高考物理一轮复习专题5-3 机械能守恒定律(精讲)(含答案解析)
高考物理大一轮复习 第五章 实验六 验证机械能守恒定律讲义(含解析)教科版-教科版高三全册物理教案

实验六 验证机械能守恒定律1.实验目的验证机械能守恒定律. 2.实验原理(如图1所示)通过实验,求出做自由落体运动物体的重力势能的减少量和对应过程动能的增加量,在实验误差允许范围内,若二者相等,说明机械能守恒,从而验证机械能守恒定律.图13.实验器材打点计时器、交流电源、纸带、复写纸、重物、刻度尺、铁架台(带铁夹)、导线. 4.实验步骤(1)安装器材:将打点计时器固定在铁架台上,用导线将打点计时器与电源相连. (2)打纸带用手竖直提起纸带,使重物停靠在打点计时器下方附近,先接通电源,再松开纸带,让重物自由下落,打点计时器就在纸带上打出一系列的点,取下纸带,换上新的纸带重打几条(3~5条)纸带.(3)选纸带:分两种情况说明①若选第1点O 到下落到某一点的过程,即用mgh =12mv 2来验证,应选点迹清晰,且第1、2两点间距离接近2mm 的纸带(电源频率为50Hz).②用12mv B 2-12mv A 2=mg Δh 验证时,由于重力势能的相对性,处理纸带时选择适当的点为基准点即可. 5.实验结论在误差允许的范围内,自由落体运动过程机械能守恒. 1.误差分析(1)测量误差:减小测量误差的方法,一是测下落距离时都从0点量起,一次将各打点对应下落高度测量完,二是多测几次取平均值.(2)系统误差:由于重物和纸带下落过程中要克服阻力做功,故动能的增加量ΔE k =12mv n 2必定稍小于重力势能的减少量ΔE p =mgh n ,改进办法是调整安装的器材,尽可能地减小阻力.2.注意事项(1)打点计时器要竖直:安装打点计时器时要竖直架稳,使其两限位孔在同一竖直线上,以减少摩擦阻力.(2)重物应选用质量大、体积小、密度大的材料.(3)应先接通电源,让打点计时器正常工作,后松开纸带让重物下落. (4)测长度,算速度:某时刻的瞬时速度的计算应用v n =h n +1-h n -12T,不能用v n =2gh n 或v n=gt 来计算. 3.验证方案方案一:利用起始点和第n 点计算代入mgh n 和12mv n 2,如果在实验误差允许的范围内,mgh n 和12mv n 2相等,则验证了机械能守恒定律.方案二:任取两点计算(1)任取两点A 、B ,测出h AB ,算出mgh AB . (2)算出12mv B 2-12mv A 2的值.(3)在实验误差允许的范围内,若mgh AB =12mv B 2-12mv A 2,则验证了机械能守恒定律.方案三:图像法从纸带上选取多个点,测量从第一点到其余各点的下落高度h ,并计算各点速度的平方v 2,然后以12v 2为纵轴,以h 为横轴,根据实验数据作出12v 2-h 图像.若在误差允许的范围内图像是一条过原点且斜率为g 的直线,则验证了机械能守恒定律.命题点一 教材原型实验例1 (2018·广东省湛江市第二次模拟)如图2所示,打点计时器固定在铁架台上,使重物带动纸带从静止开始自由下落,利用此装置验证机械能守恒定律.该装置中的打点计时器所接交流电源频率是50Hz.图2(1)对于该实验,下列操作中对减小实验误差有利的是________. A .精确测量出重物的质量 B .两限位孔在同一竖直线上C .重物选用质量和密度较大的金属锤D .释放重物前,重物离打点计时器下端远些(2)按正确操作得到了一条完整的纸带,由于纸带较长,图中有部分未画出,如图3所示.纸带上各点是打点计时器打出的计时点,其中O 点为纸带上打出的第一个点.图3①重物下落高度应从纸带上计时点间的距离直接测出,下列测量值能完成验证机械能守恒定律的选项有________. A .OA 、OB 和OG 的长度 B .OE 、DE 和EF 的长度 C .BD 、BF 和EG 的长度 D .AC 、BF 和EG 的长度②用刻度尺测得图中AB 的距离是1.76cm ,FG 的距离是3.71cm ,则可得当地的重力加速度是________m/s 2.(计算结果保留三位有效数字) 答案 (1)BC (2)①BD ②9.75解析 (1)因为在实验中比较的是mgh 、12mv 2的大小关系,故m 可约去,不需要测量重物的质量,对减小实验误差没有影响,故A 错误.为了减小纸带与限位孔之间的摩擦,实验装置中两限位孔必须在同一竖直线上,从而减小实验误差,故B 正确.实验供选择的重物应该选相对质量较大、体积较小的物体,这样能减少摩擦阻力的影响,从而减小实验误差,故C 正确.释放重物前,为更有效地利用纸带,重物离打点计时器下端近些,故D 错误. (2)①当知道OA 、OB 和OG 的长度时,无法算出任何一点的速度,故A 不符合题意;当知道OE 、DE 和EF 的长度时,利用DE 和EF 的长度可以求出E 点的速度,从而求出O 点到E 点的动能变化量,知道OE 的长度,可以求出O 点到E 点重力势能的变化量,可以验证机械能守恒,故B 符合题意;当知道BD 、BF 和EG 的长度时,由BD 、BF 的长度可以求出E 点的速度,但无法求出G 点的速度,故无法求出E 点到G 点的动能变化量,故C 不符合题意;当知道AC 、BF 和EG 的长度时,可以分别求出B 点和F 点的速度,从而求B 到F 点的动能变化量,知道BF 的长度,可以求出B 点到F 点重力势能的变化量,可以验证机械能守恒,故D 符合题意.②根据Δh =gt 2,解得g =FG -AB 5T 2=3.71-1.765×0.022×10-2m/s 2=9.75 m/s 2. 变式1 某同学利用竖直上抛小球的频闪照片验证机械能守恒定律,频闪仪每隔0.05s 闪光一次,如图4所标数据为实际距离,该同学通过计算得到不同时刻的速度如下表.(当地重力加速度取9.8m/s 2,小球质量m =0.2kg ,结果保留3位有效数字)图4时刻 t 2t 3t 4t 5速度(m·s -1)4.994.483.98(1)由频闪照片上的数据计算t 5时刻小球的速度v 5=________m/s ;(2)从t 2到t 5时间内,重力势能的增加量ΔE p =____J ,动能的减少量ΔE k =________J ; (3)在误差允许的范围内,若ΔE p 与ΔE k 近似相等,即验证了机械能守恒定律.由上述计算得ΔE p ________(选填“>”“<”或“=”)ΔE k ,造成这种结果的主要原因是_________________________________________________________________________________. 答案 (1)3.48 (2)1.24 1.28 (3)< 存在空气阻力 解析 (1)v 5=16.14+18.662×0.05×10-2m/s =3.48 m/s.(2)重力势能的增加量ΔE p ≈mg Δh ,代入数据可得ΔE p ≈1.24J,动能减少量为ΔE k ≈12mv 22-12mv 52,代入数据可得ΔE k ≈1.28J. (3)由计算可得ΔE p <ΔE k ,主要是由于存在空气阻力.命题点二 实验创新类型1 实验装置的创新例2 (2018·广东省东莞市上学期期末质检)某同学利用如图5甲所示的气垫导轨装置验证系统机械能守恒,在气垫导轨上安装了两个光电门1、2,滑块上固定一遮光条,滑块用细线绕过定滑轮与钩码相连.图5(1)用10分度游标卡尺测量遮光条宽度d 如图乙所示,遮光条宽度d =________mm. (2)实验时要调整气垫导轨水平,不挂钩码和细线,接通气源,轻推滑块从轨道右端向左运动的过程中,发现遮光条通过光电门2的时间大于通过光电门1的时间.以下能够达到调整气垫导轨水平的措施是________(选填相应选项前的符号) A .调节旋钮P 使轨道左端升高一些 B .遮光条的宽度增大一些 C .滑块的质量增大一些D .气源的供气量增大一些(3)调整气垫导轨水平后,挂上细线和钩码进行实验,测出光电门1、2间的距离L .遮光条的宽度d ,滑块和遮光条的总质量M ,钩码质量m .由数字计时器读出遮光条通过光电门1、2的时间t 1、t 2,则遮光条通过光电门1时的瞬时速度的表达式v 1=________;验证系统机械能守恒定律成立的表达式是________(用题中的字母表示,当地重力加速度为g ). 答案 (1)3.8 (2)A(3)d t 1 mgL =12(M +m )⎝ ⎛⎭⎪⎫d t 12-12(M +m )⎝ ⎛⎭⎪⎫d t 22解析 (1)游标卡尺读数为3mm +8×0.1mm=3.8mm.(2)遮光条通过光电门1的时间小于通过光电门2的时间.滑块做加速运动,也就是左端低,右端高.能够达到调整气垫导轨水平的措施是调节旋钮P 使轨道左端升高一些,故答案是A.(3)遮光条通过光电门1时的瞬时速度的表达式v 1=dt 1,遮光条通过光电门2时的瞬时速度的表达式v 2=d t 2,滑块从光电门2运动到光电门1的过程中,滑块和遮光条及钩码整体动能的增加量是12(M +m )⎝ ⎛⎭⎪⎫d t 12-12(M +m )⎝ ⎛⎭⎪⎫d t 22滑块从光电门2运动到光电1的过程中,钩码重力势能的减少量是mgL 验证系统机械能守恒定律成立的表达式是mgL =12(M +m )⎝ ⎛⎭⎪⎫d t 12-12(M +m )⎝ ⎛⎭⎪⎫d t 22.