巴彦淖尔市一中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巴彦淖尔市一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知函数f (x )=2x ﹣
+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等
差数列,f ′(x )是f (x )的导函数,则( ) A .f ′(x 0)<0 B .f ′(x 0)=0
C .f ′(x 0)>0
D .f ′(x 0)的符号无法确定
2. 函数f (x )=
的定义域为( )
A .(﹣∞,﹣2)∪(1,+∞)
B .(﹣2,1)
C .(﹣∞,﹣1)∪(2,+∞)
D .(1,2)
3. 已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )
A .
B .
C .
D .
4. 已知函数⎩⎨
⎧≤>=)0(|
|)
0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有
1
()(2)2
g x g x =+;③当]1,1[-∈x 时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零
点的个数为( )
A .7
B .6
C .5
D .4
【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.
5. 若复数(m 2﹣1)+(m+1)i 为实数(i 为虚数单位),则实数m 的值为( ) A .﹣1 B .0
C .1
D .﹣1或1
6. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}
7. 已知双曲线(a >0,b >0)的一条渐近线方程为
,则双曲线的离心率为( )
A .
B .
C .
D .
8. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .120
9. 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成( )
A .512个
B .256个
C .128个
D .64个
10.把函数y=cos (2x+φ)(|φ|<)的图象向左平移
个单位,得到函数y=f (x )的图象关于直线x=
对称,则φ的值为( )
A .﹣
B .﹣
C .
D .
11.已知,,那么夹角的余弦值( )
A .
B .
C .﹣2
D .﹣
12.定义集合运算:A*B={z|z=xy ,x ∈A ,y ∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为( ) A .0
B .2
C .3
D .6
二、填空题
13.设复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),则z 的模为 .
14.已知函数f (x )=sinx ﹣cosx ,则= .
15.在复平面内,复数与对应的点关于虚轴对称,且,则____.
16.已知f(x)=,x≥0,若f1(x)=f(x),f n+1(x)=f(f n(x)),n∈N+,则f2015(x)的表达式为.17.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=a x g
(x)(a>0且a≠1),+=.若数列{}的前n项和大于62,则n的最小值
为.
18.已知tanβ=,tan(α﹣β)=,其中α,β均为锐角,则α=.
三、解答题
19.如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,∠A1AD=.若O
为AD的中点,且CD⊥A1O
(Ⅰ)求证:A1O⊥平面ABCD;
(Ⅱ)线段BC上是否存在一点P,使得二面角D﹣A1A﹣P为?若存在,求出BP的长;不存在,说明理由.
20.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分
A B C D E,其频率分布直方图如下图所示.
别记为,,,,
(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;
(Ⅱ)该团导游首先在,,C D E 三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中
随机选出2名团员为主要协调负责人,求选出的2名团员均来自C 组的概率.
21.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且
,PA PB AC BC ==.
(1)证明: AB PC ⊥; (2)证明:平面 PAB 平面 FGH .
22.
(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF.
(1)求证EF∥BC;
(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.
23.已知函数f(x)=lnx﹣ax﹣b(a,b∈R)
(Ⅰ)若函数f(x)在x=1处取得极值1,求a,b的值
(Ⅱ)讨论函数f(x)在区间(1,+∞)上的单调性
(Ⅲ)对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1<x2),不等式f′(x0)<k恒成立,其中k为直线AB的斜率,x0=λx1+(1﹣λ)x2,0<λ<1,求λ的取值范围.
24.已知直角梯形ABCD中,AB∥CD,,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.
(1)求证:FG∥面BCD;
(2)设四棱锥D﹣ABCE的体积为V,其外接球体积为V′,求V:V′的值.
巴彦淖尔市一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】A
【解析】解:∵函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),
∴,
∴存在x1<a<x2,f'(a)=0,
∴,∴,解得a=,
假设x1,x2在a的邻域内,即x2﹣x1≈0.
∵,
∴,
∴f(x)的图象在a的邻域内的斜率不断减少小,斜率的导数为正,
∴x0>a,
又∵x>x0,又∵x>x0时,f''(x)递减,
∴.
故选:A.
【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.
2.【答案】D
【解析】解:由题意得:,
解得:1<x<2,
故选:D.
3.【答案】B
【解析】解:∵y=f(|x|)是偶函数,
∴y=f(|x|)的图象是由y=f(x)把x>0的图象保留,
x<0部分的图象关于y轴对称而得到的.
故选B.
