全国中考数学相似的综合中考模拟和真题汇总及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相似真题与模拟题分类汇编(难题易错题)
1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.
(1)求抛物线解析式及对称轴;
(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;
(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.
【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得
解得
∴抛物线解析式为:y= x2−x−1
∴抛物线对称轴为直线x=- =1
(2)解:存在
使四边形ACPO的周长最小,只需PC+PO最小
∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.
设过点C′、O直线解析式为:y=kx
∴k=-
∴y=- x
则P点坐标为(1,- )
(3)解:当△AOC∽△MNC时,
如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E
∵∠ACO=∠NCD,∠AOC=∠CND=90°
∴∠CDN=∠CAO
由相似,∠CAO=∠CMN
∴∠CDN=∠CMN
∵MN⊥AC
∴M、D关于AN对称,则N为DM中点
设点N坐标为(a,- a-1)
由△EDN∽△OAC
∴ED=2a
∴点D坐标为(0,- a−1)
∵N为DM中点
∴点M坐标为(2a,a−1)
把M代入y= x2−x−1,解得
a=4
则N点坐标为(4,-3)
当△AOC∽△CNM时,∠CAO=∠NCM
∴CM∥AB则点C关于直线x=1的对称点C′即为点N
由(2)N(2,-1)
∴N点坐标为(4,-3)或(2,-1)
【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。
(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。
(3)分情况讨论:当△AOC∽△MNC时,延长MN交y轴于点D,过点N作NE⊥y轴于点E,由∠ACO=∠NCD,∠AOC=∠CND=90°得出∠CDN=∠CAO,再证明∠CDN=∠CMN,根
据MN⊥AC,可得出M、D关于AN对称,则N为DM中点,设点N坐标为(a,- a-1),根据△EDN∽△OAC,得出点D、M的坐标,然后将点M的坐标代入抛物线的解析式求出a的值,即可得出点N的坐标;当△AOC∽△CNM时,∠CAO=∠NCM,得出CM∥AB 则点C关于直线x=1的对称点C′即为点N,就可求出点N的坐标。
2.如图,△ABC是一锐角三角形余料,边BC=16cm,高AD=24cm,要加工成矩形零件,使矩形的一边在BC上,其余两个顶点E、F分别在AB、AC上.
求:
(1)AK为何值时,矩形EFGH是正方形?
(2)若设AK=x,S EFGH=y,试写出y与x的函数解析式.
(3)x为何值时,S EFGH达到最大值.
【答案】(1)解:设边长为xcm,
∵矩形为正方形,
∴EH∥AD,EF∥BC,
根据平行线的性质可以得出: = 、 = ,
由题意知EH=x,AD=24,BC=16,EF=x,即 = , = ,
∵BE+AE=AB,
∴ + = + =1,
解得x= ,
∴AK= ,
∴当时,矩形EFGH为正方形
(2)解:设AK=x,EH=24-x,
∵EHGF为矩形,
∴ = ,即EF= x,
∴S EFGH=y= x•(24-x)=- x2+16x(0<x<24)
(3)解:y=- x2+16x
配方得:y= (x-12)2+96,
∴当x=12时,S EFGH有最大值96
【解析】【分析】(1)设出边长为xcm,由正方形的性质得出,EH∥AD,EF∥BC,根据平行线的性质,可以得对应线段成比例,代入相关数据求解即可。
(2)设AK=x,则EH=16-x,根据平行的两三角形相似,再根据相似三角形的对应边上的高之比等于相似比,用含x的代数式表示出EF的长,根据矩形面积公式即可得出y与x的函数解析式。
(3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质可得出矩形EFGH的面积取最大值时的x的值。
3.如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.
(1)若△ABD≌△BFO,求BQ的长;
(2)求证:FQ=BQ
【答案】(1)解:∵≌,
∴,
∵均为半圆切线,
∴ .
连接 ,
则,
∴四边形为菱形,
∴DQ∥,
∵均为半圆切线,
∴∥,
∴四边形为平行四边形∴,(2)证明:易得∽,
∴ = ,
∴ .
∵是半圆的切线,
∴ .
过点作于点,
则 .