类型2 实验方案的创新例3 利用气垫导轨验证机械能守恒定律,实验装置如图6甲所示,水平桌面上固定一倾斜的气垫导轨,导轨上A 点处有一带长方形遮光片的滑块,其总质量为M ,左端由跨过轻质光滑定滑轮的细绳和一质量为m 的小球相连;遮光片两条长边与导轨垂直,导轨上B 点有一光电门,可以测量遮光片经过光电门时的挡光时间t ,用d 表示A 点到光电门B 处的距离,b 表示遮光片的宽度,将遮光片通过光电门的平均速度看做滑块通过B 点时的瞬时速度,实验时滑块在A 处由静止开始运动.图6(1)某次实验测得倾角θ=30°,重力加速度用g 表示,滑块从A 处到达B 处时m 和M 组成的系统动能增加量可表示为ΔE k =_________,系统的重力势能减少量可表示为ΔE p =________,在误差允许的范围内,若ΔE k =ΔE p ,则可认为系统的机械能守恒.(用题中字母表示)(2)在上述实验中,某同学改变A 、B 间的距离,作出的v 2-d 图像如图乙所示,并测得M =m ,则重力加速度g =________m/s 2.答案 (1)M +m b 22t 2(m -M 2)gd (2)9.6 解析 (1)系统动能增加量可表示为ΔE k =12(M +m )v B 2=M +m b 22t 2,系统的重力势能减少量可表示为ΔE p =mgd -Mgd sin30°=(m -M2)gd . (2)根据机械能守恒可得(m -M2)gd =12(M +m )v 2,即g =2v 2d ,代入数据得g =9.6m/s 2.变式2 用如图7甲所示的实验装置验证m 1、m 2组成的系统机械能守恒.m 2从高处由静止开始下落,m 1上拖着的纸带打出一系列的点,对纸带上的点迹进行测量,即可验证机械能守恒定律.如图乙给出的是实验中获取的一条纸带,0是打下的第一个点,每相邻两计数点间还有4个点(图中未标出),所用电源的频率为50Hz.已知m 1=50g 、m 2=150g .则:(结果均保留两位有效数字)图7(1)在纸带上打下计数点5时的速度v 5=________m/s ;(2)在打下0点到打下计数点5的过程中系统动能的增加量ΔE k =________J ,系统重力势能的减少量ΔE p =________J ;(当地的重力加速度g 取10m/s 2)(3)若某同学作出12v 2-h 图像如图丙所示,则当地的重力加速度g =________m/s 2.答案 (1)2.4 (2)0.58 0.60 (3)9.7解析 (1)v 5=21.60+26.40×10-20.1×2m/s =2.4 m/s.(2)ΔE k =12(m 1+m 2)v 52-0≈0.58J,ΔE p =m 2gh 5-m 1gh 5=0.60J.(3)由(m 2-m 1)gh =12(m 1+m 2)v 2,知v 22=m 2-m 1gh m 1+m 2,即图线的斜率k =m 2-m 1g m 1+m 2=5.821.20m/s 2,解得g =9.7m/s 2.命题点三 实验拓展——探究弹簧的弹性势能例4 (2018·河南省洛阳市上学期期中)某实验小组利用如图8甲所示的实验装置,探究轻质弹簧的弹性势能与形变量的关系,光滑水平桌面距地面高为h ,一轻质弹簧左端固定,右端与质量为m 的小钢球接触,弹簧处于原长时,将小球向左推,压缩弹簧一段距离后由静止释放,在弹簧弹力的作用下,小球从桌子边缘水平飞出,小球落到位于水平地面的复写纸上,从而在复写纸下方的白纸P 点留下痕迹.(已知重力加速度为g )图8(1)实验测得小球的落点P 到O 点的距离为l ,那么由理论分析得到小球释放前压缩弹簧的弹性势能E p 与h 、l 、mg 之间的关系式为________________;(2)改变弹簧压缩量进行多次实验,测量数据如下表所示,请在图乙坐标纸上作出x -l 图像.p x 之间的关系式为________.答案 (1)E p =mgl 24h(2)见解析图(3)x =0.04l E p =625mgx24h解析 (1)小球从桌子边缘水平飞出,做平抛运动,有h =12gt 2,l =v 0t ;将小球向左推压缩弹簧,由机械能守恒可得E p =12mv 02,联立得E p =mgl 24h;(2)根据给出的数据利用描点法可得出对应的图像如图所示(3)由图像得出x 与l 的关系式为x =0.04l ,由实验得到弹簧弹性势能E p 与弹簧压缩量x 之间的关系式为E p =mgl 24h =625mgx 24h.。
2015届高考物理一轮复习 5-3机械能守恒定律及其应用课件

考点三
机械能守恒定律的应用
3.如图 5-3-1 所示,质量为 m 的物体沿斜上方以速度 v0 抛出后,能达到的最大高度为 H,当它将要落到离地面高度为 h 的平台上时(不计空气阻力, 取地面为参考平面), 下列判断正确的 是( )
图 5-3-1
1 2 A.它的总机械能大于 mv0 2 B.它的总机械能为 mgH C.它的动能为 mg(H-h) 1 2 D.它的动能为 mv0-mgh 2
解析:物块由 A 到 C 的过程中,只有重力、弹簧弹力做功, 因此物块与弹簧组成的系统机械能过恒,由 A 到 B 的过程中,弹 性势能不变,物块动能与重力势能之和不变,但物块由 B 到 C 的 过程中,弹性势能增大,物块的机械能减小,重力势能增大,弹 性势能与动能之和减小,故只有 D 正确.
答案:D
10 地球 共有的. 9 物体 和□ (3)重力势能是□ 重力势能具有相对 11 性, 重力势能的大小与参考平面的选取有关. 重力势能的变化是□
绝对 的,与参考平面的选择□ 12 无关
(4)重力做功与重力势能变化的关系:重力做正功时,重力势能 13 □ 14 增加 ;重力做多少正(负) 减少 ;重力做负功时,重力势能□
答案:D
4.一轻质弹簧,固定于天花板上的 O 点处,原长为 L,如图 5-3-2 所示,一个质量为 m 的物块从 A 点竖直向上抛出,以速 度 v 与弹簧在 B 点相接触,然后向上压缩弹簧,到 C 点时物块速 度为零,在此过程中无机械能损失,则下列说法正确的是( )
图 5-3-2
A.由 A 到 C 的过程中,动能和重力势能之和不变 B.由 B 到 C 的过程中,弹性势能和动能之和不变 C.由 A 到 C 的过程中,物块 m 的机械能守恒 D.由 B 到 C 的过程中,物块与弹簧组成的系统机械能守恒
高考物理实验专题 验证机械能守恒定律(含答案)

高考物理专题 验证机械能守恒定律(含答案)1. 在“用DIS 研究机械能守恒定律”的实验中,用到的传感器是 传感器。
若摆锤直径的测量值大于其真实值会造成摆锤动能的测量值偏 。
(选填:“大”或“小”)。
【答案】光电门;大【解析】在实验中,摆锤的速度通过光电门进行测量,测量的速度是通过小球直径d 与挡光时间的比值进行计算,为:dv t=∆,当摆锤直径测量值大于真实值时,小球直径d 会变大,导致计算出的小球速度变大,故小球动能也会变大。
2. 如图所示,打点计时器固定在铁架台上,使重物带动纸带从静止开始自由下落,利用此装置验证机械能守恒定律。
①对于该实验,下列操作中对减小实验误差有利的是______________。
A .重物选用质量和密度较大的金属锤 B .两限位孔在同一竖直面内上下对正 C .精确测量出重物的质量D .用手托稳重物,接通电源后,撒手释放重物②某实验小组利用上述装置将打点计时器接到50 Hz 的交流电源上,按正确操作得到了一条完整的纸带,由于纸带较长,图中有部分未画出,如图所示。
纸带上各点是打点计时器打出的计时点,其中O 点为纸带上打出的第一个点。
重物下落高度应从纸带上计时点间的距离直接测出,利用下列测量值能完成验证机械能守恒定律的选项有____________。
A .OA 、AD 和EG 的长度 B .OC 、BC 和CD 的长度 C .BD 、CF 和EG 的长度 C .AC 、BD 和EG 的长度 【答案】①AB ; ②BC 。
【解析】①重物选用质量和密度较大的金属锤,减小空气阻力,以减小误差,故A 正确;两限位孔在同一竖直面内上下对正,减小纸带和打点计时器之间的阻力,以减小误差,故B 正确;验证机械能守恒定律的原理是:21222121mv mv mgh -=,重物质量可以消去,无需精确测量出重物的质量,故C 错误;用手拉稳纸带,而不是托住重物,接通电源后,撒手释放纸带,故D 错误。
理一轮总复习(固考基+抓细节+重落实)5-3 机械能守恒定律及其应用课件(含13高考、14模拟)

【答案】 B
机械能守恒条件的理解
1.守恒条件 机械能守恒的条件是只有重力、弹力做功,可以从以下 三方面理解: (1)只受重力作用,例如在不考虑空气阻力的情况下的各 种抛体运动,物体的机械能守恒. (2)受其他力,但其他力不做功,只有重力或弹力做功. (3)弹力做功伴随着弹性势能的变化,并且弹力做的功等 于弹性势能的减少量.
