【word直接打印】小学五年级奥数从课本到奥数一图文百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【word直接打印】小学五年级奥数从课本到奥数一图文百度文库
一、拓展提优试题
1.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?
2.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.
3.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.
4.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.
5.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=
厘米.
6.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.
7.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.
8.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租
了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了
分钟.
9.定义新运算:a&b=(a+1)÷b,求:2&(3&4)的值为.10.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.
11.如图,正方形的边长是6厘米,AE=8厘米,求OB=厘米.
12.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.
13.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.14.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.
15.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.
16.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面
积是空白部分面积的倍.
17.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.
18.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.
19.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.
20.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).
21.如图,从A到B,有条不同的路线.(不能重复经过同一个点)
22.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.23.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:
①A+B+C=79
②A×A=B×C
那么,这个自然数是.
24.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块
25.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.
26.有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.
27.(7分)将偶数按下图进行排列,问:2008排在第列.
2 468
16141210
18 20 22 24
32 30 28 26
…
28.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.
29.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.30.先将从1开始的自然数排成一列:
123456789101112131415…
然后按一定规律分组:
1,23,456,7891,01112,131415,…
在分组后的数中,有一个十位数,这个十位数是.
31.如图,7×7的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是.
12
5334
2
1
5
4
32.数一数,图中有多少个正方形?
33.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是,余数是.
34.将等边三角形纸片按图1所示步骤折叠3次(图1中的虚线是三边的中点的连线),然后沿两边的重点的边减去一角(如图2).
将剩下的纸片展开、平铺,得到的图形是A
35.星期天早晨,哥哥和弟弟去练习跑步,哥哥每分钟跑110米,弟弟每分钟跑80米,弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米,那么,哥哥跑了米.
36.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打折.
37.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市
千米处追上乙车.
38.已知一个五位回文数等于45与一个四位回文数的乘积(即=45×),那么这个五位回文数最大的可能值是59895.
39.小胖和小亚两人在生日都是在五月份,而且都是星期三.小胖的生日晚,又知两人的生日日期之和是38,小胖的生日是5月日.
40.幼儿园给小朋友派礼物,如果有2人各派4个,其余各派3个,则还剩余11个,如果4人各派3个,其余各派6个,则剩余10个,问一共有多少件礼物?
【参考答案】
一、拓展提优试题
1.解:42÷2=21(只)
21÷3×26
=7×26 =182(只) 182÷2×3 =91×3 =273(只) 273×3=819(只)
答:3头牛可以换819只鸡. 2.解:220﹣83×2 =220﹣166 =54(元) 54÷(2+7) =54÷9 =6(元)
答:网球每个6元.
3.解:如图:连接正方形的一条对角线,延长DA ,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②
三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,
阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半 16÷2=8
答:阴影部分的面积是8. 故答案为:8.
4.解:△ADM 、△BCM 、△ABM 都等高, 所以S △ABM :(S △ADM +S △BCM )=8:10=4:5, 已知S △AMD =10,S △BCM =15,
所以S △ABM 的面积是:(10+15)×=20, 梯形ABCD 的面积是:10+15+20=45; 答:梯形ABCD 的面积是45.
故答案为:45.
5.解:△ABC的周长是16厘米,可得△AEF的周长为:16÷2=8 (厘米),△AEF和四边形BCEF周长和为:8+10=18(厘米),
所以BC=18﹣16=2(厘米),
答:BC=2厘米.
故答案为:2.
6.解:假设每人每分钟修大坝1份
洪水冲毁大坝速度:
(10×45﹣20×20)÷(45﹣20)
=(450﹣400)÷25
=50÷25
=2(份)
大坝原有的份数
45×10﹣2×45
=450﹣90
=360(份)
14人修好大坝需要的时间
360÷(14﹣2)
=360÷12
=30(分钟)
答:14人修好大坝需30分钟.
故答案为:30.
7.解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42(个),将42分解成3个数字相乘42=2×3×7.
=a×b2×c6.
如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是=11×32×26=6336.
=3663=11×37×32.因数的个数共2×2×3=12(个).
故答案为:12个.
8.解:6÷2=3(组)
11时30分﹣8是=3时30分=210分
210×2÷3
=420÷3
=140(分钟)
答:每人打了140分钟.
故答案为:140.
9.解:2&(3&4),
=(2+1)÷[(3+1)÷4],
=3÷1,
=3;
故答案为:3.
10.解:665=19×7×5,
因为长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,所以长、宽、高分别是19、7、5,
(19×7+19×5+7×5)×2
=(133+95+35)×2
=263×2
=526,
答:它的表面积是526.
故答案为:526.
11.解:6×6÷2=18(平方厘米),
18×2÷8=4.5(厘米);
答:OB长4.5厘米.
故答案为:4.5.
12.解:依题意可知:
2个偶数中间间隔是2个奇数.
发现只有数字10,11,9,12是符合条件的数字.
乘积为10×12=120.