在中,,
∴,
解得:,
∴
∴
【解析】【分析】(1)连接OP,由ΔABD≌ΔBFO可得AD=OB,由切线长定理可得AD=DP,于是易得OP=OA=DA=DP,根据菱形的判定可得四边形DAOP为菱形,则可得DQ∥AB,易得四边形DABQ为平行四边形,根据平行四边形的性质可求解;
(2)过Q点作QK⊥AM于点K,由已知易证得ΔABD∽ΔBFO,可得比例式,可得BF与AD的关系,由切线长定理可得AD=DP,QB=QP ,解直角三角形DQK可求得BQ与AD 的关系,则根据FQ=BF−BQ可得FQ与AD的关系,从而结论得证。
4.在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M 从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.
(1)如图1,当点M在线段ED上时,求证:MN= EM;
(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF交对角线BD于点G(如图2),求线段MG的长.
【答案】(1)证明::∵ °, ° ,
∴ °
∵ ,
∴
∵∥ ,
∴
∴ °,
∴
过点作于点 ,则 .
在中,
∴
∴
(2)解:在中,,
∴
∵
a.当点在线段上时,过点作于点 ,
在中,
由(1)可知:
,
∴
∴
∴
b.当点在线段延长线上时,过点作于点在中, ,
在中, ,
∴ ,
∴
(3)解:连接 ,交于点 .
∵为的中点
∴ ,
∴ .
∵ ,
∴ ,
∴ ,
∴ ,
∴ .
∵∥
∴ ,
∴ ,
,
∵ ,
∴ ,
又∵ ,
∴∽ ,
∴,即 ,
∴
【解析】【分析】(1)过点E作EH⊥MN于点H ,由已知条件易得EN=EM,解直角三角形EMH易得MH和EM的关系,由等腰三角形的三线合一可得MN=2MH即可求解;
(2)在Rt△ABE中,由直角三角形的性质易得DE=BE=2AE,由题意动点M从点E出发沿射线ED运动可知点M可在线段ED上,也可在线段ED外,所以可分两种情况求解:①当点M在线段ED上时,过点N作NI⊥AD于点I ,结合(1)中的结论MN=EM即可求解;
②当点M在线段ED延长线上时,过点N作NI'⊥AD于点I ',解RtΔNI′M 和可
求得NI'和NE,则DM=NE−DE,所以以M、N、D为顶点的三角形面积y=MD.NI可求解;(3)连接CM,交BD于点N',由(2)中的计算可得MN、CD、MC的长,解直角三角形CDM可得∠DMC的度数,于是由三角形内角和定理可求得∠NMC=,根据平行线的性
质可得DMN'是直角三角形,根据直角三角形的性质可得MN′=MD;则NC的长可求,由已知条件易得ΔNMC∽ΔMN′G
根据所得的比例式即可求解.
,
5.
(1)问题发现
如图1,四边形ABCD为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF
的两条直角边PE,PF分别交BC,DC于点M,N,当PM⊥BC,PN⊥CD时, =________(用含a,b的代数式表示).
(2)拓展探究
在(1)中,固定点P,使△PEF绕点P旋转,如图2,的大小有无变化?请仅就图2的情形给出证明.
(3)问题解决
如图3,四边形ABCD为正方形,AB=BC=a,点P在对角线AC上,M,N分别在BC,CD 上,PM⊥PN,当AP=nPC时,(n是正实数),直接写出四边形PMCN的面积是________(用含n,a的代数式表示)
【答案】(1)
(2)解:如图3,过P作PG⊥BC于G,作PH⊥CD于H,
则∠PGM=∠PHN=90°,∠GPH=90°
∵Rt△PEF中,∠FPE=90°
∴∠GPM=∠HPN
∴△PGM∽△PHN
∴
由PG∥AB,PH∥AD可得, ,
∵AB=a,BC=b
∴,即 ,
∴,
故答案为
(3)
【解析】【解答解:(1)∵四边形ABCD是矩形,∴AB⊥BC,
∵PM⊥BC,
∴△PMC∽△ABC
∴
∵四边形ABCD是矩形,
∴∠BCD=90°,
∵PM⊥BC,PN⊥CD,
∴∠PMC=∠PNC=90°=∠BCD,
∴四边形CNPM是矩形,
∴CM=PN,
∴,
故答案为;
( 3 )∵PM⊥BC,AB⊥BC
∴△PMC∽△ABC
∴
当AP=nPC时(n是正实数),
∴PM= a
∴四边形PMCN的面积= ,
故答案为:.
【分析】(1)由题意易得△PMC∽△ABC,可得比例式,由矩形的性质可得CM=PN,则结论可得证;
(2)过P作PG⊥BC于G,作PH⊥CD于H,由辅助线和已知条件易得△PGM∽△PHN,则得比例式,由(1)可得比例式,即比值不变;
(3)由(2)的方法可得,则四边形PMCN的面积= .