【答案】 D
3.(多选 )置于水平地面上的一门大炮,斜向上发射一枚 炮弹.假设空气阻力可以忽略,炮弹可以视为质点,则( A.炮弹在上升阶段,重力势能一直增大 B.炮弹在空中运动的过程中,动能一直增大 C.炮弹在空中运动的过程中,重力的功率一直增大 D.炮弹在空中运动的过程中,机械能守恒 )
【解析】
图 5-3-4
A.斜劈对小球的弹力不做功 B.斜劈与小球组成的系统机械能守恒 C.斜劈的机械能守恒 D.小球重力势能减少量等于斜劈动能的增加量
【解析】
不计一切摩擦,小球下滑时,小球和斜劈组
成的系统只有小球重力做功,系统机械能守恒,故 B 正确, C 错误;小球重力势能的减少量应等于小球和斜劈动能的增 加量之和, D 错误;斜劈对小球的弹力与小球位移间夹角大 于 90° ,故此弹力做负功,A 错误.
.
.
1. (多选)“蹦极”是一项非常刺激的体育运动.如图 5 -3-1 所示,运动员身系弹性绳自高空中 Q 点自由下落,图 中 a 是弹性绳的原长位置,c 是运动员所到达的最低点,b 是 运动员静止地悬吊着时的平衡位置.则( )
高三物理一轮复习专题实验6 验证机械能守恒定律(含解析)

实验6:验证机械能守恒定律一、实验目的验证机械能守恒定律.二、实验原理在只有重力做功的自由落体运动中,物体的重力势能和动能互相转化,但总的机械能守恒。
若物体从静止开始下落,下落高度为h 时的速度为v,恒有mgh=错误!m v2。
故只需借助打点计时器,通过纸带测出重物某时刻的下落高度h和该时刻的瞬时速度v,即可验证机械能守恒定律。
测定第n点的瞬时速度的方法是:测出第n点相邻的前、后两段相等时间间隔T内下落的高度x n-1和x n+1(或用h n-1和h n+1),然后由公式v n=错误!或由v n=错误!可得v n(如图所示)。
三、实验器材铁架台(带铁夹)、电磁打点计时器与低压交流电源(或电火花打点计时器)、重物(带纸带夹子)、纸带数条、复写纸片、导线、毫米刻度尺。
四、实验步骤1.安装器材:如图所示,将打点计时器固定在铁架台上,用导线将打点计时器与低压电源相连,此时电源开关应为断开状态。
2.打纸带:把纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔,用手竖直提起纸带,使重物停靠在打点计时器下方附近,先接通电源,待计时器打点稳定后再松开纸带,让重物自由下落,打点计时器就在纸带上打出一系列的点,取下纸带,换上新的纸带重打几条(3~5条)纸带。
3.选纸带:分两种情况说明(1)若选第1点O到下落到某一点的过程,即用mgh=错误!m v2来验证,应选点迹清晰,且1、2两点间距离小于或接近2 mm的纸带,若1、2两点间的距离大于2 mm,这是由于打点计时器打第1个点时重物的初速度不为零造成的(如先释放纸带后接通电源等错误操作会造成此种结果)。
这样第1个点就不是运动的起始点了,这样的纸带不能选。
(2)用错误!m v错误!-错误!m v错误!=mgΔh验证时,由于重力势能的相对性,处理纸带时选择适当的点为基准点,这样纸带上打出的第1、2两点间的距离是否为2 mm就无关紧要了,所以只要后面的点迹清晰就可以选用。
2020届高考物理一轮复习:第五章 机械能及其守恒定律第3讲 机械能守恒定律及其应用(含解析)

板块三限时规范特训时间:45分钟满分:100分一、选择题(本题共10小题,每小题7分,共70分。
其中1~6为单选,7~10为多选)1.关于弹性势能,下列说法中正确的是()A.当弹簧变长时弹性势能一定增大B.当弹簧变短时弹性势能一定减小C.在拉伸长度相同时,k越大的弹簧的弹性势能越大D.弹簧在拉伸时弹性势能一定大于压缩时的弹性势能答案 C解析当弹簧处于压缩状态时,弹簧变长时弹力做正功,弹性势能减小。
弹簧变短时,弹力做负功,弹性势能增加,故A、B错误。
当拉伸长度相同时,k越大的弹簧的弹性势能越大,故C正确。
当k 相同时,伸长量与压缩量相同的弹簧,弹性势能也相同,故D错误。
2.如图所示,光滑细杆AB、AC在A点连接,AB竖直放置,AC水平放置,两个相同的中心有小孔的小球M、N,分别套在AB 和AC上,并用一细绳相连,细绳恰好被拉直,现由静止释放M、N,在运动过程中,下列说法中正确的是()A.M球的机械能守恒B.M球的机械能增大C.M和N组成的系统机械能守恒D.绳的拉力对N做负功答案 C解析细杆光滑,故M、N组成的系统机械能守恒,N的机械能增加,绳的拉力对N做正功、对M做负功,M的机械能减少,故C正确,A、B、D错误。
3. [2017·福建福州模拟]如图所示,竖立在水平面上的轻弹簧,下端固定,将一个金属球放在弹簧顶端(球与弹簧不连接),用力向下压球,使弹簧被压缩,并用细线把小球和地面拴牢如图甲所示。
烧断细线后,发现球被弹起且脱离弹簧后还能继续向上运动如图乙所示。
那么该球从细线被烧断到刚脱离弹簧的运动过程中,(不计空气阻力)下列说法正确的是()A.弹簧、小球所构成的系统机械能守恒B.球刚脱离弹簧时动能最大C.球所受合力的最大值等于重力D.小球所受合外力为零时速度最小答案 A解析烧断细线后,小球受重力和弹力作用,故弹簧、小球所构成的系统机械能守恒,A正确;小球受到重力和向上的弹力两个力,弹簧的弹力先大于重力,小球加速上升,后弹力小于重力,小球减速上升,所以球的动能先增大后减小,当加速度等于零时,此时所受的合力为零,即小球受到的弹簧的弹力等于小球的重力时速度最大,动能最大,此时弹簧尚处于压缩状态,故B、D错误;小球脱离弹簧后还能继续向上运动,由简谐运动的对称性可知,小球所受合力的最大值(在最低点)大于重力,C错误。
2020高考物理一轮复习专题5-3 机械能守恒定律(精讲)附答案

专题5.3 机械能守恒定律1.掌握重力势能、弹性势能的概念,并能计算。
2.掌握机械能守恒的条件,会判断物体的机械能是否守恒。
3.掌握机械能守恒定律的三种表达形式,理解其物理意义,并能熟练应用。
知识点一重力做功与重力势能1.重力做功的特点(1)重力做功与路径无关,只与初末位置的高度差有关。
(2)重力做功不引起物体机械能的变化。
2.重力势能(1)公式:E p=mgh。
(2)特性:①标矢性:重力势能是标量,但有正、负,其意义是表示物体的重力势能比它在参考平面上大还是小,这与功的正、负的物理意义不同。
②系统性:重力势能是物体和地球所组成的“系统”共有的。
③相对性:重力势能的大小与参考平面的选取有关。
重力势能的变化是绝对的,与参考平面的选取无关。
3.重力做功与重力势能变化的关系(1)定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加。
(2)定量关系:重力对物体做的功等于物体重力势能的减少量。
即W G=E p1-E p2=-ΔE p。
知识点二弹性势能1.定义:物体由于发生弹性形变而具有的能.2.弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减小;弹力做负功,弹性势能增加,即W=-ΔE P.知识点三机械能守恒定律及其应用1.机械能:动能和势能统称为机械能,其中势能包括重力势能和弹性势能.2.机械能守恒定律(1)内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.(2)守恒条件:只有重力或系统内弹力做功.(3)常用的三种表达式:①守恒式:E1=E2或E k1+E P1=E k2+E P2.(E1、E2分别表示系统初末状态时的总机械能)②转化式:ΔE k=-ΔE P或ΔE k增=ΔE P减.(表示系统势能的减少量等于动能的增加量)③转移式:ΔE A=-ΔE B或ΔE A增=ΔE B减.(表示系统只有A、B两物体时,A增加的机械能等于B减少的机械能)考点一机械能守恒的理解与判断【典例1】(2019·浙江选考)奥运会比赛项目撑杆跳高如图所示,下列说法不正确的是()A.加速助跑过程中,运动员的动能增加B.起跳上升过程中,杆的弹性势能一直增加C.起跳上升过程中,运动员的重力势能增加D.越过横杆后下落过程中,运动员的重力势能减少动能增加【答案】B【解析】加速助跑过程中速度增大,动能增加,A正确;撑杆从开始形变到撑杆恢复形变时,先是运动员部分动能转化为杆的弹性势能,后弹性势能转化为运动员的动能与重力势能,杆的弹性势能不是一直增加,B 错误;起跳上升过程中,运动员的高度在不断增大,所以运动员的重力势能增加,C正确;当运动员越过横杆下落的过程中,他的高度降低、速度增大,重力势能被转化为动能,即重力势能减少,动能增加,D正确。
2013届高三物理一轮复习课件(粤教版):第5章 第3节 机械能守恒定律

2m v ,
2
又 A 离 地 面 高 度 为 h时 , 它 的 动 能 和 势 能 相 等 : 1 2
2m v 2
2 m g h,
由以上两式得h
2 5
H.
