岳普湖县二中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岳普湖县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )
A .1
B .
C .
D .
2. 在正方体1111ABCD A BC D 中,,E F 分别为1,BC BB 的中点,则下列直线中与直线
EF 相交
的是( )
A .直线1AA
B .直线11A B C. 直线11A D D .直线11B C
3. 已知函数f (x )=1+x ﹣
+
﹣
+…+
,则下列结论正确的是( )
A .f (x )在(0,1)上恰有一个零点
B .f (x )在(﹣1,0)上恰有一个零点
C .f (x )在(0,1)上恰有两个零点
D .f (x )在(﹣1,0)上恰有两个零点
4. 高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于( )
A .112
B .114
C .116
D .120
5. 设D 为△ABC 所在平面内一点,,则( )
A .
B .
C .
D .
6. 实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )
A .(1,1)
B .(0,3)
C .(,2)
D .(,0)
7.点P是棱长为1的正方体ABCD﹣A1B1C1D1的底面A1B1C1D1上一点,则的取值范围是()
A.[﹣1,﹣] B.[﹣,﹣] C.[﹣1,0] D.[﹣,0]
8.阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i的最大值为()
A.3 B.4 C.5 D.6
9.若函数y=a x﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限,则有()
A.a>1且b<1 B.a>1且b>0 C.0<a<1且b>0 D.0<a<1且b<0
10.“1<m<3”是“方程+=1表示椭圆”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
11.已知定义在R上的可导函数y=f(x)是偶函数,且满足xf′(x)<0,=0,则满足
的x的范围为()
A.(﹣∞,)∪(2,+∞)B.(,1)∪(1,2)C.(,1)∪(2,+∞) D.(0,)∪(2,+∞)
12.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是()
A.B.y=x2C.y=﹣x|x| D.y=x﹣2
二、填空题
13.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .
14.已知x ,y 为实数,代数式222
2)3(9)2(1y x x y ++-++-+的最小值是 .
【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 15.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 . 16.已知函数5()sin (0)2
f x x a x π
=-≤≤
的三个零点成等比数列,则2log a = .
17.在(1+x )(x 2+)6的展开式中,x 3的系数是 .
18.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则
= .
三、解答题
19.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题: (1)求出频率分布表中①、②、③、④、⑤的值;
(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?
(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S
20.已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2﹣2ρcosθ﹣4ρsinθ+6=0.
(1)求圆C1的直角坐标方程,直线l1的极坐标方程;
(2)设l1与C1的交点为M,N,求△C1MN的面积.
21.某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数
(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?(3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.
22.在数列中,,,其中,.
(Ⅰ)当时,求的值;
(Ⅱ)是否存在实数,使构成公差不为0的等差数列?证明你的结论;
(Ⅲ)当时,证明:存在,使得.
23.已知,且.
(1)求sinα,cosα的值;
(2)若,求sinβ的值.
24.已知函数f(x)=lnx﹣ax﹣b(a,b∈R)
(Ⅰ)若函数f(x)在x=1处取得极值1,求a,b的值
(Ⅱ)讨论函数f(x)在区间(1,+∞)上的单调性
(Ⅲ)对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1<x2),不等式f′(x0)<k恒成立,其中k为直线AB的斜率,x0=λx1+(1﹣λ)x2,0<λ<1,求λ的取值范围.
岳普湖县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B
【解析】解:由约束条件
作出可行域如图,
由图可知A (a ,a ),
化目标函数z=2x+y 为y=﹣2x+z ,
由图可知,当直线y=﹣2x+z 过A (a ,a )时直线在y 轴上的截距最小,z 最小,z 的最小值为2a+a=3a=1,解
得:a=. 故选:B .
【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
2. 【答案】D 【解析】
试题分析:根据已满治安的概念可得直线11111,,AA A B A D 都和直线
EF 为异面直线,11B C 和EF 在同一个平面内,且这两条直线不平行;所以直线11B C 和EF 相交,故选D. 考点:异面直线的概念与判断. 3. 【答案】B
【解析】解:∵f ′(x )=1﹣x+x 2﹣x 3+…+x 2014
=(1﹣x )(1+x 2+…+x 2012)+x 2014; ∴f ′(x )>0在(﹣1,0)上恒成立; 故f (x )在(﹣1,0)上是增函数;
又∵f (0)=1,
f (﹣1)=1﹣1﹣﹣﹣…﹣<0;
故f (x )在(﹣1,0)上恰有一个零点;
故选B .
【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.