6.书籍开本有数学开本指书刊幅面的规格大小.如图①,将一张矩形印刷用纸对折后可以得到2开纸,再对折得到4开纸,以此类推可以得到8开纸、16开纸……
若这张矩形印刷用纸的短边长为a.
(1)如图②,若将这张矩形印刷用纸ABCD(AB BC)进行折叠,使得BC与AB重合,点C落在点F处,得到折痕BE;展开后,再次折叠该纸,使点A落在E处,此时折痕恰好经
过点B,得到折痕BG,求的值.
(2)如图③,2开纸BCIH和4开纸AMNH的对角线分别是HC、HM.说明HC⊥HM.(3)将图①中的2开纸、4开纸、8开纸和16开纸按如图④所示的方式摆放,依次连接点A、B、M、I,则四边形ABMI的面积是________.(用含a的代数式表示,直接写出结果)
【答案】(1)解:∵四边形ABCD是矩形,
∴∠ABC ∠C 90°.
∵第一次折叠使点C落在AB上的F处,并使折痕经过点B,
∴∠CBE ∠FBE 45°,
∴∠CBE ∠CEB 45°,
∴BC CE a,BE .
∵第二次折叠纸片,使点A落在E处,得到折痕BG,
∴AB BE ,
∴
(2)解:根据题意和(1)中的结论,有AH BH ,.
∴.
∵四边形ABCD是矩形,
∴∠A ∠B 90°,
∴△MAH∽△HBC,
∴∠AHM ∠BCH.
∵∠BCH ∠BHC 90°,
∴∠AHM ∠BHC 90°,
∴∠MHC 90°,
∴HC⊥HM.
(3)
【解析】【解答】解:(3)如图④,
根据题意知(1)中的结论,有BC=AD= a,AF=IG= a,NI=MP= a,OP= a,又∵∠C=∠ADE=90°, ∠BEC=∠AED,
∴∆BCE≌∆ADE,
∴S ∆BCE=S ∆ADE,
同理可得,S ∆AFH=S ∆IGH, S ∆INQ=S ∆MPQ,
∴四边形ABMI的面积=S矩形ADOF+S矩形IGON+S梯形BMPC
= .
【分析】(1)利用矩形的性质及第一次折叠使点C落在AB上的F处,可得出∠CBE=∠FBE=∠CEB=45°,可得出CE=BC,利用勾股定理可用含a的代数式求出BE的长,再根据第二次折叠纸片,使点A落在E处,得到折痕BG,可用含a的代数式表示出AB的长,然后求出AB与BC的比值。
(2)利用(1)的结论,可用含a的代数式表示出AH、BH、AM的长,就可求出
,利用矩形的性质可得出∠A = ∠B,再根据相似三角形的性质,证明△MAH∽△HBC,利用相似三角形的性质,去证明∠AHM + ∠BHC = 90°,然后利用垂直的定义可解答。
(3)利用已知条件证明∆BCE≌∆ADE,可证得S ∆BCE=S ∆ADE, S ∆AFH=S ∆IGH, S ∆INQ=S ∆MPQ,再根据四边形ABMI的面积=S矩形ADOF+S矩形IGON+S梯形BMPC,可求出答案。
7.如图,在Rt△ABC中,∠C=90°,顶点A、C的坐标分别为(﹣1,2),(3,2),点B 在x轴上,点B的坐标为(3,0),抛物线y=﹣x2+bx+c经过A、C两点.
(1)求该抛物线所对应的函数关系式;
(2)点P是抛物线上的一点,当S△PAB= S△ABC时,求点P的坐标;
(3)若点N由点B出发,以每秒个单位的速度沿边BC、CA向点A移动,秒后,点M 也由点B出发,以每秒1个单位的速度沿线段BO向点O移动,当其中一个点到达终点时另一个点也停止移动,点N的移动时间为t秒,当MN⊥AB时,请直接写出t的值,不必写出解答过程.
【答案】(1)解:将点A(﹣1,2),C(3,2),代入抛物线y=﹣x2+bx+c中,
得,解得
∴抛物线y=﹣x2+2x+5.
(2)解:∵点A(-1,2),B(3,0),C(3,2),
∴BC⊥x轴,AC=4,BC=2,
∴,
∴
设直线AB为y=mx+n,
将点A(-1,2),B(3,0),代入可得,解得,∴直线AB为y=
,
设点P(x,),过点P作PN⊥x轴,交直线AB于点M,则M(x,),
∴PM= ,
∴
即,
∴或,
解得,
则点P .