方 法 2 : 由 公 式 E k E p, 有 : m g H h 2 1 2
m 2m v ,
1 长 直 杆 的 下 端 运 动 到 木 块 的 最 低 点 时 , 长
直 杆 在 竖 直 方 向 的 速 度 为 0. 由 机 械 能 守 恒 定 律 m gR 所 以 v B vC v 2Rg 3 1 2 3 m v
2
2长直杆下端上升到能达到最高点时,长直
杆 在 竖 直 方 向 速 度 为 0, 木 块 在 水 平 方 向 的 速 度 为 0 . 1 2 2 m v m g h, h
【解析】 物体下滑过程中,由于物体与斜面相互间有 垂直于斜面的作用力,使斜面加速运动,斜面的动能 增加;物体克服其相互作用力做功,物体的机械能减 少,但动能增加;重力势能减少,斜面的机械能增加, 故A对,B错. 物体沿斜面下滑时既沿斜面向下运动,又随斜面 向右运动,其合速度方向与斜面方向不垂直,弹力方 向垂直于斜面但与速度方向之间的夹角大于90°,所 以斜面对物体的作用力做负功,则C错;对斜面和物 体组成的系统只有重力在做功,故系统机械能守 恒.则D正确.
图5- 7 3-
【 解 析 】 A、 B 组 成 的 系 统 , 只 发 生 了 动 能 和 势 能 的 转 化,没有转化为其他形式的能,所以机械能守恒. A、 B 球 在 同 一 杆 上 具 有 相 同 的 角 速 度 , 故 v A v B ∶ R A RB 3 2, ∶ ∶ ①
2020年高考物理新课标第一轮总复习讲义:第五章 第三讲 机械能守恒定律及其应用 含答案

基础复习课第三讲机械能守恒定律及其应用[小题快练]1.判断题(1)重力势能的变化与零势能参考面的选取无关.( √ )(2)克服重力做功,物体的重力势能一定增加.( √ )(3)弹力做正功,弹性势能一定增加.( × )(4)物体所受的合外力为零,物体的机械能一定守恒.( × )(5)物体的速度增大时,其机械能可能减小.( √ )(6)物体除受重力外,还受其他力,但其他力不做功,则物体的机械能一定守恒.( √ ) 2.关于重力势能,下列说法中正确的是( D )A.物体的位置一旦确定,它的重力势能的大小也随之确定B.物体与零势能面的距离越大,它的重力势能也越大C.一个物体的重力势能从-5 J变化到-3 J,重力势能减少了D.重力势能的减少量等于重力对物体做的功3.如图所示,在光滑水平面上有一物体,它的左端连接着一轻弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去力F后,物体将向右运动,在物体向右运动的过程中,下列说法正确的是( D )A.弹簧的弹性势能逐渐减少B.物体的机械能不变C.弹簧的弹性势能先增加后减少D.弹簧的弹性势能先减少后增加4.(多选)如图所示,下列关于机械能是否守恒的判断正确的是( CD )A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,A置于光滑水平面上,物体B沿光滑斜面下滑,物体B机械能守恒C.丙图中,不计任何阻力和定滑轮质量时A加速下落,B加速上升过程中,A、B系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒考点一机械能守恒的判断(自主学习)1.对机械能守恒条件的理解(1)只受重力作用,例如不考虑空气阻力的各种抛体运动,物体的机械能守恒.(2)除重力外,物体还受其他力,但其他力不做功或做功代数和为零.(3)除重力外,只有系统内的弹力做功,并且弹力做的功等于弹性势能变化量的负值,那么系统的机械能守恒,注意并非物体的机械能守恒,如与弹簧相连的小球下摆的过程机械能减少.2.机械能是否守恒的三种判断方法(1)利用机械能的定义判断:若物体动能、势能之和不变,机械能守恒.(2)利用守恒条件判断.(3)利用能量转化判断:若物体系统与外界没有能量交换,物体系统内也没有机械能与其他形式能的转化,则物体系统机械能守恒.1-1.[机械能守恒的判断]在如图所示的物理过程示意图中,甲图一端固定有小球的轻杆,从右偏上30°角释放后绕光滑支点摆动;乙图为末端固定有小球的轻质直角架,释放后绕通过直角顶点的固定轴O无摩擦转动;丙图为轻绳一端连着一小球,从右偏上30°角处自由释放;丁图为置于光滑水平面上的带有竖直支架的小车,把用细绳悬挂的小球从图示位置释放,小球开始摆动,则关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是()A.甲图中小球机械能守恒B.乙图中小球A机械能守恒C.丙图中小球机械能守恒D.丁图中小球机械能守恒解析:甲图过程中轻杆对小球不做功,小球的机械能守恒,A正确;乙图过程中轻杆对A 的弹力不沿杆的方向,会对小球做功,所以小球A的机械能不守恒,但两个小球组成的系统机械能守恒,B错误;丙图中小球在绳子绷紧的瞬间有动能损失,机械能不守恒,C 错误;丁图中小球和小车组成的系统机械能守恒,但小球的机械能不守恒,这是因为摆动过程中小球的轨迹不是圆弧,细绳会对小球做功,D错误.答案:A1-2.[机械能守恒的判断]把小球放在竖立的弹簧上,并把球往下按至A位置,如图甲所示.迅速松手后,球升高至最高位置C(图丙),途中经过位置B时弹簧正处于原长(图乙).忽略弹簧的质量和空气阻力.则小球从A运动到C的过程中,下列说法正确的是()A.经过位置B时小球的加速度为0B.经过位置B时小球的速度最大C.小球、地球、弹簧所组成系统的机械能守恒D.小球、地球、弹簧所组成系统的机械能先增大后减小答案:C考点二单个物体的机械能守恒(师生共研)1.机械能守恒定律的表达式2.求解单个物体机械能守恒问题的基本思路(1)选取研究对象——物体.(2)根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.(3)恰当地选取参考平面,确定研究对象在过程的初、末状态时的机械能.(4)选取方便的机械能守恒定律的方程形式进行求解.[典例]如图所示,水平传送带的右端与竖直面内的用内壁光滑钢管弯成的“9”形固定轨道相接,钢管内径很小.传送带的运行速度为v0=6 m/s,将质量m=1.0 kg的可看作质点的滑块无初速地放在传送带A端,传送带长度L=12.0 m,“9”形轨道全高H=0.8 m,“9”形轨道上半部分圆弧半径为R=0.2 m,滑块与传送带间的动摩擦因数为μ=0.3,重力加速度g=10 m/s2,求:(1)滑块从传送带A端运动到B端所需要的时间;(2)滑块滑到轨道最高点C时受到轨道的作用力大小;(3)若滑块从“9”形轨道D点水平抛出后,恰好垂直撞在倾角θ=45°的斜面上P点,求P、D两点间的竖直高度h(保留两位有效数字).[审题指导]第一步:抓关键点(1)判断滑块在传送带上的运动时,若滑块与传送带同速时没有到达B 点,则剩余部分将做匀速直线运动.(2)在轨道的C 点,根据F N +mg =m v 2CR 求滑块受轨道的作用力时,应先求出滑块到C 点的速度v C .(3)滑块由D 点到P 点做平抛运动,故滑块在P 点的速度v P 在水平方向的分速度与在D 点的速度相等,即v D =v P sin θ.解析:(1)滑块在传送带运动时,由牛顿运动定律得 μmg =ma 得a =μg =3 m/s 2加速到与传送带共速所需要的时间t 1=v 0a =2 s 前2 s 内的位移x 1=12at 21=6 m之后滑块做匀速运动的位移x 2=L -x 1=6 m 时间t 2=x 2v 0=1 s故t =t 1+t 2=3 s.(2)滑块由B 到C 运动,由机械能守恒定律得 -mgH =12m v 2C-12m v 2在C 点,轨道对滑块的弹力与其重力的合力为其做圆周运动提供向心力,设轨道对滑块的弹力方向竖直向下,由牛顿第二定律得F N +mg =m v 2CR 解得F N =90 N.(3)滑块由B 到D 运动的过程中,由机械能守恒定律得12m v 20=12m v 2D +mg (H -2R ) 滑块由D 到P 运动的过程中,由机械能守恒定律得12m v 2P=12m v 2D +mgh 又v D =v P sin 45°由以上三式可解得h =1.4 m. 答案:(1)3 s (2)90 N (3)1.4 m [反思总结]应用机械能守恒定律的两点注意事项1.列方程时,选取的表达角度不同,表达式不同,对参考平面的选取要求也不一定相同. 2.应用机械能守恒能解决的问题,应用动能定理同样能解决,但其解题思路和表达式有所不同.2-1.[与平抛运动相结合] (2015·海南卷)如图,位于竖直平面内的光滑轨道由四分之一圆弧ab 和抛物线bc 组成,圆弧半径Oa 水平,b 点为抛物线顶点.已知h =2 m ,s = 2 m .取重力加速度大小g =10 m/s 2.(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小. 解析:(1)一小环套在bc 段轨道运动时,与轨道之间无相互作用力,则说明下落到b 点时的速度,使得小环套做平抛运动的轨迹与轨道bc 重合,故有s =v b t ,h =12gt 2, 从ab 滑落过程中,根据机械能守恒定律可得mgR =12m v 2b ,联立三式可得R =s 24h =0.25 m. (2)环由b 处静止下滑过程中机械能守恒,设环下滑至c 点的速度大小为v ,有mgh =12m v 2 环在c 点的速度水平分量为v x =v cos θ式中,θ为环在c 点速度的方向与水平方向的夹角,由题意可知,环在c 点的速度方向和以初速度v b 做平抛运动的物体在c 点速度方向相同,而做平抛运动的物体末速度的水平分量为v x ′=v b ,竖直分量v y ′为v y ′=2gh 因为cos θ=v bv 2b +v y ′2 联立可得v x =2103 m/s.