{3套试卷汇总}2020-2021东莞市中考二轮复习仿真数学冲刺卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列说法正确的是()
A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨
B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
D.“抛一枚正方体骰子,朝上的点数为2的概率为1
6
”表示随着抛掷次数的增加,“抛出朝上的点数为2”
这一事件发生的概率稳定在1
6
附近
【答案】D
【解析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.
【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;
B. “抛一枚硬币正面朝上的概率为1
2
”表示每次抛正面朝上的概率都是
1
2
,故B不符合题意;
C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;
D. “抛一枚正方体骰子,朝上的点数为2的概率为1
6
”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事
件发生的概率稳定在1
6
附近,故D符合题意;
故选D
【点睛】
本题考查了概率的意义,正确理解概率的含义是解决本题的关键.
2.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是( )
A.B.C.D.
【答案】C
【解析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;
解:(1)当0<x≤1时,如图,
在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;
∵MN⊥AC,
∴MN∥BD;
∴△AMN∽△ABD,
∴=,
即,=,MN=x;
∴y=AP×MN=x2(0<x≤1),
∵>0,
∴函数图象开口向上;
(2)当1<x<2,如图,
同理证得,△CDB∽△CNM,=,
即=,MN=2-x;
∴y=
AP×MN=x×(2-x),
y=-x2+x;
∵-<0,
∴函数图象开口向下;
综上答案C的图象大致符合.
故选C.
本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.3.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()
A.60°B.35°C.30.5°D.30°
【答案】D
【解析】根据圆心角、弧、弦的关系定理得到∠AOB=1
2
∠AOC,再根据圆周角定理即可解答.
【详解】连接OB,
∵点B是弧AC的中点,∴∠AOB=1
2
∠AOC=60°,
由圆周角定理得,∠D=1
2
∠AOB=30°,
故选D.
【点睛】
此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.
4.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()
A.23
3
π
-B.
2
3
3
π
-C.3
π-D.3
π-
【答案】B
【解析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
【详解】连接BD,
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD 的高为3, ∵扇形
BEF 的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,
在△ABG 和△DBH 中,
2
{34
A A
B BD ∠=∠=∠=∠,
∴△ABG ≌△DBH (ASA ),
∴四边形GBHD 的面积等于△ABD 的面积,
∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602
π⨯-⨯⨯ =233
π-. 故选B .
5.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( )
A .55×105
B .5.5×104
C .0.55×105
D .5.5×105
【答案】B
【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.
【详解】将度55000用科学记数法表示为5.5×1.
故选B .
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
6.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )
A .90°
B .60°
C .45°
D .30°
【答案】C
【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.
试题解析:连接AC,如图:
根据勾股定理可以得到:AC=BC=5,AB=10.
∵(5)1+(5)1=(10)1.
∴AC1+BC1=AB1.
∴△ABC是等腰直角三角形.
∴∠ABC=45°.
故选C.
考点:勾股定理.
7.某青年排球队12名队员年龄情况如下:
年龄18 19 20 21 22
人数 1 4 3 2 2
则这12名队员年龄的众数、中位数分别是()
A.20,19 B.19,19 C.19,20.5 D.19,20
【答案】D
【解析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.
【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为2020
2
=1.
故选D.
【点睛】
本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.
8.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF 的周长是()
A.5 B.7 C.9 D.11
【答案】B
【解析】试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=1
2
BC=2,DF∥BC,EF=
1
2
AB=
3
2
,EF∥AB,
∴四边形DBEF 为平行四边形,∴四边形DBEF 的周长=2(DF+EF )=2×(2+32)=1.故选B . 9.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )
A .18
B .16
C .14
D .12
【答案】B
【解析】根据简单概率的计算公式即可得解.
【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是
16
. 故选B.
考点:简单概率计算.
10.二次函数y=x 2+bx –1的图象如图,对称轴为直线x=1,若关于x 的一元二次方程x 2–2x –1–t=0(t 为实数)在–1<x<4的范围内有实数解,则t 的取值范围是
A .t≥–2
B .–2≤t<7
C .–2≤t<2
D .2<t<7
【答案】B 【解析】利用对称性方程求出b 得到抛物线解析式为y=x 2﹣2x ﹣1,则顶点坐标为(1,﹣2),再计算当﹣1<x <4时对应的函数值的范围为﹣2≤y <7,由于关于x 的一元二次方程x 2﹣2x ﹣1﹣t=0(t 为实数)在﹣1<x <4的范围内有实数解可看作二次函数y=x 2﹣2x ﹣1与直线y=t 有交点,然后利用函数图象可得到t 的范围.
【详解】抛物线的对称轴为直线x=﹣2
b =1,解得b=﹣2, ∴抛物线解析式为y=x 2﹣2x ﹣1,则顶点坐标为(1,﹣2),
当x=﹣1时,y=x 2﹣2x ﹣1=2;当x=4时,y=x 2﹣2x ﹣1=7,
当﹣1<x <4时,﹣2≤y <7,
而关于x 的一元二次方程x 2﹣2x ﹣1﹣t=0(t 为实数)在﹣1<x <4的范围内有实数解可看作二次函数y=x 2﹣2x ﹣1与直线y=t 有交点,
∴﹣2≤t <7,
故选B.
【点睛】
本题考查了二次函数的性质、抛物线与x轴的交点、二次函数与一元二次方程,把求二次函数y=ax2+bx+c (a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解题的关键.
二、填空题(本题包括8个小题)
11.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.
【答案】a<﹣1
【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,
∴a+1<0,
解得:a<−1,
故答案为a<−1.
点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.
12.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.
【答案】1
【解析】设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可.
【详解】解:设正多边形的边数为n,
由题意得,()2180
n
n
-︒
=144°,
解得n=1.
故答案为1.
【点睛】
本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.13.-3的倒数是___________
【答案】
1 3 -
【解析】乘积为1的两数互为相反数,即a的倒数即为1
a
,符号一致
【详解】∵-3的倒数是
1 3 -
∴答案是1
3
-
14.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A,B,C,则ac的值是________.
【答案】-1.
【解析】设正方形的对角线OA 长为1m ,根据正方形的性质则可得出B 、C 坐标,代入二次函数y=ax 1+c 中,即可求出a 和c ,从而求积.
【详解】设正方形的对角线OA 长为1m ,则B (﹣m ,m ),C (m ,m ),A (0,1m );
把A ,C 的坐标代入解析式可得:c=1m①,am 1+c=m②,
①代入②得:am 1+1m=m ,
解得:a=-1m , 则ac=-1m
⨯1m=-1. 考点:二次函数综合题.
15.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.
【答案】8
【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.
【详解】由俯视图可知:底层最少有5个小立方体,
由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,
∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).
故答案为:8 【点睛】
考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数. 16.化简))201720182121的结果为_____. 2+1
【解析】利用积的乘方得到原式=[2﹣1)2)]2017•2+1),然后利用平方差公式计算.
【详解】原式=[
1)
+1)]2017•
)=(2﹣1)2017•
+1.
+1.
【点睛】
本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
17.不等式组
340
1
241
2
x
x
+≥