(3)解:当时,如图1,点N在BC的线段上,BN= ,BM= ,
∵MN⊥AB,∴,
又∵A(-1,2),B(3,0),C(3,2),
∴AC∥x轴,BC∥y轴,
∴∠ACB=90°,
∴,
∴
又∵∠MBN=∠ACB=90°,
∴△BNM~△CAB,
∴,则,
解得t= .
当时,点N在线段AC上,如图2,MN与AB交于点D,BM= ,
由A(-1,2),B(3,0),得AB= ,设AD=a,则BD= ,
∵∠ADN=∠ACB=90°, ∠DAN=∠CAB,
∴△ADN~△ACB,
∴;
则 = ,则a=
∵∠BDM=∠ACB=90°, ∠DBM=∠CAB,
∴△BDM~△ACB,
∴ =
,
则
解得 .
综上, .
【解析】【分析】(1)将点A(﹣1,2),C(3,2),代入抛物线y=﹣x2+bx+c中,联立方程组解答即可求出b和c的值;(2)由A(-1,2),B(3,0),C(3,2)可求出直线AB 的解析式和,从而求出 .设PP(x,),过点P作PN⊥x
轴,交直线AB于点M,则M(x,),可得
代入求出P的横坐标x的值,再代入抛物线的解析式求出点P的纵坐标;(3)首先要明确时间t表示点N运动的时间,由点M,N的速度可求出它们当到达终点时的时间t,取其中的较小值为t所能取到的最大值;由点M只在线段OB上运动,点N在线段BC和线段AC上运动,则要分成两部分进行讨论,当点N在线段BC上时和当点N在线段AC上时,并分别求出相应时间t的取值范围;结合相似三角形的判定和性质得到相应边成比例,列方程解答即可.
8.如图,抛物线y=ax2+bx+c过原点O、点A (2,﹣4)、点B (3,﹣3),与x轴交于点C,直线AB交x轴于点D,交y轴于点E.
(1)求抛物线的函数表达式和顶点坐标;
(2)直线AF⊥x轴,垂足为点F,AF上取一点G,使△GBA∽△AOD,求此时点G的坐标;
(3)过直线AF左侧的抛物线上点M作直线AB的垂线,垂足为点N,若∠BMN=∠OAF,求直线BM的函数表达式.
【答案】(1)解:将原点O(0,0)、点 A (2,﹣4)、点 B (3,﹣3),分别代入y=ax2+bx+c,
得,解得,
∴y=x2-4x= ,
∴顶点为(2,-4).
(2)解:设直线AB为y=kx+b,
由点A(2,-4),B(3,-3),得解得,
∴直线AB为y=x-6.
当y=0时,x=6,∴点D(6,0).
∵点A(2,-4),D(6,0),B(3,-3),
∴OA= ,OD=6,AD= ,AF=4,OF=2,DF=4,AB= ,
∴DF=AF,又∵AF⊥x轴,
∴∠AD0=∠DAF=45°,
∵△GBA∽△AOD,
∴,
∴,
解得,
∴FG=AF-AG=4- ,
∴点G(2,).
(3)解:如图1,
∵∠BMN=∠OAF,,
∴∠MBN=∠AOF,
设直线BM与AF交于点H,
∵∠ABH=∠AOD,∠HAB=∠ADO,
∴
∴,
则,解得AH= ,
∴H(2,).
设直线BM为y=kx+b,∵将点B、G的坐标代入得,解得.
∴直线BM的解析式为y= ;
如图2,
BD=AD-AB= .
∵∠BMN=∠OAF,∠GDB=∠ODA,
∴△HBD∽△AOD.
∴,即,解得DH=4.
∴点H的坐标为(2,0).
设直线BM的解析式为y=kx+b.
∵将点B和点G的坐标代入得:,解得k=-3,b=6.
∴直线BM的解析式为y=-3x+6.
综上所述,直线MB的解析式为y= 或y=-3x+6.
【解析】【分析】(1)将原点O(0,0)、点A (2,﹣4)、点B (3,﹣3),分别代入y=ax2+bx+c,联立方程组解答即可a,b,c的值,得到二次函数解析式;将解析式配成顶点
式,可得顶点;(2)由△GBA∽△AOD,可得,分别求出AD,AB,OD的长即可求出AG,由点A的坐标,即可求出点G;(3)点M在直线AF的左侧,可发出垂足N可以在线段AB上,也可以在AB的延长线上,故有如图1和如图2两种可能;设直线BM与直线AF的交点为H,由(2)可知,参加(2)的方法可求出点H的坐标,从而求出直线BM的解析式.