答案:(1)0.25 m (2)2103 m/s2-2.[与圆周运动相结合] (2016·全国卷Ⅱ)轻质弹簧原长为2l ,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l .现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5l 的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,如图所示.物块P 与AB 间的动摩擦因数μ=0.5.用外力推动物块P ,将弹簧压缩至长度l ,然后放开,P 开始沿轨道运动,重力加速度大小为g .(1)若P 的质量为m ,求P 到达B 点时速度的大小,以及它离开圆轨道后落回到AB 上的位置与B 点之间的距离;(2)若P 能滑上圆轨道,且仍能沿圆轨道滑下,求P 的质量的取值范围.解析:(1)依题意,当弹簧竖直放置,长度被压缩至l 时,质量为5m 的物体的动能为零,其重力势能转化为弹簧的弹性势能.由机械能守恒定律,弹簧长度为l 时的弹性势能为 E p =5mgl ①设P 的质量为M ,到达B 点时的速度大小为v B ,由能量守恒定律得 E p =12M v 2B +μMg ·4l ② 联立①②式,取M =m 并代入题给数据得 v B =6gl ③若P 能沿圆轨道运动到D 点,其到达D 点时的向心力不能小于重力,即P 此时的速度大小v 应满足 m v 2l -mg ≥0④设P 滑到D 点时的速度为v D ,由机械能守恒定律得 12m v 2B =12m v 2D +mg ·2l ⑤联立③⑤式得 v D =2gl ⑥v D 满足④式要求,故P 能运动到D 点,并从D 点以速度v D 水平射出.设P 落回到轨道AB 所需的时间为t ,由运动学公式得2l =12gt 2⑦P 落回到AB 上的位置与B 点之间的距离为 s =v D t ⑧ 联立⑥⑦⑧式得 s =22l ⑨(2)为使P 能滑上圆轨道,它到达B 点时的速度不能小于零.由①②式可知 5mgl >μMg ·4l ⑩要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C .由机械能守恒定律有 12M v 2B ≤Mgl ⑪ 联立①②⑩⑪式得 53m ≤M <52m .答案:(1)6gl 22l (2)53m ≤M <52m考点三 多个物体的机械能守恒 (自主学习)1.多物体机械能守恒问题的分析方法(1)对多个物体组成的系统要注意判断物体运动过程中,系统的机械能是否守恒. (2)注意寻找用绳或杆相连接的物体间的速度关系和位移关系. (3)列机械能守恒方程时,一般选用ΔE k =-ΔE p 的形式. 2.多物体机械能守恒问题的三点注意 (1)正确选取研究对象. (2)合理选取物理过程.(3)正确选取机械能守恒定律常用的表达形式列式求解.3-1.[弹簧连接] (2015·天津卷)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),则在圆环下滑到最大距离的过程中( )A.圆环的机械能守恒B.弹簧弹性势能变化了3mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变答案:B3-2.[轻杆连接](多选)(2015·全国卷Ⅱ)如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a、b可视为质点,重力加速度大小为g.则()A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg答案:BD3-3.[轻绳连接](多选)(2018·康杰中学模拟)如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d.现将小环从与定滑轮等高的A处由静止释放,当小环沿直杆下滑距离也为d时(图中B处),下列说法正确的是(重力加速度为g)()A.环与重物组成的系统机械能守恒B.小环到达B处时,重物上升的高度也为dC.小环在B处的速度与重物上升的速度大小之比等于2 2D.小环在B处时的速度为(3-22)gd解析:由于小环和重物只有重力做功,系统机械能守恒,故A项正确;结合几何关系可知,重物上升的高度h=(2-1)d,故B项错误;将小环在B处的速度分解为沿着绳子方向和垂直于绳子方向的两个分速度,其中沿着绳子方向的速度即为重物上升的速度,则v物=v环cos45°,环在B处的速度与重物上升的速度大小之比为2∶1 ,故C项错误;小环和重物系统机械能守恒,则mgd-2mgh=12m v2环+122m v2物,且v物=v环cos 45°,解得:v环=(3-22)gd,故D正确.答案:AD1. (2018·聊城一中检测)如右图所示,半径为R的光滑半圆轨道固定在竖直面内,半圆的圆心为O.将一只小球从半圆轨道左端无初速度释放,恰好能到达右端与圆心O等高的位置.若将该半圆轨道的右半边去掉,换上直径为R的光滑圆轨道,两个轨道在最低点平滑连接.换上的圆轨道所含圆心角如下图所示,依次为180°、120°、90°和60°.仍将小球从原半圆轨道左端无初速度释放,哪种情况下小球能上升到与O点等高的高度( C )解析:由能量守恒定律可知,小球若能上升到与O点等高的高度,则速度为零;图A中到达O点的速度至少为gr,则A错误;B中小球从轨道斜上抛后到达最高点的速度也不为零,则B错误;C图中小球从轨道上竖直上抛后,到达最高点的速度为零,则C正确;D图中小球从轨道斜上抛后到达最高点的速度也不为零,则D错误.2. (多选)(2019·阜阳三中模拟)一质量不计的直角形支架两端分别连接质量为m和2m的小球A和B.支架的两直角边长度分别为2l和l,支架可绕固定轴O在竖直平面内无摩擦转动,如图所示.开始时OA边处于水平位置.由静止释放,则( BC )A.A球的最大速度为2glB.A球的速度最大时,两小球的总重力势能最小C.A球第一次转动到与竖直方向的夹角为45°时,A球的速度为8(2-1)gl3D.A、B两球的最大速度之比v A∶v B=3∶1解析:由机械能守恒可知,A球的速度最大时,二者的动能最大,此时两球总重力势能最小,所以B正确;根据题意知两球的角速度相同,线速度之比为v A∶v B=ω·2l∶ω·l=2∶1,故D错误;当OA与竖直方向的夹角为θ时,由机械能守恒得:mg·2l cos θ-2mg·l(1-sin θ)=12m v2A+12·2m v2B,解得:v2A=83gl(sin θ+cos θ)-83gl,由数学知识知,当θ=45°时,sin θ+cos θ有最大值,最大值为:v A=8(2-1)gl3,所以A错误,C正确.3. (2018·海南矿区中学模拟)如图所示,质量m=50 kg的跳水运动员从距水面高h=10 m 的跳台上以v0=5 m/s 的速度斜向上起跳,最终落入水中.若忽略运动员的身高.取g =10m /s2,求:(1)运动员在跳台上时具有的重力势能(以水面为参考平面);(2)运动员起跳时的动能;(3)运动员入水时的速度大小.解析:(1)取水面为参考平面,人的重力势能是E p=mgh=5 000 J;(2)由动能的公式得:E k=12m v2=625 J;(3)在整个过程中,只有重力做功,机械能守恒mgh=12m v2-12m v2,解得v=15 m/s .答案:(1)5 000 J(2)625 J(3)15 m/s[A组·基础题]1. 如图所示为跳伞爱好者表演高楼跳伞的情形,他们从楼顶跳下后,在距地面一定高度处打开伞包,最终安全着陆,则跳伞者( A )A.机械能一直减小B.机械能一直增大C.动能一直减小D.重力势能一直增大2. 质量均为m,半径均为R的两个完全相同的小球A、B在水平轨道上以某一初速度向右冲上倾角为θ的倾斜轨道,两轨道通过一小段圆弧平滑连接.若两小球运动过程中始终接触,不计摩擦阻力及弯道处的能量损失,在倾斜轨道上运动到最高点时两球机械能的差值为( C )A.0B.mgR sin θC.2mgR sin θD.2mgR3. (2016·全国卷Ⅱ)小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放.在各自轨迹的最低点( C )A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度4.如图所示,在下列不同情形中将光滑小球以相同速率v射出,忽略空气阻力,结果只有一种情形小球不能到达天花板,则该情形是( B )A.A B.BC .CD .D5.(多选) 如图所示,一轻质弹簧竖直固定在水平地面上,O 点为弹簧原长时上端的位置,一个质量为m 的物体从O 点正上方的A 点由静止释放落到弹簧上,物体压缩弹簧到最低点B 后向上运动,不计空气阻力,不计物体与弹簧碰撞时的动能损失,弹簧一直在弹性限度范围内,重力加速度为g ,则以下说法正确的是( CD )A .物体落到O 点后,立即做减速运动B .物体从O 点运动到B 点,物体机械能守恒C .在整个过程中,物体与弹簧组成的系统机械能守恒D .物体在最低点时的加速度大于g6.(多选) (2019·景德镇一中月考)如图所示,一根不可伸长的轻绳两端各系一个小球a 和b ,跨在两根固定在同一高度的光滑水平细杆上,a 球置于地面上,质量为m 的b 球从水平位置静止释放.当b 球第一次经过最低点时,a 球对地面压力刚好为零.