【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f(x)的图象和函数f(|x|)的图象之间的关系,函数y=f(x)的图象和函数|f(x)|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.
4.【答案】D
第
Ⅱ卷(共100分)[.Com]
5.【答案】A
【解析】解:∵(m2﹣1)+(m+1)i为实数,
∴m+1=0,解得m=﹣1,
故选A.
6.【答案】D
【解析】解:由题意可知f(x)>0的解集为{x|﹣1<x<},
故可得f(10x)>0等价于﹣1<10x<,
由指数函数的值域为(0,+∞)一定有10x>﹣1,
而10x<可化为10x<,即10x<10﹣lg2,
由指数函数的单调性可知:x<﹣lg2
故选:D
7.【答案】A
【解析】解:∵双曲线的中心在原点,焦点在x 轴上,
∴设双曲线的方程为
,(a >0,b >0)
由此可得双曲线的渐近线方程为y=±x ,结合题意一条渐近线方程为y=x ,
得=,设b=4t ,a=3t ,则c==5t (t >0)
∴该双曲线的离心率是e==.
故选A .
【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.
8. 【答案】C
【解析】解析:本题考查程序框图中的循环结构.12
1123
m
n n n n n m S C m
---+=
⋅⋅⋅⋅
=,当8,10m n ==时,82101045m n C C C ===,选C .
9. 【答案】D
【解析】解:经过2个小时,总共分裂了=6次, 则经过2小时,这种细菌能由1个繁殖到26
=64个.
故选:D .
【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题.
10.【答案】B
【解析】解:把函数y=cos (2x+φ)(|φ|<)的图象向左平移
个单位,
得到函数y=f (x )=cos[2(x+)+φ]=cos (2x+φ+)的图象关于直线x=
对称,
则2×
+φ+
=k π,求得φ=k π﹣,k ∈Z ,故φ=﹣
,
故选:B .
11.【答案】A
【解析】解:∵,
,
∴
=
,||=,
=﹣1×1+3×(﹣1)=﹣4,
∴cos <
>=
=
=﹣
,
故选:A.
【点评】本题考查了向量的夹角公式,属于基础题.
12.【答案】D
【解析】解:根据题意,设A={1,2},B={0,2},
则集合A*B中的元素可能为:0、2、0、4,
又有集合元素的互异性,则A*B={0,2,4},
其所有元素之和为6;
故选D.
【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.
二、填空题
13.【答案】2.
【解析】解:∵复数z满足z(2﹣3i)=6+4i(i为虚数单位),
∴z=,∴|z|===2,
故答案为:2.
【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题.
14.【答案】.
【解析】解:∵函数f(x)=sinx﹣cosx=sin(x﹣),
则=sin(﹣)=﹣=﹣,
故答案为:﹣.
【点评】本题主要考查两角差的正弦公式,属于基础题.
15.【答案】-2
【解析】【知识点】复数乘除和乘方
【试题解析】由题知:
所以
故答案为:-2
16.【答案】.
【解析】解:由题意f1(x)=f(x)=.
f2(x)=f(f1(x))=,
f3(x)=f(f2(x))==,
…
f n+1(x)=f(f n(x))=,
故f2015(x)=
故答案为:.
17.【答案】1.
【解析】解:∵x为实数,[x]表示不超过x的最大整数,
∴如图,当x∈[0,1)时,画出函数f(x)=x﹣[x]的图象,
再左右扩展知f(x)为周期函数.
结合图象得到函数f(x)=x﹣[x]的最小正周期是1.
故答案为:1.
【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.
18.【答案】.
【解析】解:∵tanβ=,α,β均为锐角,
∴tan(α﹣β)===,解得:tanα=1,
∴α=.
故答案为:.
【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题.
三、解答题
19.【答案】
【解析】满分(13分).
(Ⅰ)证明:∵∠A1AD=,且AA1=2,AO=1,
∴A1O==,…(2分)
∴+AD2=AA12,
∴A1O⊥AD.…(3分)
又A1O⊥CD,且CD∩AD=D,
∴A1O⊥平面ABCD.…(5分)
(Ⅱ)解:过O作Ox∥AB,以O为原点,建立空间直角坐标系O﹣xyz(如图),则A(0,﹣1,0),A
(0,0,),…(6分)
1
设P(1,m,0)m∈[﹣1,1],平面A1AP的法向量为=(x,y,z),
∵=,=(1,m+1,0),
且
取z=1,得=.…(8分)
又A1O⊥平面ABCD,A1O⊂平面A1ADD1
∴平面A1ADD1⊥平面ABCD.