4. 【答案】B
【解析】解:根据频率分布直方图,得; 该班级数学成绩的平均分是
=80×0.005×20+100×0.015×20 +120×0.02×20+140×0.01×20 =114. 故选:B .
【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目.
5. 【答案】A 【解析】解:由已知得到如图
由=
=
=
;
故选:A .
【点评】本题考查了向量的三角形法则的运用;关键是想法将向量
表示为.
6. 【答案】 D
【解析】解:由题意作出其平面区域,
将u=2x+y 化为y=﹣2x+u ,u 相当于直线y=﹣2x+u 的纵截距, 故由图象可知,
使u=2x+y 取得最大值的点在直线y=3﹣2x 上且在阴影区域内,
故(1,1),(0,3),(,2)成立,
而点(
,0)在直线y=3﹣2x 上但不在阴影区域内,
故不成立;
故选D.
【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.
7.【答案】D
【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,
建立空间直角坐标系.
则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1.
∴=(1﹣x,﹣y,﹣1),=(﹣x,1﹣y,0),
∴=﹣x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y=+﹣,
由二次函数的性质可得,当x=y=时,取得最小值为﹣;
故当x=0或1,且y=0或1时,取得最大值为0,
则的取值范围是[﹣,0],
故选D.
【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题.
8.【答案】B
【解析】解:模拟执行程序框图,可得
s=0,n=0
满足条件n<i,s=2,n=1
满足条件n<i,s=5,n=2
满足条件n<i,s=10,n=3
满足条件n<i,s=19,n=4
满足条件n<i,s=36,n=5
所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,
有n=4时,不满足条件n<i,退出循环,输出s的值为19.
故选:B.
【点评】本题主要考查了循环结构的程序框图,属于基础题.
9.【答案】B
【解析】解:∵函数y=a x﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限,
∴根据图象的性质可得:a>1,a0﹣b﹣1<0,
即a>1,b>0,
故选:B
10.【答案】B
【解析】解:若方程+=1表示椭圆,
则满足,即,
即1<m<3且m≠2,此时1<m<3成立,即必要性成立,
当m=2时,满足1<m<3,但此时方程+=1等价为为圆,不是椭圆,不满足条件.即充分性不成立
故“1<m<3”是“方程+=1表示椭圆”的必要不充分条件,
故选:B
【点评】本题主要考查充分条件和必要条件的判断,根据椭圆的定义和方程是解决本题的关键.
11.【答案】D
【解析】解:当x>0时,由xf′(x)<0,得f′(x)<0,即此时函数单调递减,
∵函数f(x)是偶函数,
∴不等式等价为f(||)<,
即||>,即>或<﹣,
解得0<x<或x>2,
故x的取值范围是(0,)∪(2,+∞)
故选:D
【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.
12.【答案】D
【解析】解:函数为非奇非偶函数,不满足条件;
函数y=x2为偶函数,但在区间(0,+∞)上单调递增,不满足条件;
函数y=﹣x|x|为奇函数,不满足条件;
函数y=x﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件;
故选:D
【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.
二、填空题
13.【答案】.
【解析】解:∵△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,
∴由正弦定理可得:,解得:a=3,
∴利用余弦定理:a2=b2+c2﹣2bccosA,可得:9=4+c2﹣2c,即c2﹣2c﹣5=0,
∴解得:c=1+,或1﹣(舍去).
故答案为:.
【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.
14.
【解析】
15.【答案】.
【解析】解:因为全称命题的否定是特称命题所以,命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是:
.
故答案为:.
16.【答案】
1 2
考点:三角函数的图象与性质,等比数列的性质,对数运算.
【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.
17.【答案】20.
【解析】解:(1+x)(x2+)6的展开式中,
x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;
又(x2+)6的展开式中,
通项公式为T r+1=•x12﹣3r,
令12﹣3r=3,解得r=3,满足题意;
令12﹣3r=2,解得r=,不合题意,舍去;
所以展开式中x3的系数是=20.
故答案为:20.
18.【答案】(﹣,).
【解析】解:∵,,
设OC与AB交于D(x,y)点
则:AD:BD=1:5
即D分有向线段AB所成的比为
则
解得:
∴
又∵||=2
∴=(﹣,)
故答案为:(﹣,)
【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,
可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.
三、解答题
19.【答案】
【解析】解:(1)由分布表可得频数为50,故①的数值为50×0.1=5,
②中的值为=0.40,③中的值为50×0.2=10,
④中的值为50﹣(5+20+10)=15,⑤中的值为=0.30;
(2)不低于85的概率P=×0.20+0.30=0.40,
∴获奖的人数大约为800×0.40=320;
(3)该程序的功能是求平均数,
S=65×0.10+75×0.40+85×0.20+95×0.30=82,
∴800名学生的平均分为82分
20.【答案】
【解析】解:(1)∵,将其代入C1得:,
∴圆C1的直角坐标方程为:.