下列结论正确的是( BD )A .a 球的质量为2mB .a 球的质量为3mC .b 球首次摆动到最低点的过程中,重力对小球做功的功率一直增大D .b 球首次摆动到最低点的过程中,重力对b 球做功的功率先增大后减小解析:b 球在摆动过程中,a 球不动,b 球做圆周运动,则绳子拉力对b 球不做功,b 球的机械能守恒,则有:m b gL =12m b v 2;当b 球摆过的角度为90°时,a 球对地面压力刚好为零,说明此时绳子张力为:T =m a g ;b 通过最低点时,根据牛顿运动定律和向心力公式得:m a g -m b g =m b v 2L ,解得:m a =3m b ,故A 错误、B 正确.在开始时b 球的速度为零,则重力的瞬时功率为零;当到达最低点时,速度方向与重力垂直,则重力的功率也为零,可知b 球首次摆动到最低点的过程中,重力对b 球做功的功率先增大后减小,选项C 错误,D正确.7.(多选) 如图所示,某极限运动爱好者(可视为质点)尝试一种特殊的高空运动.他身系一定长度的弹性轻绳,从距水面高度大于弹性轻绳原长的P点以水平初速度v0跳出.他运动到图中a点时弹性轻绳刚好拉直,此时速度与竖直方向的夹角为θ,轻绳与竖直方向的夹角为β,b为运动过程的最低点(图中未画出),在他运动的整个过程中未触及水面,不计空气阻力,重力加速度为g.下列说法正确的是( BD )A.极限运动爱好者从P点到b点的运动过程中机械能守恒B.极限运动爱好者从P点到a点时间的表达式为t=v0 g tan θC.极限运动爱好者到达a点时,tan θ=tan βD.弹性轻绳原长的表达式为l=v20g sin β tan θ[B组·能力题]8.(多选) (2019哈尔滨六中月考)如图所示,在距水平地面高为0.4 m处,水平固定一根长直光滑杆,在杆上P点固定一光滑的轻质定滑轮,滑轮可绕水平轴无摩擦转动,在P 点的右边,杆上套有一质量m= 2 kg的滑块A.半径R=0.3 m的光滑半圆形细轨道竖直地固定在地面上,其圆心O在P点的正下方,在轨道上套有一质量m= 2 kg的小球B.用一条不可伸长的柔软细绳,通过定滑轮将小球与滑块连接起来.杆和半圆形轨道在同一竖直面内,滑块、小球均可看作质点,且不计滑轮大小的影响,取g=10m /s2.现给滑块A一个水平向右的恒力F=60 N,则( ABC )A.把小球B从地面拉到P的正下方时力F做功为24 JB.小球B运动到C处时滑块A的速度大小为0C.小球B被拉到与滑块A速度大小相等时,sin∠OPB=3 4D.把小球B从地面拉到P的正下方时小球B的机械能增加了6 J解析:设PO=H.由几何知识得,PB=H2+R2=0.42+0.32=0.5 m,PC=H-R=0.1 m.F 做的功为W=F(PB-PC)=40×(0.5-0.1)=24 J,A正确;当B球到达C处时,已无沿绳的分速度,所以此时滑块A的速度为零,选项B正确;当绳与轨道相切时滑块A与B球速度相等,由几何知识得:sin ∠OPB=RH=34,C正确.由功能关系,可知,把小球B从地面拉到半圆形轨道顶点C处时小球B的机械能增加量为ΔE=W=24 J,D错误.9.(多选) (2018·深圳宝安区联考)如图所示,一轻质弹簧固定在光滑杆的下端,弹簧的中心轴线与杆重合,杆与水平面间的夹角始终为60°,质量为m的小球套在杆上,从距离弹簧上端O点2x0的A点静止释放,将弹簧压至最低点B,压缩量为x0,不计空气阻力,重力加速度为g.下列说法正确的是( CD )A.小球从接触弹簧到将弹簧压至最低点B的过程中,其加速度一直减小B.小球运动过程中最大动能可能为mgx0C.弹簧劲度系数大于3mg 2x0D.弹簧最大弹性势能为332mgx0解析:小球从接触弹簧到将弹簧压至最低点B的过程中,弹簧对小球的弹力逐渐增大,开始时弹簧的弹力小于小球的重力沿杆向下的分力,小球做加速运动,随着弹力的增大,合力减小,加速度减小,后来,弹簧的弹力等于小球的重力沿杆向下的分力,最后,弹簧的弹力大于小球的重力沿杆向下的分力,随着弹力的增大,合力沿杆向上增大,则加速度增大,所以小球的加速度先减小后增大,A错误;小球滑到O点时的动能为E k=2mgx0 sin 60°=3mgx0,小球的合力为零时动能最大,此时弹簧处于压缩状态,位置在O点下方,所以小球运动过程中最大动能大于3mgx0,不可能为mgx0,B错误;在速度最大的位置有mg sin 60°=kx,得k=3mg2x,因为x<x0,所以k>3mg2x0,C正确;对小球从A到B的过程,对系统,由机械能守恒定律得:弹簧最大弹性势能E pm=3mgx0sin 60°=332mgx0,D正确.10.(多选) (2019·江西丰城九中段考)如图所示,竖直面内半径为R的光滑半圆形轨道与水平光滑轨道相切于D点.a、b、c三个质量相同的物体由水平部分分别向半环滑去,最后重新落回到水平面上时的落点到切点D的距离依次为AD<2R,BD=2R,CD>2R.设三个物体离开半圆形轨道在空中飞行时间依次为t a、t b、t c,三个物体到达地面的动能分别为E a、E b、E c,则下面判断正确的是( AC )A.E a<E b B.E b>E cC.t b=t c D.t a=t b解析:物体若从圆环最高点离开半环在空中做平抛运动,竖直方向上做自由落体运动,则有:2R=12gt2,则得:t=4Rg,物体恰好到达圆环最高点时,有:mg=m v2R,则通过圆轨道最高点时最小速度为:v=gR,所以物体从圆环最高点离开后平抛运动的水平位移最小值为:x=v t=2R,由题知:AD<2R,BD=2R,CD>2R,说明b、c通过最高点做平抛运动,a没有到达最高点,则知t b=t c=4Rg,t a≠t b=t c;对于a、b两物块,通过D点时,a的速度比b的小,由机械能守恒可得:E a<E b.对于b、c两物块,由x=v t 知,t相同,c的水平位移大,通过圆轨道最高点时的速度大,由机械能守恒定律可知,E c>E b,故选项A、C正确.11. 如图所示,在同一竖直平面内,一轻质弹簧一端固定,另一自由端恰好与水平线AB 平齐,静止放于倾角为53°的光滑斜面上.一长为L=9 cm的轻质细绳一端固定在O点,另一端系一质量为m=1 kg的小球,将细绳拉至水平,使小球从位置C由静止释放,小球到达最低点D时,细绳刚好被拉断.之后小球在运动过程中恰好沿斜面方向将弹簧压缩,最大压缩量为x=5 cm.(g取10 m/s2,sin 53°=0.8,cos 53°=0.6)求:(1)细绳受到的拉力的最大值;(2)D点到水平线AB的高度h;(3)弹簧所获得的最大弹性势能E p.解析:(1)小球由C 到D ,由机械能守恒定律得mgL =12m v 21解得v 1=2gL ①在D 点,由牛顿第二定律得F -mg =m v 21L ②由①②解得F =30 N由牛顿第三定律知细绳所能承受的最大拉力为30 N.(2)由D 到A ,小球做平抛运动有v 2y =2gh ③tan 53°=v y v 1④ 联立解得h =16 cm.(3)小球从C 点到将弹簧压缩至最短的过程中,小球与弹簧系统的机械能守恒,即E p =mg (L +h +x sin 53°),代入数据解得E p =2.9 J.答案:(1)30 N (2)16 cm (3)2.9 J。
高考物理一轮复习第五章实验五验证机械能守恒定律讲义

验证机械能守恒定律一、实验目的验证机械能守恒定律。
二、实验器材铁架台(含铁夹)、打点计时器、学生电源(交流4~6 V)、纸带(数条)、复写纸、导线、毫米刻度尺、重物(带纸带夹)。
突破点(一) 实验原理与操作[例1] 在利用自由落体运动验证机械能守恒定律的实验中,电源的频率为50 Hz ,依次打出的点为0,1,2,3,4,…,n 。
则:(1)如用第2点到第6点之间的纸带来验证,必须直接测量的物理量为____________、____________、____________,必须计算出的物理量为____________、____________,验证的表达式为____________________。
(2)下列实验步骤操作合理的排列顺序是______(填写步骤前面的字母)。
A .将打点计时器竖直安装在铁架台上B .接通电源,再松开纸带,让重物自由下落C .取下纸带,更换新纸带(或将纸带翻个面)重新做实验D .将重物固定在纸带的一端,让纸带穿过打点计时器,用手提着纸带E .选择一条纸带,用刻度尺测出物体下落的高度h 1,h 2,h 3,…,h n ,计算出对应的瞬时速度v 1,v 2,v 3,…,v nF .分别算出12mv n 2和mgh n ,在实验误差允许的范围内看是否相等 [答案] (1)第2点到第6点之间的距离h 26第1点到第3点之间的距离h 13 第5点到第7点之间的距离h 57第2点的瞬时速度v 2 第6点的瞬时速度v 6mgh 26=12mv 62-12mv 22 (2)ADBCEF[由题引知·要点谨记]1.实验原理的理解[对应第1题] 1两种验证方法①利用起始点和第n 点计算。
代入gh n 和12v n 2,如果在实验误差允许的条件下,gh n =12v n 2,则能验证机械能守恒定律。
②任取两点计算A 、B ,测出h AB ,算出gh AB 。
b.算出12v B 2-12v A 2的值。
第五章第3讲机械能守恒定律-2025年高考物理一轮复习PPT课件

答案
高考一轮总复习•物理
第13页
解析:当重力和弹簧弹力大小相等时,小球速度最大,此时加速度为零,选项 A、B 错 误;小球、地球、弹簧所组成的系统在此过程中只有重力和弹簧弹力做功,机械能守恒,选 项 C 正确;小球的机械能指动能与重力势能之和,从 A 到 B 过程中,弹力做正功,机械能增 加,脱离弹簧后,小球只受重力,机械能守恒,选项 D 正确.