-≤
⎪⎩
的所有整数解的积为__________.
【答案】1
【解析】解:
340
1
241
2
x
x
+≥



-≤
⎪⎩



解不等式①得:
4
3
x≥-,
解不等式②得:50
x≤,
∴不等式组的整数解为﹣1,1,1…51,
所以所有整数解的积为1,
故答案为1.
【点睛】
本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.
18.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.【答案】37
【解析】根据题意列出一元一次方程即可求解.
【详解】解:设十位上的数字为a,则个位上的数为(a+4),依题意得:
a+a+4=10,
解得:a=3,
∴这个两位数为:37
【点睛】
本题考查了一元一次方程的实际应用,属于简单题,找到等量关系是解题关键.
三、解答题(本题包括8个小题)
19.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.求∠CFA度数;求证:AD∥BC.
【答案】(1)75°(2)见解析
【解析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;
(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.
【详解】解:(1)∵△ABC是等边三角形
∴∠ACB=60°,BC=AC
∵等边△ABC绕点C顺时针旋转90°得到△EFC
∴CF=BC,∠BCF=90°,AC=CE
∴CF=AC
∵∠BCF=90°,∠ACB=60°
∴∠ACF=∠BCF﹣∠ACB=30°
∴∠CFA=1
(180°﹣∠ACF)=75°
2
(2)∵△ABC和△EFC是等边三角形
∴∠ACB=60°,∠E=60°
∵CD平分∠ACE
∴∠ACD=∠ECD
∵∠ACD=∠ECD,CD=CD,CA=CE,
∴△ECD≌△ACD(SAS)
∴∠DAC=∠E=60°
∴∠DAC=∠ACB
∴AD∥BC
【点睛】
本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.
20.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.证明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的长,
【答案】(1)见解析;(2)EC=1.
【解析】(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.
【详解】(1)∵AB=AC,
∴∠B=∠C,
∵FE⊥BC,
∴∠F+∠C=90°,∠BDE+∠B=90°,
∴∠F=∠BDE,
而∠BDE=∠FDA,
∴∠F=∠FDA,
∴AF=AD,
∴△ADF是等腰三角形;
(2)∵DE⊥BC,
∴∠DEB=90°,
∵∠B=60°,BD=1,
∴BE=1
2
BD=2,
∵AB=AC,
∴△ABC是等边三角形,
∴BC=AB=AD+BD=6,
∴EC=BC﹣BE=1.
【点睛】
本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.
21.先化简,再求值:
2
22
(2)()
y x y
y x y x y
x y x y
⎛⎫-
-÷--+

