【K12】山西省平遥县高中数学第二章基本初等函数Ⅰ2.3幂函数教案新人教A版必修1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂函数
【教学目标】
1.通过生活实例引出幂函数的概念,会画幂函数的图象,了解幂函数图象的变化情况和性质;
2.了解几个常见的幂函数的性质,了解幂函数和指数函数的本质区别;
3.应用幂函数的图象和性质解决有关简单问题,培养学生观察分析归纳能力.
【重点难点】
重点:从五个具体的幂函数中认识幂函数的概念和性质.
难点:画幂函数的图象并由图象概括其性质是教学中可能遇到的困难.
【教学过程】
一、情景设置
1.①如果正方体的边长为a,则正方体的体积V随a变化的函数关系是_______.
②如果正方形的面积为S,则正方形的边长a随S变化的函数关系是_______.
a=S 1
2
③如果某人ts内骑车行进了1km,那么他骑车的速度v随t变化的函数关系是_______.以上是我们生活中经常遇到的几个数学模型,
①你能发现以上几个函数解析式有什么共同点吗?
②它们是否都为指数函数?
2.你能画出函数y=x,y=x2,y=x 1
2,y=x-1,y=x3的图象吗?
3.通过对以上五个函数图象的观察,哪个象限一定有幂函数的图象?哪个象限一定没有?哪个象限可能有?这时可通过什么途径来判断?
4.通过对以上五个函数图象的观察,你能得出它们的性质吗?
(2) y=x,y=x3,y=x-1是奇函数,y=x2是偶函数,y=x 1
2是非奇非偶函数;
(3)在区间(0,+∞)上,y=x,y=x2,,y=x3,y=x 1
2都是增函数,y=x-1是减函数;
(4)在第一象限内,y=x-1向上与y轴无限接近,向右与x轴无限接近;
(5)在第一象限内,y=x2,,y=x3向下凸,y=x 1
2向上凸.
二、教学精讲
例1.判断下列函数哪些是幂函数?
①y=0.2x ;②y=2x 2;③y=x 2+x ;④y=-x 3;⑤y=x -3
例2.已知y=(m 2)x 1
m 2
-1+2n -3是幂函数,求m ,n 的值. 得⎩⎪⎨⎪⎧m
2
+2m -2=1m 2-1≠02n -3=0解得⎩⎪⎨⎪⎧m=-3n=32
为例3.求下列幂函数的定义域,指出其奇偶性、单调性,并画它们的大致图象.
①y=x 13;②y=x -2;③y=21-x
例4.比较下列各组数的大小: ①25
3-和251
.3-;②4.125,328.3-,(-1.9)35 :①25
3- >25
1
.3-;②(-1.9)35<328.3-<4.125三、探索研究 四、课堂练习
1. 若幂函数y=f(x)的图象过点(9,13),则f(25)的值是______.15
2. 作出函数y=32-x
的图象,根据图象讨论这个函数有哪些性质. 3. 比较大小 ①211.1-, 219
.0- ②4316.0-,235.0-, 6.2538 ①21
1.1-<21
9.0- ②6.2538<235.0-<4316.0-
【教学后记】。