由直线l1:(t为参数),消去参数可得:y=x,可得(ρ∈R).
∴直线l1的极坐标方程为:(ρ∈R).
(2),可得⇒,
∴.
【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
21.【答案】
【解析】解(1)因为20至50岁的54人有9人节能意识强,大于50岁的46人有36人节能意识强,与相差较大,所以节能意识强弱与年龄有关
(2)由数据可估计在节能意识强的人中,年龄大于50岁的概率约为
∴年龄大于50岁的约有(人)
(3)抽取节能意识强的5人中,年龄在20至50岁的(人),
年龄大于50岁的5﹣1=4人,记这5人分别为a,B1,B2,B3,B4.
从这5人中任取2人,共有10种不同取法:(a,B1),(a,B2),(a,B3),(a,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),
设A表示随机事件“这5人中任取2人,恰有1人年龄在20至50岁”,
则A中的基本事件有4种:(a,B1),(a,B2),(a,B3),(a,B4)
故所求概率为
22.【答案】
【解析】【知识点】数列综合应用
【试题解析】(Ⅰ),,.
(Ⅱ)成等差数列,,
即,
,即.
,.
将,代入上式,解得.
经检验,此时的公差不为0.
存在,使构成公差不为0的等差数列.
(Ⅲ),
又,令.
由,
,
……
,
将上述不等式相加,得,即.
取正整数,就有
23.【答案】
【解析】解:(1)将sin+cos=两边平方得:(sin+cos)2=sin2+2sin cos+cos2=1+sinα=,
∴sinα=,
∵α∈(,π),
∴cosα=﹣=﹣;
(2)∵α∈(,π),β∈(0,),
∴α+β∈(,),
∵sin(α+β)=﹣<0,
∴α+β∈(π,),
∴cos(α+β)=﹣=﹣,
则sinβ=sin=sin(α+β)cosα﹣cos(α+β)sinα=﹣×(﹣)﹣(﹣)×=+=.【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.24.【答案】
【解析】解:(Ⅰ)f(x)的导数为f′(x)=﹣a,
由题意可得f′(1)=0,且f(1)=1,
即为1﹣a=0,且﹣a﹣b=1,
解得a=1.b=﹣2,经检验符合题意.
故a=1,b=﹣2;
(Ⅱ)由(Ⅰ)可得f′(x)=﹣a,x>1,0<<1,
①若a≤0,f′(x)>0,f(x)在(1,+∞)递增;
②0<a<1,x∈(1,),f′(x)>0,x∈(,+∞),f′(x)<0;
③a≥1,f′(x)<0.f(x)在(1,+∞)递减.
综上可得,a≤0,f(x)在(1,+∞)递增;
0<a<1,f(x)在(1,)递增,在(,+∞)递减;
a≥1,f(x)在(1,+∞)递减.
(Ⅲ)f′(x0)=﹣a=﹣a,
直线AB的斜率为k===﹣a,
f′(x0)<k⇔<,
即x2﹣x1<ln[λx1+(1﹣λ)x2],
即为﹣1<ln[λ+(1﹣λ)],
令t=>1,t﹣1<lnt[λ+(1﹣λ)t],
即t﹣1﹣tlnt+λ(tlnt﹣lnt)<0恒成立,
令函数g(t)=t﹣1﹣tlnt+λ(tlnt﹣lnt),t>1,
①当0<λ时,g′(t)=﹣lnt+λ(lnt+1﹣)=,
令φ(t)=﹣tlnt+λ(tlnt+t﹣1),t>1,
φ′(t)=﹣1﹣lnt+λ(2+lnt)=(λ﹣1)lnt+2λ﹣1,
当0<λ≤时,φ′(t)<0,φ(t)在(1,+∞)递减,则φ(t)<φ(1)=0,
故当t>1时,g′(t)<0,
则g(t)在(1,+∞)递减,g(t)<g(1)=0符合题意;
②当<λ<1时,φ′(t)=(λ﹣1)lnt+2λ﹣1>0,
解得1<t<,
当t∈(1,),φ′(t)>0,φ(t)在(1,)递增,φ(t)>φ(1)=0;
当t∈(1,),g′(t)>0,g(t)在(1,)递增,g(t)>g(1)=0,
则有当t∈(1,),g(t)>0不合题意.
即有0<λ≤.
【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键.。