+-
⎝⎭
,其中1
x=-,2
y=.
【答案】1
【解析】分析:先把小括号内的通分,按照分式的减法和分式的除法法则进行化简,再把字母的值代入运算即可. 详解:原式()()()()222,x y x y y xy y x y x y x y x y x y -+⎛⎫+=-⋅--+ ⎪++-⎝⎭
()()()
222,x y x y xy x xy y x y x y -+-=⋅---+- 222,xy x xy y =--++
222x y =-+,
当x=-1、y=2时,
原式=-(-1)2+2×22
=-1+8
=1.
点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
22.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
【答案】(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.
【解析】(1)可设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;
(2)可设他们可购买y 棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.
【详解】(1)设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x+10)元,
依题意有 ,
解得:x=30,
经检验,x=30是原方程的解,
x+10=30+10=40,
答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;
(2)设他们可购买y 棵乙种树苗,依题意有
30×(1﹣10%)(50﹣y )+40y≤1500,
解得y≤11,
∵y为整数,
∴y最大为11,
答:他们最多可购买11棵乙种树苗.
【点睛】
本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.
23.某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
该年级报名参加丙组的人数为;该年级报名参
加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?
【答案】(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组
【解析】(1)参加丙组的人数为21人;
(2)21÷10%=10人,则乙组人数=10-21-11=10人,
如图:
(3)设需从甲组抽调x名同学到丙组,
根据题意得:3(11-x)=21+x
解得x=1.
答:应从甲抽调1名学生到丙组
(1)直接根据条形统计图获得数据;
(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;
(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解
24.已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.
求证:AD=AE.
【答案】见解析
【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB即可.
试题解析:∵AB=AC,点D是BC的中点,
∴AD⊥BC,∴∠ADB=90°.
∵AE⊥EB,∴∠E=∠ADB=90°.
∵AB平分∠DAE,∴∠BAD=∠BAE.
在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,
∴△ADB≌△AEB(AAS),∴AD=AE.
25.如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.求证:
△BDE≌△BCE;试判断四边形ABED的形状,并说明理由.
【答案】证明见解析.
【解析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出
∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;
(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED 为菱形.
【详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,
∴DB=CB,∠ABD=∠EBC,∠ABE=60°,
∵AB⊥EC,
∴∠ABC=90°,
∴∠DBE=∠CBE=30°,
在△BDE和△BCE中,

DB CB
DBE CBE BE BE
=


∠=∠

⎪=


∴△BDE≌△BCE;
(2)四边形ABED为菱形;
由(1)得△BDE≌△BCE,
∵△BAD是由△BEC旋转而得,
∴△BAD≌△BEC,
∴BA=BE,AD=EC=ED,
又∵BE=CE,
∴BA=BE=ED= AD
∴四边形ABED为菱形.
考点:旋转的性质;全等三角形的判定与性质;菱形的判定.
26.如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足∠OBC=∠OFC,求证:CF为⊙O的切线;若四边形ACFD是平行四边形,求sin∠BAD的值.
【答案】(1)见解析;(2)1 3 .
【解析】
(1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,∠OCB=∠F,根据垂径定理得到OF⊥BC,根据余角的性质得到∠OCF=90°,于是得到结论;
(2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=1
2
AC,根据平行四边形的性质得到DF=AC,
设OD=x,得到AC=DF=2x,根据射影定理得到CD=2x,求得BD=2x,根据勾股定理得到AD=226
AC CD
+=x,于是得到结论.
【详解】解:(1)连接OC,
∵OC=OB ,
∴∠OCB=∠B ,
∵∠B=∠F ,
∴∠OCB=∠F ,
∵D 为BC 的中点,
∴OF ⊥BC ,
∴∠F+∠FCD=90°,
∴∠OCB+∠FCD=90°,
∴∠OCF=90°,
∴CF 为⊙O 的切线;
(2)过D 作DH ⊥AB 于H ,
∵AO=OB ,CD=DB ,
∴OD=12
AC , ∵四边形ACFD 是平行四边形,
∴DF=AC ,
设OD=x ,
∴AC=DF=2x ,
∵∠OCF=90°,CD ⊥OF ,
∴CD 2=OD•DF=2x 2,