转化法 与其他形式能的转化,则机械能守恒
高考一轮总复习•物理
第19页
典例 1 (2024·广东广州五地六校模拟)如图所示为“反向蹦极”运动简化示意图.假设 弹性轻绳的上端固定在 O 点,拉长后将下端固定在体验者身上,并通过扣环和地面固定, 打开扣环,人从 A 点静止释放,沿竖直方向经 B 点上升到最高位置 C 点,在 B 点时速度最 大.不计空气阻力,则下列说法正确的是( )
从 A→O:W 弹>0,Ep↓;从 O→B:W 弹<0,Ep↑
高考一轮总复习•物理
第9页
三、机械能守恒定律 1.机械能:动能 和 势能 统称为机械能,其中势能包括 弹性势能 和 重力势能 .
2.机械能守恒定律
(1)内容:在只有 重力或弹力 的机械能 保持不变 .
做功的物体系统内,动能与势能可以相互转化,而总
A.初速度 v0 越小,ΔF 越大 B.初速度 v0 越大,ΔF 越大 C.绳长 l 越长,ΔF 越大 D.小球的质量 m 越大,ΔF 越大
高考一轮总复习•物理
第8页
2.弹力做功与弹性势能变化的关系
(1)弹力做功与弹性势能变化的关系类似于重力做功与重力势能变化的关系,用公式表
示:W= Ep1-Ep2
.
(2)对于弹性势能,一般物体的弹性形变量越大,弹性势能 越大 .
2021届高考物理一轮复习方略关键能力·题型突破: 5.3 机械能守恒定律及其应用

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
关键能力·题型突破考点一机械能守恒条件的判断1.在如图所示的物理过程示意图中,甲图为一端固定有小球的轻杆,从右偏上30°角释放后绕光滑支点摆动;乙图为末端固定有小球的轻质直角架,释放后绕直角顶点的固定轴O无摩擦转动;丙图为置于光滑水平面上的A、B两小车,B静止,A获得一向右的初速度后向右运动,某时刻连接两车的细绳绷紧,然后带动B车运动;丁图为置于光滑水平面上的带有竖直支架的小车,把用细绳悬挂的小球从图示位置释放,小球开始摆动。
则关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是( )A.甲图中小球机械能守恒B.乙图中小球A的机械能守恒C.丙图中两车组成的系统机械能守恒D.丁图中小球的机械能守恒【解析】选A。
甲图过程中轻杆对小球不做功,小球的机械能守恒;乙图过程中A、B两球通过杆相互影响(例如开始时A球带动B球转动),轻杆对A的弹力不沿杆的方向,会对小球做功,所以每个小球的机械能不守恒,但把两个小球作为一个系统时机械能守恒;丙图中绳子绷紧的过程虽然只有弹力作为内力做功,但弹力突变有内能转化,机械能不守恒;丁图过程中细绳也会拉动小车运动,取地面为参考系,小球的轨迹不是圆弧,细绳会对小球做功,小球的机械能不守恒,把小球和小车当作一个系统,机械能才守恒。
2.(2020·大兴区模拟)根据生活经验可知,处于自然状态的水都是往低处流的,当水不再流动时,水面应该处于同一高度。
在著名的牛顿“水桶实验”中发现:将一桶水绕竖直固定中心转轴OO′以恒定的角速度转动,稳定时水面呈凹状,水桶截面如图所示。
这一现象可解释为,以桶为参考系,其中的水除受重力外,还受到一个与转轴垂直的“力”,其方向背离转轴,大小与到轴的垂直距离成正比。
水面上的一个小水滴在该“力”作用下也具有一个对应的“势能”,在重力和该“力”的共同作用下,水面上相同质量的小水滴最终将具有相同的总势能。
高考物理第一轮复习限时规范训练:机械能守恒定律及其应用(解析版)

一轮复习限时规范训练机械能守恒定律及其应用一、选择题:在每小题给出的四个选项中,第1~4题只有一项符合题目要求,第5~7题有多项符合题目要求.1、关于机械能守恒,下列说法中正确的是( )A.物体做匀速运动,其机械能肯定守恒B.物体所受合力不为零,其机械能肯定不守恒C.物体所受合力做功不为零,其机械能肯定不守恒D.物体沿竖直方向向下做加速度为5 m/s2的匀加速运动,其机械能削减答案:D解析:物体做匀速运动其动能不变,但机械能可能变,如物体匀速上升或下降,机械能会相应的增加或削减,选项A错误;物体仅受重力作用,只有重力做功,或受其他力但其他力不做功或做功的代数和为零时,物体的机械能守恒,选项B、C错误;物体沿竖直方向向下做加速度为5 m/s2的匀加速运动时,物体肯定受到一个与运动方向相反的力的作用,此力对物体做负功,物体的机械能削减,故选项D正确.2.如图所示,表面光滑的固定斜面顶端安装肯定滑轮,小物块A,B 用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A,B处于同一高度并恰好处于静止状态.剪断轻绳后A下落、B沿斜面下滑,则从剪断轻绳到物块着地,两物块( )A.速率的改变量不同B.机械能的改变量不同C.重力势能的改变量相同D.重力做功的平均功率相同答案:D解析:由题意依据力的平衡有m A g=m B g sin θ,所以m A=m B sin θ.依据机械能守恒定律mgh=12mv2,得v=2gh,所以两物块落地速率相等,选项A错误;因为两物块的机械能守恒,所以两物块的机械能改变量都为零,选项B错误;依据重力做功与重力势能改变的关系,重力势能的改变为ΔE p=-W G=-mgh,所以E p A=m A gh=m B gh sin θ,E p B=m B gh,选项C错误;因为A、B两物块都做匀变速运动,所以A重力的平均功率为P A=m A g·v2,B重力的平均功率P B=m B g·v2sin θ,因为m A=m B sin θ,所以PA=P B,选项D正确.3.静止在地面上的物体在竖直向上的恒力作用下上升,在某一高度撤去恒力.不计空气阻力,在整个上升过程中,物体机械能随时间改变关系是( )A B C D答案:C解析:物体受恒力加速上升时,恒力做正功,物体的机械能增大,又因为恒力做功为W=F·12at2,与时间成二次函数关系,选项A、B两项错误;撤去恒力后,物体只受重力作用,所以机械能守恒,D项错误,C项正确.4.如图所示,粗细匀称、两端开口的U形管内装有同种液体,起先时两边液面高度差为h,管中液柱总长度为4h,后来让液体自由流淌,当两液面高度相等时,右侧液面下降的速度为( )A.18gh B.16ghC.14gh D.12gh答案:A解析:设管子的横截面积为S ,液体的密度为ρ.打开阀门后,液体起先运动,不计液体产生的摩擦阻力,液体机械能守恒,液体削减的重力势能转化为动能,两边液面相平常,相当于右管12h 高的液体移到左管中,重心下降的高度为12h ,由机械能守恒定律得ρ·12hS ·g ·12h =12ρ·4hS ·v 2,解得,v =gh8.选项A 正确.5.如图所示,一质量为m 的小球套在光滑竖直杆上,轻质弹簧一端固定于O 点,另一端与该小球相连.现将小球从A 点由静止释放,沿竖直杆运动到B 点,已知OA 长度小于OB 长度,弹簧处于OA ,OB 两位置时弹力大小相等.在小球由A 到B 的过程中( )A .加速度等于重力加速度g 的位置有两个B .弹簧弹力的功率为零的位置有两个C .弹簧弹力对小球所做的正功等于小球克服弹簧弹力所做的功D .弹簧弹力做正功过程中小球运动的距离等于小球克服弹簧弹力做功过程中小球运动的距离答案:AC解析:在运动过程中A 点为压缩状态,B 点为伸长状态,则由A 到B 有一状态弹力为0且此时弹力与杆不垂直,加速度为g ;当弹簧与杆垂直时小球加速度为g .则有两处加速度为g ,故A 项正确;在A 点速度为零,弹簧弹力功率为0,弹簧与杆垂直时弹力的功率为0,有一位置的弹力为0,其功率为0,共3处,故B 项错误;因A 点与B 点弹簧的弹性势能相同,则弹簧弹力对小球所做的正功等于小球克服弹簧弹力所做的功,故C 项正确;因小球对弹簧做负功时弹力大,则弹簧弹力做正功过程中小球运动的距离大于小球克服弹簧弹力做功过程中小球运动的距离,故D 项错误.6.如图所示,滑块A ,B 的质量均为m ,A 套在固定竖直杆上,A ,B 通过转轴用长度为L 的刚性轻杆连接,B 放在水平面上并紧靠竖直杆,A ,B均静止.由于微小扰动,B起先沿水平面对右运动.不计一切摩擦,滑块A,B视为质点.在A下滑的过程中,下列说法中正确的是( ) A.A,B组成的系统机械能守恒B.在A落地之前轻杆对B始终做正功C.A运动到最低点时的速度为2gLD.当A的机械能最小时,B对水平地面的压力大小为2mg答案:AC解析:A,B组成的系统中只有动能和势能相互转化,故A、B组成的系统机械能守恒,选项A正确;分析B的受力状况和运动状况:B先受到竖直杆向右的推力,使其向右做加速运动,当B的速度达到肯定值时,杆对B有向左的拉力作用,使B向右做减速运动,当A落地时,B的速度减小为零,所以杆对B先做正功,后做负功,选项B错误;由于A、B组成的系统机械能守恒,且A到达最低点时B的速度为零,依据机械能守恒定律可知选项C正确;B先做加速运动后做减速运动,当B的速度最大时其加速度为零,此时杆的弹力为零,故B对水平面的压力大小为mg,由于A、B组成的系统机械能守恒,故此时A机械能最小,选项D错误.7.如图所示,A,B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B,C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手限制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直,右侧细线与斜面平行.