9.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.
(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法)(2)在(1)的条件下,①证明:AE⊥DE;
②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值。
【答案】(1)
(2)①证明:在AD上取一点F使DF=DC,连接EF,
∵DE平分∠ADC,
∴∠FDE=∠CDE,
在△FED和△CDE中,
DF=DC,∠FDE=∠CDE,DE=DE
∴△FED≌△CDE(SAS),
∴∠DFE=∠DCE=90°,∠AFE=180°-∠DFE=90°
∴∠DEF=∠DEC,
∵AD=AB+CD,DF=DC,
∴AF=AB,
在Rt△AFE≌Rt△ABE(HL)
∴∠AEB=∠AEF,
∴∠AED=∠AEF+∠DEF= ∠CEF+ ∠BEF= (∠CEF+∠BEF)=90°。
∴AE⊥DE
②解:过点D作DP⊥AB于点P,
∵由①可知,B,F关于AE对称,BM=FM,
∴BM+MN=FM+MN,
当F,M,N三点共线且FN⊥AB时,有最小值,
∵DP⊥AB,AD=AB+CD=6,
∴∠DPB=∠ABC=∠C=90°,
∴四边形DPBC是矩形,
∴BP=DC=2,AP=AB-BP=2,
在Rt△APD中,DP= = ,
∵FN⊥AB,由①可知AF=AB=4,
∴FN∥DP,
∴△AFN∽△ADP
∴,
即,
解得FN= ,
∴BM+MN的最小值为
【解析】【分析】(1)根据角平分的做法即可画出图.(2)①在AD上取一点F使DF=DC,连接EF;角平分线定义得∠FDE=∠CDE;根据全等三角形判定SAS得△FED≌△CDE,再由全等三角形性质和补角定义得∠DFE=∠DCE=∠AFE=90°,
∠DEF=∠DEC;再由直角三角形全等的判定HL得Rt△AFE≌Rt△ABE,由全等三角形性质得∠AEB=∠AEF,再由补角定义可得AE⊥DE.
②过点D作DP⊥AB于点P;由①可知,B,F关于AE对称,根据对称性质知BM=FM,当F,M,N三点共线且FN⊥AB时,有最小值,即BM+MN=FM+MN=FN;在Rt△APD中,
根据勾股定理得DP= = ;由相似三角形判定得△AFN∽△ADP,再由相似三角形性质得,从而求得FN,即BM+MN的最小值.
10.如图,在菱形ABCD中,, ,点E是边BC的中点,连接DE,AE.
(1)求DE的长;
(2)点F为边CD上的一点,连接AF,交DE于点G,连接EF,若 ,
①求证:△△;
②求DF的长.
【答案】(1)解:连结BD
(2)解:①
②
【解析】【分析】(1)连结BD ,根据菱形的性质及等边三角形的判定方法首先判定出△CDB是等边三角形,根据等边三角形的性质得出DE⊥BC,CE=2,然后利用勾股定理算出DE的长;
(2)①首先判断出△AGD∽△EGF,根据相似三角形对应边成比例得出,又∠AGE=∠DGF,故△AGE∽△DGF;
②根据相似三角形的性质及含30°直角三角形的边之间的关系及勾股定理得出EF的长,然后过点E作EH⊥DC于点H,在Rt△ECH中,利用勾股定理算出FH的长,从而根据线段的和差即可算出答案.
11.如图,点O为矩形ABCD的对称中心,AB=5cm,BC=6cm,点E.F.G分别从A.B.C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E.F.G运动的时间为t(单位:s).
(1)当t等于多少s时,四边形EBFB′为正方形;
(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B’与点O重合?若存在,求出t的值;若不存在,请说明理由.
【答案】(1)解:若四边形EBFB′为正方形,则BE=BF,BE=5﹣t,BF=3t,
即:5﹣t=3t,
解得t=1.25;
故答案为:1.25
(2)解:分两种情况,讨论如下:
①若△EBF∽△FCG,
则有,即,
解得:t=1.4;
②若△EBF∽△GCF,
则有,即,
解得:t=﹣7﹣(不合题意,舍去)或t=﹣7+ .
∴当t=1.4s或t=(﹣7+ )s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似.
(3)解:假设存在实数t,使得点B′与点O重合.
