下车镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下车镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)早餐店里,小明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;小红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()
A.
B.
C.
D.
【答案】B
【考点】二元一次方程组的其他应用
【解析】【解答】解:若馒头每个x元,包子每个y元,由题意得:

故答案为:B
【分析】由题意可知5个馒头,3个包子的原价之和为11元;8个馒头,6个包子的原价之和为20元,列方程组即可。

2、(2分)下列说法:
①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,
用式子表示是 =±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()
A. 0个
B. 1个
C. 2个
D. 3个
【答案】D
【考点】实数的运算,实数的相反数,实数的绝对值
【解析】【解答】①实数和数轴上的点是一一对应的,正确;
②无理数不一定是开方开不尽的数,例如π,错误;
③负数有立方根,错误;
④16的平方根是±4,用式子表示是± =±4,错误;
⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确,
则其中错误的是3个,
故答案为:D
【分析】①数轴上的点一定有一个实数和它相对应,任何一个实数都可以用数轴上的点来表示,所以实数和数轴上的点是一一对应的;
②无理数是无限不循环小数;
③因为负数的平方是负数,所以负数有立方根;
④如果一个数的平方等于a,那么这个数是a的平方根。

根据定义可得16的平方根是±4,用式子表示是
=±4;
⑤因为只有0的相反数是0,所以绝对值,相反数,算术平方根都是它本身的数是0.
3、(2分)有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;
④- 是17的平方根。

其中正确的有()
A.0个
B.1个
C.2个
D.3个
【答案】B
【考点】平方根,立方根及开立方,有理数及其分类,无理数的认识
【解析】【解答】①带根号的数不一定是无理数,能够开方开得尽的并不是无理数,而是有理数,所以错误;
②不带根号的数不一定是有理数,比如含有π的数,或者看似有规律实则没有规律的一些数,所以错误;
③负数有一个负的立方根,所以错误;
④一个正数有两个平方根,这两个平方根互为相反数,所以正确。

故答案为:B
【分析】无限不循环小数是无理数,无理数包括开方开不尽的数,含有π的数,看似有规律实则没有规律的一些数,正数有一个正的平方根,负数有一个负的平方根,零的平方根是零,一个正数有两个平方根,这两个平方根互为相反数。

4、(2分)2010年温州市初中毕业、升学考试各学科及满分值情况如下表:
科目语文数学英语社会政治自然科学体育
满分值15015012010020030
若把2010年温州市初中毕业、升学考试各学科满分值比例绘成圆形统计图,则数学科所在的扇形的圆心角是
A. 72
B. 144
C. 53
D. 106
【答案】A
【考点】扇形统计图
【解析】【解答】解:根据表格,得总分=150+150+120+100+200+30=750.
所以数学所在的扇形的圆心角= ×360°=72°.
故答案为:A
【分析】根据表格先计算总分值,从而得出数学所占的百分比,然后根据圆心角的度数=360°×数学所占的百分比即可得出结果.
5、(2分)下列各数:,0,0.2121121112,,其中无理数的个数是()
A. 4个
B. 3个
C. 2个
D. 1个
【答案】D
【考点】无理数的认识
【解析】【解答】,0,0.2121121112,中无理数有,共计1个.
故答案为:D.
【分析】根据无理数的定义开方开不尽的数和无限不循环小数是无理数,判断即可.
6、(2分)若a>b,则下列不等式一定成立的是()
A. a+b>b
B. >1
C. ac2>bc2
D. b-a<0
【考点】不等式及其性质,有理数的加法,有理数的减法,有理数的除法
【解析】【解答】解:A、当b<a<0,则a+b<b,故此选项不符合题意;
B、当a>0,b<0,<,1故此选项不符合题意;
C、当c=0,ac2>bc2,故此选项不符合题意;
D、当a>b,b-a<0,故此选项符合题意;
故本题选D
【分析】根据有理数的加法,减法,除法法则,及不等式的性质,用举例子即可一一作出判断。

7、(2分)如图,已知∠B+∠DAB=180°,AC平分∠DAB,如果∠C=50°,那么∠B等于()
A.50°
B.60°
C.70°
D.80°
【答案】D
【考点】平行线的判定与性质,三角形内角和定理
【解析】【解答】解:∵∠B+∠DAB=180°,
∴AD∥BC,
∴∠C=∠DAC=50°,
又∵AC平分∠DAB,
∴∠DAC=∠BAC=∠DAB=50°,
∴∠DAB=100°,
∴∠B=180°-∠DAB=80°.
故答案为:D.
【分析】根据平行线的判定得AD∥BC,再由平行线性质得∠C=∠DAC=50°,由角平分线定义得∠DAB=100°,根据补角定义即可得出答案.
8、(2分)已知方程组,则6x+y的值为()
A. 15
B. 16
C. 17
D. 18
【答案】C
【考点】解二元一次方程组
【解析】【解答】解:在方程组中,
①+②,得6x+y=17.故答案为:C.
【分析】x的系数都是3,y的系数是+2,-1,方程①+②,得6x+y=17.
9、(2分)如果关于x的不等式x>2a﹣1的最小整数解为x=3,则a的取值范围是()
A. 0<a<2
B. a<2
C. ≤a<2
D. a≤2
【答案】C
【考点】解一元一次不等式组,一元一次不等式组的应用
【解析】【解答】解:∵关于x的不等式x>2a﹣1的最小整数解为x=3,
∴2≤2a﹣1<3,
解得:≤a<2.
故答案为:C.
【分析】由题意可得不等式组2≤2a﹣1<3,解这个不等式组即可求解。