x ,

x ,


∵OD=x ,


x ,
∴DH=CD BD OB ⋅=x , ∴sin ∠BAD=
DH AD =13
. 【点睛】 本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.
中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )
A .4≤m <7
B .4<m <7
C .4≤m≤7
D .4<m≤7 【答案】A
【解析】先解出不等式,然后根据最小整数解为2得出关于m 的不等式组,解之即可求得m 的取值范围.
【详解】解:解不等式3x ﹣m+1>0,得:x >13m -, ∵不等式有最小整数解2,
∴1≤13
m -<2, 解得:4≤m <7,
故选A .
【点睛】
本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.
2.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.
A .25
B .253
C .10033
D .25253+
【答案】B 【解析】解:过点B 作BE ⊥AD 于E .
设BE=x .
∵∠BCD=60°,tan ∠BCE BE CE
=, 3CE x ∴=, 在直角△ABE 中,3x ,AC=50米,

3
350
3
x x
-=,
解得253
x=
即小岛B到公路l的距离为253,
故选B.
3.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()
A.B.C.D.
【答案】C
【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.详解:从左边看竖直叠放2个正方形.
故选:C.
点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.
4.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:
①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF
,其中正确的结论
A.只有①②.B.只有①③.C.只有②③.D.①②③.
【答案】D
【解析】解:①∵ABCD为菱形,∴AB=AD.
∵AB=BD,∴△ABD为等边三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,
∴点B、C、D、G四点共圆,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.
∴∠BGC=∠DGC=60°.
过点C作CM⊥GB于M,CN⊥GD于N.
∴CM=CN,
则△CBM≌△CDN,(HL)
∴S四边形BCDG=S四边形CMGN.
S四边形CMGN=1S△CMG,
∵∠CGM=60°,
∴GM=1
2CG,CM=
3
CG,
∴S四边形CMGN=1S△CMG=1×1