故答案为:120
13.解:依题意可知:经过了乘以3,再逆序排列,再加上2得到的数字是2015.那么要求原来的数字可以逆向思维求解.
2015﹣2=2013,再逆序变成3102,再除以3得3102÷3=1034.
故答案为:1034
14.解:根据分析:
这个数除以2,3,4,5均余1,那么这个数减去1后就能同时被2,3,4,5整除;
2,3,4,5的最小公倍数是60,则这个数为60的倍数加1.
又因为这个数大于1,所以这个数最小是61.
故答案为:61.
15.解:依题意可知:
结果的首位是2,那么在第二个结果中的首位还是2.
再根据第一个结果中有一个1,那么就是有和数字5相乘以后数字1的进位同时十位数字是偶数才能满足条件,第一个乘数的个位数字只能是2或者3才能满足进位是1.
当第一个乘数尾数是2时,首位数字无论是哪一个偶数都不能得到200多的结果.不满足题意.
当第一个乘数尾数是3时,来看看偶数的情况.
23×9=207.43,63,83无论乘以数字几都不能构成百位十位是20的结果.故是23×95=2185,那么23+95=118.
故答案为:118
16.解:根据分析,如图所示,将图进行分割成面积相等的三角形,
阴影部分由18个小三角形组成,而空白部分有6个小三角形,
故阴影部分面积是空白部分面积的18÷6=3倍.
故答案是:3.
17.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)
=5000××××
=5000(元)
答:小胖这个月的工资是5000元.
故答案为:5000.
18.解:2.5×2÷(6﹣1)+2.5
=5÷5+2.5
=1+2.5
=3.5(千克)
答:B桶中原来有水3.5千克.
故答案为:3.5.
19.解:10÷2=5(颗)
18÷2=9(颗)
此时A有:26﹣10+9=25(颗)
此时C有:25×4=100(颗)
原来C有:100﹣9﹣5=86(颗)
答:松鼠C原有松果 86颗.
故答案为:86.
20.解:可以组成下列质数:
2、3、5、7、61、89,一共有6个.
答:用1、2、3、5、6、7、8、9这8个数字最多可以组成 6个质数.
故答案为:6.
21.解:如图,因为,从A到B有5条直连线路,
每条直连线路均有5种不同的路线可以到达B点,
所以,共有不同线路:5×5=25(条),
答:从A到B,有25条不同的路线,
故答案为:25.
22.解:法一:假设甲一小时走5米,乙一小时走2米,列表如下:时间甲(米)乙(米)时间甲(米)乙(米)0小时043小时7.510
0.5小时 2.55 3.5小时1011
1小时 2.564小时1012
1.5小时57 4.5小时1
2.513
2小时585小时12.514
2.5小时7.59 5.5小时1515
观察得5.5小时恰好追上(如果这时间超过了乙,就要用具体追及公式计算追及时间)
法二:也可以设甲的速度为每小时10a(甲要休息,实际每小时走5a),乙的速度为每小时4a,因此要追8a.半小时内最多追3a,可以先从要追的8a中扣除3a,因为在此之前不可能追上(之前的距离差不止3a).之后再开始按每半小时列出,若不够半小时的话,用追及公式算.前面追的5a,相当于每小时追a,可以用5a÷(5a﹣4a)=5(小时)计算.之后,甲半小时再走2a,乙再走5a,加上还差的3a,正好追上.因此,要追5.5小时,即330分钟.
故答案为:330.
23.解:一个自然数N 恰有9个互不相同的约数,则可得N =x 2y 2,或者N =x 8,(1)当N =x 8,则九个约数分别是:1,x ,x 2,x 3,x 4,x 5,x 6,x 7,x 8,其中有3个约数A 、B 、C 且满足A ×A =B ×C ,不可能.
(2)当N =x 2y 2,则九个约数分别是:1,x ,y ,x 2,xy ,y 2,x 2y ,xy 2,x 2y 2,其中有3个约数A 、B 、C 且满足A ×A =B ×C ,
①A =x ,B =1,C =x 2,则x +1+x 2=79,无解.
②A =xy ,B =1,C =x 2y 2,则xy +1+x 2y 2=79,无解.
③A =xy ,B =x ,C =xy 2,则xy +x +xy 2=79,无解.
④A =xy ,B =x 2,C =y 2,则xy +x 2+y 2=79,解得:
,则N =32×72=
441.
⑤A =x 2y ,B =x 2y 2,C =x 2,则x 2y +x 2y 2+x 2=79,无解.
故答案为441.
24.64
[解答]设长方体的长、宽、高分别为,,l m n (不妨设l m n ≥≥),容易知道只有一面染色的小正方体只有每个面上可能有一些。
要使得其最多,那么2n =(否则内部有太多的小正方体都是所有面没有染色的)。
由于12060lmn lm =⇒=。
此时一面染色的小正方体的个数为()()()()()22222242602242644l m lm l m l m l m --=--+=--+=⨯-+。
要使得()2644l m ⨯-+最大,那么就是要使l m +最小。
考虑到60lm =,容易知道当10,6l m ==时,l m +最小。
所以只有一面染色的小正方体最多有
()264410664⨯-⨯+=
25.【分析】这个箭靶共三个环,设最小的环为a 分,中间环为b 分,最外环为c 分,得:
第一个靶得分为:2b +c =29①
第二个靶得分为:2a +c =43②
第三个靶得分为:a +b +c ③
通过等量代换,解决问题.