10、(2分)如图所表示的是下面哪一个不等式组的解集()
A.
B.
C.
D.
【答案】D
【考点】在数轴上表示不等式(组)的解集
【解析】【解答】解:由图示可看出,从-2出发向右画出的线且-2处是空心圆,表示x>-2;
从1出发向左画出的线且1处是实心圆,表示x≤1,所以这个不等式组为
故答案为:D.
【分析】写出图中表示的两个不等式的解集,这两个式子就是不等式.这两个式子组成的不等式组就满足条件.不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
11、(2分)边长为2的正方形的面积为a,边长为b的立方体的体积为27,则a-b的值为()
A. 29
B. 7
C. 1
D. -2
【答案】C
【考点】立方根及开立方
【解析】【解答】∵边长为2的正方形的面积为a,∴a=22=4,∵边长为b的立方体的体积为27,∴b3=27,∴b=3,∴a-b=1,故答案为:C.
【分析】根据正方形的面积=边长的平方和算术平方根的意义可求解;根据立方体的体积=边长的立方和立方根的意义可求解。

12、(2分)下列各数中最小的是()
A. -2018
B.
C.
D. 2018
【答案】A
【考点】实数大小的比较
【解析】【解答】解:∵-2018<-<<2018,
∴最小的数为:-2018,
故答案为:A.
【分析】数轴左边的数永远比右边的小,由此即可得出答案.
二、填空题
13、(1分)不等式组的所有整数解是________.
【答案】0.1
【考点】一元一次不等式组的特殊解
【解析】【解答】解不等式组可得-,则所有的整数解可能为0、1。

【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数解即可.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
14、(1分)我们用符号[x]表示一个不大于实数x的最大整数,如:[3.69]=3,[﹣0.56]=﹣1,则按这个规律[﹣]=________.
【答案】-4
【考点】实数的运算,定义新运算
【解析】【解答】∵2<<3,
∴﹣4<﹣﹣1<﹣3,
∴[﹣]=﹣4.
故答案为:﹣4.
【分析】先求得的范围是,于是可得的范围是,然后由题中的材料可知,原式=-4.
15、(1分)若a3=-8,则a的绝对值________.
【答案】2
【考点】立方根及开立方
【解析】【解答】∵a3=-8,∴a=-2.∴a的绝对值是2.故答案为:2.【分析】立方根是指如果一个数的立方等于a 那么这个数叫作a的立方根。

根据立方根的意义可求解。

16、(1分)不等式组的解集是________.
【答案】﹣2<x≤1
【考点】解一元一次不等式组
【解析】【解答】解:,
解不等式①,x﹣3+6≥2x+2,
x﹣2x≥2+3﹣6,
﹣x≥﹣1,
x≤1,
解不等式②,1﹣3x+3<8﹣x,
﹣3x+x<8﹣1﹣3,
﹣2x<4,
x>﹣2,
所以,不等式组的解集是﹣2<x≤1.
故答案为:﹣2<x≤1
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
17、(1分)根据2012~2017年浙江固定资产投资(单位:亿元)及增速统计图所提供的信息,下列判断正确的是________.
①2014年增长速度最快;②从2014年开始增长速度逐年减少;③各年固定资产投资的均数是16 035亿元.
【答案】①②③
【考点】条形统计图,折线统计图
【解析】【解答】解:①2012~2013年,15.9~15.6,增长率下降了3%,
2013~2014年,15.6~22.9,增长率增长了7.3%,
2014~2015年,22.9~21.4,增长率下降了1.5%,
2015~2016年,21.4~18.1,增长率下降了3.3%,
2016~2017年,18.1~16.6,增长率下降了1.5%,
∴2014年增长速度最快;
故①正确;
②由①得:从从2014年开始增长速度逐年减少,
故②正确;
③(9906+11452+14007+17096+20194+23555)÷6=16035,
∴各年固定资产投资的均数是16 035亿元.
故③正确;
故答案为:①②③
【分析】先根据统计图计算增长率,进行比较即可,然后根据对应的投资数量计算各年固定资金投资的平均数从而即可解答.
18、(3分)的平方根是________,的算术平方根是________,-216的立方根是________.
【答案】±

;-6
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:的平方根为:±;
=3,所以的算术平方根为:;
-216的立方根为:-6
故答案为:±;;-6
【分析】根据正数的平方根有两个,它们互为相反数,正数的算术平方根是正数,及立方根的定义,即可解决问题。