1
2
CG×
3
CG=CG1.
③过点F作FP∥AE于P点.∵AF=1FD,
∴FP:AE=DF:DA=1:3,
∵AE=DF,AB=AD,
∴BE=1AE,
∴FP:BE=1:6=FG:BG,
即BG=6GF.
故选D.
5.下列由左边到右边的变形,属于因式分解的是().
A.(x+1)(x-1)=x2-1
B.x2-2x+1=x(x-2)+1
C.a2-b2=(a+b)(a-b)
D.mx+my+nx+ny=m(x+y)+n(x+y)
【答案】C
【解析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.
【详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,
故选择C.
【点睛】
本题考查了因式分解的定义,牢记定义是解题关键.
6.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()
A.200350
3
x x
=
-
B.
200350
3
x x
=
+
C.
200350
3
x x
=
+
D.
200350
3
x x
=
-
【答案】B
【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.
考点:由实际问题抽象出分式方程
7.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()
A.50°B.60°C.70°D.80°
【解析】试题分析:∵在三角形ABC 中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB ﹣∠B=40°.
由旋转的性质可知:BC=B′C ,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B .
考点:旋转的性质.
8.下列计算正确的是( )
A .(﹣2a )2=2a 2
B .a 6÷a 3=a 2
C .﹣2(a ﹣1)=2﹣2a
D .a•a 2=a 2
【答案】C
【解析】解:选项A ,原式=24a ;
选项B ,原式=a 3;
选项C ,原式=-2a+2=2-2a ;
选项D , 原式=3a
故选C
9.如图,已知D 是ABC 中的边BC 上的一点,BAD C ∠=∠,ABC ∠的平分线交边AC 于E ,交AD 于F ,那么下列结论中错误的是( )
A .△BAC ∽△BDA
B .△BFA ∽△BE
C C .△BDF ∽△BEC
D .△BDF ∽△BAE
【答案】C 【解析】根据相似三角形的判定,采用排除法,逐项分析判断.
【详解】∵∠BAD=∠C ,
∠B=∠B ,
∴△BAC ∽△BDA .故A 正确.
∵BE 平分∠ABC ,
∴∠ABE=∠CBE ,
∴△BFA ∽△BEC .故B 正确.
∴∠BFA=∠BEC ,
∴∠BFD=∠BEA ,
∴△BDF ∽△BAE .故D 正确.
而不能证明△BDF ∽△BEC ,故C 错误.
【点睛】
本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.
10.设点()11A ,x y 和()22B ,x y 是反比例函数k y x =
图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是
A .第一象限
B .第二象限
C .第三象限
D .第四象限 【答案】A
【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数k y x =
图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大,
∴根据反比例函数k y x
=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.
∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况:
①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限;
②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限;
③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限;
④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.
因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A .
二、填空题(本题包括8个小题)
11.如图①,四边形ABCD 中,AB ∥CD ,∠ADC=90°,P 从A 点出发,以每秒1个单位长度的速度,按A→B→C→D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图象如图②所示,当P 运动到BC 中点时,△PAD 的面积为______.
【解析】解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P点运动到C点时,△PAD
的面积最大,S△PAD =1
2
×AD×DC=8,
∴AD=4,又∵S△ABD=
1
2
×AB×AD=2,∴AB=1,∴当P点运动到BC中点时,△PAD的面积=
1
2
×
1
2
(AB+CD)×AD=1,故答案为1.
12.如图所示,点C 在反比例函数
k
y(x0)
x
=>的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB BC
=,已知AOB的面积为1,则k的值为______.
【答案】1
【解析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据AOB的面积为1,即可求得k的值.
【详解】解:设点A的坐标为()
a,0
-,
过点C的直线与x轴,y轴分别交于点A,B,且AB BC
=,AOB的面积为1,
∴点
k
C a,
a
⎛⎫

⎝⎭

∴点B的坐标为
k
0,
2a
⎛⎫

⎝⎭

1k
a1
22a
∴⋅⋅=,
解得,k4
=,
故答案为:1.
【点睛】
本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
13.方程2
2310
x x
+-=的两个根为1x、2x,则
12
11
+
x x的值等于______.
【答案】1.
【解析】根据一元二次方程根与系数的关系求解即可.
【详解】解:根据题意得
12
3
2
x x
+=-,
12
1
2
x x=-,
所以1211+x x =
1212x x x x +=3212-
-=1. 故答案为1.
【点睛】
本题考查了根与系数的关系:若1x 、2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a +=-,12c x x a
=. 14.若不等式组130x a bx ->⎧⎨+≥⎩
的解集是﹣1<x≤1,则a =_____,b =_____. 【答案】-2 -3
【解析】先求出每个不等式的解集, 再求出不等式组的解集, 即可得出关于a 、b 的方程, 求出即可.
【详解】解:由题意得:1?30?x a bx ->⎧⎨+≥⎩
①② 解不等式 ① 得: x>1+a ,
解不等式②得:x≤3b
- 不等式组的解集为: 1+a <x≤3b -
不等式组的解集是﹣1<x≤1,
∴..1+a=-1, 3b
-=1, 解得:a=-2,b=-3
故答案为: -2, -3.
【点睛】
本题主要考查解含参数的不等式组.
15.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n 个图形中有_____个三角形(用含字母n 的代数式表示).
【答案】4n ﹣1
【解析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为943 3.=⨯-按照这个规律即可求出第n 各图形中有多少三角形.
【详解】分别数出图①、图②、图③中的三角形的个数,
=⨯-;
图①中三角形的个数为1413
=⨯-;
图②中三角形的个数为5423
=⨯-;
图③中三角形的个数为9433
可以发现,第几个图形中三角形的个数就是4与几的乘积减去1.
-.
按照这个规律,如果设图形的个数为n,那么其中三角形的个数为4n3
-.
故答案为4n3
【点睛】
此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.
16.分解因式:m2n﹣2mn+n= .
【答案】n(m﹣1)1.
【解析】先提取公因式n后,再利用完全平方公式分解即可
【详解】m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.
故答案为n(m﹣1)1.
17.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.
【答案】10
【解析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.
【详解】
如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.
∵四边形ABCD是正方形,
∴B、D关于AC对称,
∴PB=PD,
∴PB+PE=PD+PE=DE.。

相关文档
最新文档