解:设最小的环为a 分,中间环为b 分,最外环为c 分,得:
第一个靶得分为:2b +c =29①
第二个靶得分为:2a +c =43②
第三个靶得分为:a +b +c ③
由①+②得:2a +2b +2c =29+43=72
即a+b+c=36
即第三个靶的得分为36分.
答:他在第三个箭靶上得了36分
故答案为:36.
26.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.
解:2007÷3=669,
又因为,每一个循环周期中有2个奇数,1个偶数,
所以前2007个数中偶数的个数是:1×669=669;
答:前2007个数中,有699是偶数.
故答案为:699.
27.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.
解:2008是第2008÷2=1004个数,
1004÷8=125…4,
说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.
故答案为:4.
28.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.
解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;
共:1+2+4+8=15(种);
答:一共可以拼成15种不同的含有64个小正方体的大正方体.
故答案为:15.
29.解:第5小时开始时有:164÷2+2=84(个)
第4小时开始时有:84÷2+2=44(个)
第3小时开始时有:44÷2+2=24(个)
第2小时开始时有:24÷2+2=14(个)
第1小时开始时有:14÷2+2=9(个)
答:最开始的时候有 9个细胞.
故答案为:9.
30.解:方法一:
据分组律可得:从131415向后为1617181,92021222,324252627,2829303132(十位数),…;
方法二:位数之前应该有1+2+3+…+9=45位.1位数有9位,10﹣19有20位,20﹣27有16位,所以十位数的开头应为28,为2829303132.
故填:2829303132.
31.解:首先理解题目,找出唯一填法的空格,例如第一行第一个1,与其唯一相邻的空白空格必须为1,以此类推,第二行第一个5也具有唯一相邻空格.逆推得出唯一图形.相加求和为150.
故答案为150.
32.解:通过有规律的数,得出:
(1)边长为1的正方形有4×3=12(个);
(2)边长为2的正方形有6个;
(3)边长为3的正方形有2个.
(4)以小正方形的对角线为边的正方形有8个;
(5)以对角线的一半为边长的正方形是17个;
(6)以3个对角线的一半为边长的正方形有1个.
所以图中共有正方形:12+6+2+8+17+1=46(个).
答:图中有46个正方形.
33.解:设除数为b,商和余数都是c,这个算式就可以表示为:
47÷b=c…c,即
b×c+c=47,
c×(b+1 )=47,
所以c一定是47的因数,47的因数只有1和47;
c为47肯定不符合条件,所以c=1,即除数是46,余数是1.
故答案为:46,1.
34.解:找一剪刀与一等边三角形纸片,按题中所示步骤进行操作,
最后得到的图形是A,
故答案为:A.
35.解:设哥哥跑了X分钟,则有:
(X+30)×80﹣110X=900,
80x+2400﹣110x=900,
2400﹣30x=900,
X=50;
110×50=5500(米);
答:哥哥跑了5500米.
故答案为:5500.
36.解:设这种饮料每杯10,两杯售价是20元,
实际用了:10+10×,
=10+5,
=15(元),
15÷20=0.75=75%,所以是打七五折;
故答案为:七五.
37.解:行驶300米,甲车比乙车快2小时;
那么甲比乙快1小时,需要都行驶150米;
300﹣150=150(千米);
故答案为:150
38.解:根据分析,得知,=45=5×9
既能被5整除,又能被9整除,故a的最大值为5,b=9,
45被59□95整除,则□=8,五位数最大为59895
故答案为:59895
39.解:38=7+31=8+30=9+29=10+28=11+27=12+26=13+25=14+24=
15+23=16+22,
因为二人的生日都是星期三,所以他们的生日相差的天数是7的倍数;
经检验,只有26﹣12=14,14是7的倍数,
即小亚的生日是5月12日,小胖的生日是5月26日时它们相差14天,符合题意,
答:小胖的生日是5月26日.
故答案为:26.
40.【分析】假设第一次每人都派3个,则还剩余2×(4﹣3)+11=13个,第二次如每人都派6个,同时少了4×(6﹣3)﹣10=2个,就是每人多派6﹣3=3个,则需要13+2=15个礼物,据此可求出人数,进而可求出礼物数.
解:[2×(4﹣3)+11+4×(6﹣3)﹣10]÷(6﹣3)
=[2×1+11+4×3﹣10]÷3
=[2+11+12﹣10]÷3
=15÷3
=5(人)
2×4+(5﹣2)×3+11
=8+3×3+11
=8+9+11
=28(件)
答:一共有28件礼物.。