三、解答题
19、(15分)某市团委在2015年3月初组织了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事的件数,并进行统计,将统计结果绘制成如图所示的统计
图.
(1)这6个学雷锋小组在2015年3月份共做好事多少件?
(2)补全条形统计图;
(3)求第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数.
【答案】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件
(2)解:如图所示:
(3)解:×100%≈49.12%,答:第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数约为49.12%
【考点】条形统计图,折线统计图
【解析】【分析】(1)根据折线统计图中的数据,相加可得结果;
(2)根据第三组对应的数据即可补全统计图;
(3)计算第2、4、6小组做好事的件数的总和除以总件数可得百分比.
20、(15分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2014年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:
每亩生产成本每亩产量油菜籽市场价格种植面积
310元130千克5元/千克500000亩
请根据以上信息解答下列问题:
(1)种植油菜每亩的种子成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2014年南县全县农民冬种油菜的总获利为多少元?(结果用科学记数法表示)
【答案】(1)解:根据题意得:1﹣10%﹣35%﹣45%=10%,310×10%=31(元),
答:种植油菜每亩的种子成本是31元
(2)解:根据题意得:130×5﹣310=340(元),答:农民冬种油菜每亩获利340元
(3)解:根据题意得:340×500 000=170 000 000=1.7×108(元),
答:2014年南县全县农民冬种油菜的总获利为1.7×108元
【考点】统计表,扇形统计图,科学记数法—表示绝对值较大的数
【解析】【分析】(1)先根据扇形统计图计算种子的百分比,然后乘以每亩的成本可得结果;
(2)根据产量乘单价再减去生产成本可得获利;
(3)根据(2)中的利润乘以种植面积,最后用科学记数法表示即可.
21、(5分)把下列各数表示在数轴上,并比较它们的大小(用“<”连接).
,0,,,
【答案】解:
【考点】实数在数轴上的表示,实数大小的比较
【解析】【分析】根据数轴上用原点表示0,原点右边的点表示正数,原点左边的点表示负数,即可一一将各个实数在数轴上找出表示该数的点,用实心的小原点作标记,并在原点上写出该点所表示的数,最后根据数轴上所表示的数,右边的总比左边的大即可得出得出答案。

22、(5分)把下列各数填入相应的集合中:
﹣22,﹣|﹣2.5|,3,0,,,﹣0.121221222……(每两个1之间多一个2),,
无理数集合:{ ……};
负有理数集合:{ ……};
整数集合:{ ……};
【答案】解:无理数集合:{ ,﹣0.121221222……(每两个1之间多一个2),……};
负有理数集合:{﹣22,﹣|﹣2.5|,……};
整数集合:{﹣22,﹣|﹣2.5|,3,0,……};
【考点】实数及其分类,有理数及其分类
【解析】【分析】无理数:无限不循环小数是无理数,常见的无理数有:开不尽的平方根或立方根,无限不循环小数,π;负有理数:负整数,负分数;整数:正整数,负整数.
23、(5分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于O.过点O作EF∥BC分别交AB、AC 于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
【答案】解:∵∠ABC:∠ACB=3:2,
∴设∠ABC=3x,∠ACB=2x,
∵BO、CO分别平分∠ ABC、∠ ACB,
∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,
又∵∠BOC=130°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∴130°+x+x=180°,
解得:x=20°,
∴∠ABC=3x=60°,∠ACB=2x=40°,
∵EF∥BC,
∴∠AEF=∠ABC=60°,
∠EFC+∠ACB=180°,
∴∠EFC=140°.
【考点】平行线的性质
【解析】【分析】根据已知条件设∠ABC=3x,∠ACB=2x,由角平分线性质得∠ABO=∠CBO=x,∠ACO=∠BCO=x,在△BOC中,根据三角形内角和定理列出方程,解之求得x值,从而得∠ABC=60°,∠ACB=40°,再由平行线性质同位角相等得∠AEF=60°,同旁内角互补得∠EFC=140°.
24、(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值. 【答案】解:由题意可知:
把代入,得,


把代入,得,

∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。

25、(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
26、(10分)近年来,由于乱砍滥伐,掠夺性使用森林资源,我国长江、黄河流域植被遭到破坏,土地沙化严重,洪涝灾害时有发生,沿黄某地区为积极响应和支持“保护母亲河”的倡议,建造了长100千米,宽0.5千米的防护林.有关部门为统计这一防护林共有多少棵树,从中选出10块防护林(每块长1km、宽0.5km)进行统计.
(1)在这个问题中,总体、个体、样本各是什么?
(2)请你谈谈要想了解整个防护林的树木棵数,采用哪种调查方式较好?说出你的理由.
【答案】(1)解:总体:建造的长100千米,宽0.5千米的防护林中每块长1km、宽0.5km的树的棵树;个体:一块(每块长1km、宽0.5km)防护林的树的棵树;
样本:抽查的10块防护林的树的棵树
(2)解:采用抽查的方式较好,因为数量较大,不容易调查
【考点】全面调查与抽样调查,总体、个体、样本、样本容量
【解析】【分析】(1)总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据总体、个体和样本的定义即可解答;
(2)一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,根据抽样调查和普查的定义及特征进行选择即可.。

相关文档
最新文档