如图,过点O作OM⊥BC于点M,
则在Rt△OFM中,OF=BF=3t,FM= BC﹣BF=3﹣3t,OM=2.5,
由勾股定理得:OM2+FM2=OF2,
即:2.52+(3﹣3t)2=(3t)2
解得:t=;
过点O作ON⊥AB于点N,则在Rt△OEN中,OE=BE=5﹣t,EN=BE﹣BN=5﹣t﹣2.5=2.5﹣t,ON=3,
由勾股定理得:ON2+EN2=OE2,
即:32+(2.5﹣t)2=(5﹣t)2
解得:t= .
∵≠ ,
∴不存在实数t,使得点B′与点O重合
【解析】【分析】(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)△EBF与△FCG相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在
12.如图,抛物线y= x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D且它的坐标为(3,﹣1).
(1)求抛物线的函数关系式;
(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,并延长DA交y轴于点F,求证:△OAE∽△CFD;
(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出Q的坐标.【答案】(1)解:∵顶点D的坐标为(3,﹣1).
∴, =﹣1,
解得b=﹣3,c= ,
∴抛物线的函数关系式:y= x2﹣3x+ ;
(2)解:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3,
令x=0,得y= ,
∴C(0,),
∴CG=OC+OG= +1= ,
∴tan∠DCG= ,
设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)= ,
由OE⊥CD,易知∠EOM=∠DCG,
∴tan∠EOM=tan∠DCG= ,
解得EM=2,
∴DE=EM+DM=3,
在Rt△AEM中,AM= ,EM=2,由勾股定理得:AE= ;
在Rt△ADM中,AM= ,DM=1,由勾股定理得:AD= .
∵AE2+AD2=6+3=9=DE2,
∴△ADE为直角三角形,∠EAD=90°,
设AE交CD于点P,
∵∠AEO+∠EPH=90°,∠ADC+APD=90°,∠EPH=∠APD(对顶角相等),
∴∠AEO=∠ADC,
∴△OAE∽△CFD
(3)解:依题意画出图形,如答图2所示:
由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,
要使切线长PQ最小,只需EP长最小,即EP2最小.
设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2,
∵y= (x﹣3)2﹣1,
∴(x﹣3)2=2y+2,
∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5,
当y=1时,EP2有最小值,最小值为5.
将y=1代入y= (x﹣3)2﹣1,得(x﹣3)2﹣1=1,
解得:x1=1,x2=5,
又∵点P在对称轴右侧的抛物线上,
∴x1=1舍去,
∴P(5,1),
∴Q1(3,1);
∵△EQ2P为直角三角形,
∴过点Q2作x轴的平行线,再分别过点E,P向其作垂线,垂足分别为M点和N点,
设点Q2的坐标为(m,n),
则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n﹣1)2=4②,
①﹣②得n=2m﹣5③,
将③代入到①得到,
m1=3(舍),m2= ,
再将m= 代入③得n= ,
∴Q2(,),
此时点Q坐标为(3,1)或(,)
【解析】【分析】(1)根据抛物线的顶点坐标及顶点坐标公式建立出关于b,c的二元一次方程组,求解得出b,c的值,从而得出抛物线的解析式;
(2)如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3,根据抛物线与坐标轴交点的坐标特点求出C点的坐标,A点坐标,进而得出CG的长,根据正切函数的定义
求出tan∠DCG=,设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)= ,根据同角的余角相等易知∠EOM=∠DCG,根据等角的同名三角函数值相等得出
tan∠EOM=tan∠DCG==故解得EM=2,DE=EM+DM=3,在Rt△AEM中,由勾股定理得AE 的长,在Rt△ADM中,由勾股定理得AD的长,根据勾股定理的逆定理判断出△ADE为直角三角形,∠EAD=90°,设AE交CD于点P,根据等角的余角相等得出∠AEO=∠ADC,从而判断出△OAE∽△CFD ;
(3)依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2,根据抛物线的解析式,整体替换得出EP2=2y+2+(y﹣2)2=(y﹣1)2+5,当y=1时,EP2有最小值,最小值为5.然后根据抛物线上点的坐标特点将y=1代入抛物线的解析式,求出对应的自变量x的值,再检验得出P 点的坐标,进而得出Q1的坐标,由切割线定理得到Q2P=Q1P=2,EQ2=1,设点Q2的坐标为(m,n),则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n﹣1)2=4②,
由切割线定理得到Q2P=Q1P=2,EQ2=1,将③代入到①得到,求解并检验得出m,n的值,从而得出Q2的坐标,综上所述即可得出答案。