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.
试题解析:(1)∵△PQN与△ABC都是等边三角形,
∴当点N落在边BC上时,点Q与点B重合.
∴DQ=3
∴2t=3.
∴t=;
(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,
∴PD=DQ,
当0<t<时,
此时,PD=t,DQ=2t
∴t=2t
∴t=0(不合题意,舍去),
当≤t<3时,
此时,PD=t,DQ=6﹣2t
∴t=6﹣2t,
解得t=2;
综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t
当点M在BC边上时,
∴MN=BQ
∵PQ=MN=3t,BQ=3﹣2t
∴3t=3﹣2t
∴解得t=
如图①,当0≤t≤时,
S△PNQ=PQ2=t2;
∴S=S菱形PQMN=2S△PNQ=t2,
如图②,当≤t≤时,
设MN、MQ与边BC的交点分别是E、F,
∵MN=PQ=3t,NE=BQ=3﹣2t,
∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,
∵△EMF是等边三角形,
∴S△EMF=ME2=(5t﹣3)2
.
;
(4)MN、MQ与边BC的交点分别是E、F,
此时<t<,
t=1或.
考点:几何变换综合题
10.如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.
(1)①依题意补全图形;
②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案.
(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由.
(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP 的距离.
【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;
(3).
【解析】
试题分析:(1)①作CE⊥CD,并且线段CE是将线段CD绕点C逆时针旋转90°得到的,再连接DE即可;②根据∠ADC和∠CDE是邻补角,所以∠ADC+∠CDE=180°.
(2)由(1)的条件可得A、D、E三点在同一条直线上,再通过证明△ACD≌△BCE,易得AE=BE+2CM.
(3)运用勾股定理,可得出点A到BP的距离.
试题解析:解:(1)①依题意补全图形(如图);
②∠ADC+∠CDE=180°.
(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:
∵线段CD绕点C逆时针旋转90°得到线段CE,
∴CD=CE,∠DCE=90°.
∴∠CDE=∠CED=45°.
又∵∠ADC=135°,
∴∠ADC+∠CDE=180°,
∴A、D、E三点在同一条直线上.
∴AE=AD+DE.
又∵∠ACB=90°,
∴∠ACB-∠DCB=∠DCE-∠DCB,
即∠ACD=∠BCE.
又∵AC=BC,CD=CE,
∴△ACD≌△BCE.
∴AD=BE.
∵CD=CE,∠DCE=90°,CM⊥DE.
∴DE=2CM.
∴AE=BE+2CM.
(3)点A到BP的距离为.
考点:作图—旋转变换.
11.如图2,边长为2的等边△ABC内接于⊙O,△ABC绕圆心O顺时针方向旋转得到△,A′C′分别与AB、AC交于E、D点,设旋转角度为.
(1)当=,△A′B′C′与△ABC出现旋转过程中的第一次完全重合;
(2)当=60°时(如图1),该图()
A.是中心对称图形但不是轴对称图形
B.是轴对称图形但不是中心对称图形
C.既是轴对称图形又是中心对称图形
D.既不是轴对称图形也不是中心对称图形
(3)如图2,当,△ADE的周长是否会发生变化,如会变化,说明理由,如不会变化,求出它的周长.
【答案】(1)120°;(2)C;(3)△的周长不变.
【解析】
【分析】
(1)根据等边三角形的中心角为120°可直接求解;
(2)根据题意可知,当=60°时,点A、、B、、C、为⊙O的六等分点,,所有的三角形都是正三角形,由此可得到所有图形即是轴对称图形,又是中心对称图形;
(3)得到结论:周长不发生变化,连接A,根据弦相等,则它们所对的弧相等的性质可
得,即,再根据等弧所对的圆周角相等,得,由等角对等边的性质可得,同理,因此可求△的周长
==.
【详解】
解:(1)120°.
如图,可根据等边三角形的性质直接根据三角形的内角和求得∠O=120°;
(2)C
(3)△的周长不变;
理由如下:连接AA′,
∵,
∴,
∴,
∴,
∴,
同理,,
∴△的周长=.
即
考点:正多边形与圆,圆周角定理
12.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.
(1)如图,当α=60°时,延长BE交AD于点F.
①求证:△ABD是等边三角形;
②求证:BF⊥AD,AF=DF;
③请直接写出BE的长;
(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.
【答案】(1)①②详见解析;③3﹣4;(2)13.
【解析】
试题分析:(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由
∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.