又CD⊥AD,且平面A1ADD1∩平面ABCD=AD,
∴CD⊥平面A1ADD1.
不妨设平面A1ADD1的法向量为=(1,0,0).…(10分)
由题意得==,…(12分)
解得m=1或m=﹣3(舍去).
∴当BP的长为2时,二面角D﹣A1A﹣P的值为.…(13分)
【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.
20.【答案】
【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力.
21.【答案】(1)证明见解析;(2)证明见解析.
【解析】
考点:平面与平面平行的判定;空间中直线与直线的位置关系.
22.【答案】
【解析】解:(1)证明:∵AE=AF,
∴∠AEF=∠AFE.
又B,C,F,E四点共圆,
∴∠ABC=∠AFE,
∴∠AEF=∠ACB,又∠AEF=∠AFE,∴EF∥BC.
(2)由(1)与∠B=60°知△ABC为正三角形,
又EB=EF=2,
∴AF=FC=2,
设DE=x,DF=y,则AD=2-y,
在△AED中,由余弦定理得
DE2=AE2+AD2-2AD·AE cos A.
即x2=(2-y)2+22-2(2-y)·2×1
2,
∴x2-y2=4-2y,①
由切割线定理得DE2=DF·DC,
即x2=y(y+2),
∴x2-y2=2y,②
由①②联解得y=1,x=3,∴ED= 3.
23.【答案】
【解析】解:(Ⅰ)f(x)的导数为f′(x)=﹣a,
由题意可得f′(1)=0,且f(1)=1,
即为1﹣a=0,且﹣a﹣b=1,
解得a=1.b=﹣2,经检验符合题意.
故a=1,b=﹣2;
(Ⅱ)由(Ⅰ)可得f′(x)=﹣a,x>1,0<<1,
①若a≤0,f′(x)>0,f(x)在(1,+∞)递增;
②0<a<1,x∈(1,),f′(x)>0,x∈(,+∞),f′(x)<0;
③a≥1,f′(x)<0.f(x)在(1,+∞)递减.
综上可得,a≤0,f(x)在(1,+∞)递增;
0<a<1,f(x)在(1,)递增,在(,+∞)递减;
a≥1,f(x)在(1,+∞)递减.
(Ⅲ)f′(x0)=﹣a=﹣a,
直线AB的斜率为k===﹣a,
f′(x0)<k⇔<,
即x2﹣x1<ln[λx1+(1﹣λ)x2],
即为﹣1<ln[λ+(1﹣λ)],
令t=>1,t﹣1<lnt[λ+(1﹣λ)t],
即t﹣1﹣tlnt+λ(tlnt﹣lnt)<0恒成立,
令函数g(t)=t﹣1﹣tlnt+λ(tlnt﹣lnt),t>1,
①当0<λ时,g′(t)=﹣lnt+λ(lnt+1﹣)=,
令φ(t)=﹣tlnt+λ(tlnt+t﹣1),t>1,
φ′(t)=﹣1﹣lnt+λ(2+lnt)=(λ﹣1)lnt+2λ﹣1,
当0<λ≤时,φ′(t)<0,φ(t)在(1,+∞)递减,则φ(t)<φ(1)=0,
故当t>1时,g′(t)<0,
则g(t)在(1,+∞)递减,g(t)<g(1)=0符合题意;
②当<λ<1时,φ′(t)=(λ﹣1)lnt+2λ﹣1>0,
解得1<t<,
当t∈(1,),φ′(t)>0,φ(t)在(1,)递增,φ(t)>φ(1)=0;
当t∈(1,),g′(t)>0,g(t)在(1,)递增,g(t)>g(1)=0,
则有当t∈(1,),g(t)>0不合题意.
即有0<λ≤.
【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键.
24.【答案】
【解析】解:
(1)证明:取AB中点H,连接GH,FH,
∴GH∥BD,FH∥BC,
∴GH∥面BCD,FH∥面BCD
∴面FHG∥面BCD,
∴GF∥面BCD
(2)V=
又外接球半径R=
∴V′=π
∴V:V′=
【点评】本题考查的知识点是直线与平面平等的判定及棱锥和球的体积,其中根据E点三条棱互相垂直,故棱锥的外接球半径与以AE,CD,DE为棱长的长方体的外接球半径相等,求出外接球半径是解答本题的关键点.。