试题解析:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,
∴AB=AD,∠BAD=60°,
∴△ABD是等边三角形;
②由①得△ABD是等边三角形,
∴AB=BD,
∵△ABC绕点A顺时针方向旋转60°得到△ADE,
∴AC=AE,BC=DE,
又∵AC=BC,
∴EA=ED,
∴点B、E在AD的中垂线上,
∴BE是AD的中垂线,
∵点F在BE的延长线上,
∴BF⊥AD, AF=DF;
③由②知BF⊥AD,AF=DF,
∴AF=DF=3,
∵AE=AC=5,
∴EF=4,
∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,
∴BE=BF﹣EF=3﹣4;
(2)如图所示,
∵∠DAG=∠ACB,∠DAE=∠BAC,
∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,
又∵∠DAG+∠DAE+∠BAE=180°,
∴∠BAE=∠ABC,
∵AC=BC=AE,
∴∠BAC=∠ABC,
∴∠BAE=∠BAC,
∴AB⊥CE,且CH=HE=CE,
∵AC=BC,
∴AH=BH=AB=3,
则CE=2CH=8,BE=5,
∴BE+CE=13.
考点:三角形综合题.
13.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.
(1)求证:AC垂直平分EF;
(2)试判断△PDQ的形状,并加以证明;
(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.
【解析】
试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,
∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;
(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;
(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.
试题解析:(1)证明:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,
∵BE=DF,
∴CE=CF,
∴AC垂直平分EF;
(2)解:△PDQ是等腰直角三角形;理由如下:
∵点P是AF的中点,∠ADF=90°,
∴PD=AF=PA,
∴∠DAP=∠ADP,
∵AC垂直平分EF,
∴∠AQF=90°,
∴PQ=AF=PA,
∴∠PAQ=∠AQP,PD=PQ,
∵∠DPF=∠PAD+∠ADP ,∠QPF=∠PAQ+∠AQP ,
∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ )=2×45°=90°,
∴△PDQ 是等腰直角三角形;
(3)成立;理由如下:
∵点P 是AF 的中点,∠ADF=90°,
∴PD=AF=PA ,
∵BE=DF ,BC=CD ,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,
∴CE=CF ,∠FCQ=∠ECQ ,
∴CQ ⊥EF ,∠AQF=90°,
∴PQ=AF=AP=PF ,
∴PD=PQ=AP=PF ,
∴点A 、F 、Q 、P 四点共圆,
∴∠DPQ=2∠DAQ=90°,
∴△PDQ 是等腰直角三角形.
考点:四边形综合题.
14.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,90BAO ∠=︒,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .
(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;
(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;
(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;
【答案】(1)①=;②AC 2+CO 2=CD 2;(2)(1)中的结论②不成立,理由见解析;(3)画图见解析;2CD.
【解析】
试题分析:(1)①如图1,证明AC=OC 和OC=OE 可得结论;②根据勾股定理可得:AC 2+CO 2=CD 2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A 、D 、O 、C 四点共圆,得∠ACD=∠AOB ,同理得:∠EFO=∠EDO ,再证明
△ACO ≌△EOF ,得OE=AC ,AO=EF ,根据勾股定理得:AC 2+OC 2=FO 2+OE 2=EF 2,由直角三角
形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣AC=CD.
试题解析:(1)①AC=OE,
理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,
∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,
∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,
连接AD,
∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,
∴AC=OE;
②在Rt△CDO中,
∵CD2=OC2+OD2,∴CD2=AC2+OC2;
故答案为AC2+CO2=CD2;
(2)如图2,(1)中的结论②不成立,
理由是:
连接AD,延长CD交OP于F,连接EF,
∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,
∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,
∴∠ACD=∠AOB,
同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,
∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,
∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,
∴AC2+OC2=FO2+OE2=EF2,
Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,
所以(1)中的结论②不成立;
(3)如图3,结论:OC﹣CA=CD,
理由是:连接AD,则AD=OD,
同理:∠ADC=∠EDO,
∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,
∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,
即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,
故答案为OC﹣AC=CD.
考点:几何变换的综合题
15.已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C 重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.
当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE2OC;
当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明:若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.
①②③
【答案】图②中OD+OE=2OC成立.证明见解析;图③不成立,有数量关系:OE-OD =2OC
【解析】
试题分析:当三角板绕点C旋转到CD与OA不垂直时,易得△CKD≌△CHE,进而可得出证明;判断出结果.解此题的关键是根据题意找到全等三角形或等价关系,进而得出OC 与OD、OE的关系;最后转化得到结论.
试题解析:图②中OD+OE=2OC成立.
证明:过点C分别作OA,OB的垂线,垂足分别为P,Q.
有△CPD≌△CQE,
∴DP=EQ,
∵OP=OD+DP,OQ=OE-EQ,
又∵OP+OQ=2OC,
即OD+DP+OE-EQ=2OC,
∴OD+OE=2OC.
图③不成立,
有数量关系:OE-OD2OC
过点C分别作CK⊥OA,
CH⊥OB,
∵OC为∠AOB的角平分线,且CK⊥OA,CH⊥OB,
∴CK=CH,∠CKD=∠CHE=90°,
又∵∠KCD与∠HCE都为旋转角,
∴∠KCD=∠HCE,
∴△CKD≌△CHE,
∴DK=EH,
∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK,
由(1)知:2OC,
∴OD,OE,OC满足2OC.
点睛:本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.。