已知A的质量为4m,B,C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,起先时整个系统处于静止状态.释放A后,A沿斜面下滑至速度最大时C 恰好离开地面.下列说法错误的是( )A.斜面倾角α=60°B.A获得的最大速度为2g m 5kC.C刚离开地面时,B的加速度最大D .从释放A 到C 刚离开地面的过程中,A ,B 两小球组成的系统机械能守恒答案:ACD解析:释放A 后,A 沿斜面下滑至速度最大时C 恰好离开地面,此时细线中拉力等于4mg sin α,弹簧的弹力等于mg ,则有4mg sin α=mg +mg ,解得斜面倾角α=30°,选项A 错误;释放A 前,弹簧的压缩量为x =mg k ,A 沿斜面下滑至速度最大时弹簧的伸长量为x ′=mg k,由机械能守恒定律得4mg ·2x sin α-mg ·2x =12·4mv 2+12mv 2,解得A 获得的最大速度为v =2g m 5k,选项B 正确;C 刚离开地面时,B 的加速度为零,选项C 错误;从释放A 到C 刚离开地面的过程中,A ,B 两小球、地球、弹簧组成的系统机械能守恒,选项D 错误.二、非选择题8.如图所示,跨过同一高度处的定滑轮的细线连接着质量相同的物体A 和B ,A 套在光滑水平杆上,定滑轮离水平杆的高度h =0.2 m ,起先时让连着A 的细线与水平杆的夹角θ1=37°,由静止释放B ,当细线与水平杆的夹角θ2=53°时,A 的速度为多大?在以后的运动过程中,A 所获得的最大速度为多大?(设B 不会遇到水平杆,sin 37°=0.6,sin 53°=0.8,取g =10 m/s 2) 解:设绳与水平杆夹角θ2=53°时,A 的速度为v A ,B 的速度为v B ,此过程中B 下降的高度为h 1,则有mgh 1=12mv 2A +12mv 2B ,其中h 1=h sin θ1-hsin θ2,v A cos θ2=v B ,代入数据,解以上关系式得v A ≈1.1 m/s.A 沿着杆滑到左侧滑轮正下方的过程,绳子拉力对A 做正功,A 做加速运动,此后绳子拉力对A 做负功,A 做减速运动.故当θ1=90°时,A 的速度最大,设为v A m ,此时B 下降到最低点,B 的速度为零,此过程中B 下降的高度为h 2,则有mgh 2=12mv 2A m ,其中h 2=h sin θ1-h ,代入数据解得v A m =1.63 m/s. 9.如图所示,水平地面与一半径为l 的竖直光滑圆弧轨道相接于B 点,轨道上的C 点位置处于圆心O 的正下方.在距地面高度为l 的水平平台边缘上的A 点,质量为m 的小球以v 0=2gl 的速度水平飞出,小球在空中运动至B 点时,恰好沿圆弧轨道在该点的切线方向滑入轨道.小球运动过程中空气阻力不计,重力加速度为g ,试求:(1)B 点与抛出点A 正下方的水平距离x ;(2)圆弧BC 段所对的圆心角θ;(3)小球滑到C 点时,对圆轨道的压力.解:(1)设小球做平抛运动到达B 点的时间为t ,由平抛运动规律得l =12gt 2,x =v 0t 联立解得x =2l .(2)由小球到达B 点时竖直分速度v 2y =2gl ,tan θ=v y v 0,解得θ=45°. (3)小球从A 运动到C 点的过程中机械能守恒,设到达C 点时速度大小为v C ,由机械能守恒定律有mgl ⎝ ⎛⎭⎪⎪⎫1+1-22=12mv 2C -12mv 20 设轨道对小球的支持力为F ,有F -mg =m v 2C l解得F =(7-2)mg由牛顿第三定律可知,小球对圆轨道的压力大小为F ′=(7-2)mg ,方向竖直向下.10.如图所示,在竖直空间有直角坐标系xOy ,其中x 轴水平,一长为2l 的细绳一端系一小球,另一端固定在y 轴上的P 点,P 点坐标为(0,l ),将小球拉至细绳呈水平状态,然后由静止释放小球,若小钉可在x 正半轴上移动,细绳承受的最大拉力为9mg ,为使小球下落后可绕钉子在竖直平面内做圆周运动到最高点,求钉子的坐标范围.解:当小球恰过圆周运动的最高点时,钉子在x 轴正半轴的最左侧,则有mg =m v 21r 1 小球由静止到圆周的最高点这一过程,依据机械能守恒定律有mg (l -r 1)=12mv 21 x 1=2l -r 12-l 2解得x 1=73l 当小球处于圆周的最低点,且细绳张力恰达到最大值时,钉子在x 轴正半轴的最右侧,则有F max -mg =m v 22r 2小球由静止到圆周的最低点这一过程,依据机械能守恒定律有 mg (l +r 2)=12mv 22x 2=2l -r 22-l 2解得x 2=43l 因而钉子在x 轴正半轴上的范围为73l ≤x ≤43l .。
2021年高考物理一轮复习:机械能守恒定律(附答案解析)

2021年高考物理一轮复习:机械能守恒定律考点一机械能守恒的理解和判断1.重力势能(1)重力做功的特点①重力做功与__路径__无关,只与始末位置的__高度差__有关.②重力做功不引起物体__机械能__的变化.(2)重力势能①概念:物体由于__被举高__而具有的能.②表达式:E p=__mgh__.③标矢性:重力势能是__标量__,正、负分别表示比0值大、比0值小.④系统性:重力势能是__物体和地球__这一系统所共有的.⑤相对性:E p=mgh中的h是__相对于零势能面__的高度.(3)重力做功与重力势能变化的关系①定性关系:重力对物体做正功,重力势能就__减少__;重力对物体做负功,重力势能就__增加__.②定量关系:重力对物体做的功__等于__物体重力势能增量的负值,即W G=-ΔE p=-(E p2-E p1)=E p1-E p2.③重力势能的变化量是绝对的,与零势能面的选择无关.2.弹性势能(1)概念:物体由于发生__弹性形变__而具有的能.(2)大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量__越大__,劲度系数__越大__,弹簧的弹性势能越大.(3)弹力做功与弹性势能变化的关系类似于重力做功与重力势能变化的关系,用公式表示:W=__-ΔE p__.3.机械能守恒定律(1)__势能__和__动能__统称为机械能,即E=E k+E p,其中势能包括__重力势能__和__弹性势能__.(2)机械能守恒定律内容:在只有__重力(或弹簧弹力)__做功的物体系统内,动能与势能可以相互转化,而总的机械能__保持不变__.【理解巩固1】判断下列说法的正误.(1)重力势能的变化与零势能参考面的选取无关.()(2)被举到高处的物体重力势能一定不为零.()(3)克服重力做功,物体的重力势能一定增加.()(4)发生弹性形变的物体都具有弹性势能.()(5)弹力做正功弹性势能一定增加.()(6)物体所受的合外力为零,物体的机械能一定守恒.()(7)物体的速度增大时,其机械能可能减小.()[答案] (1)√(2)×(3)√(4)√(5)×(6)×(7)√1(多选)如图所示,一轻弹簧一端固定在O点,另一端系一小球,将小球从与悬点O在同一水平面且使弹簧保持原长的A点无初速度释放,让小球自由摆下.不计空气阻力.在小球由A点摆向最低点B的过程中,下列说法正确的是() A.小球的机械能守恒B.小球的机械能减少C.小球的重力势能与弹簧的弹性势能之和不变D.小球和弹簧组成的系统机械能守恒[解析] 小球由A点下摆到B点的过程中,弹簧被拉长,弹簧的弹力对小球做了负功,所以小球的机械能减少,故选项A错误,B正确;在此过程中,由于有重力和弹簧的弹力做功,所以小球与弹簧组成的系统机械能守恒,即小球减少的重力势能等于小球获得的动能与弹簧增加的弹性势能之和,故选项C错误,D正确.[答案] BD判断机械能是否守恒的方法(1)利用机械能的定义判断:分析动能与势能的和是否变化.如:匀速下落的物体动能不变,重力势能减少,物体的机械能必减少.(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,机械能守恒.(3)用能量转化来判断:若系统中只有动能和势能的相互转化,而无机械能与其他形式的能的转化,则系统的机械能守恒.(4)对一些绳子突然绷紧、物体间非弹性碰撞等问题机械能一般不守恒,除非题中有特别说明或暗示.)考点二 单物体机械能守恒问题对应学生用书p 99机械能守恒定律的表达式及对比【理解巩固2】 (多选)一光滑、绝缘的半球壳固定在绝缘水平面上,球壳半径为R ,在球心O 处固定一个带正电的点电荷,一个带负电荷的小物块(可视为质点)静止在球壳的顶端A.现小物块受到轻微扰动从右侧下滑,已知物块静止在A 点时对球壳的压力大小是物块重力大小的2倍,P 点在球面上,则( )A .物块沿球面运动的过程中机械能增大B .物块沿球面运动的过程中机械能不变C .若物块恰好在P 点离开球面,则物块的速度大小为233gR D .若物块恰好在P 点离开球面,则物块的速度大小为136gR [解析] 物块沿球面运动的过程中,库仑力和支持力沿球半径方向不做功,只有重力做功,则物块的机械能不变,选项A 错误,B 正确;设OP 与竖直方向夹角为θ,则当物块将要离开球面时所受球面的支持力为零,则由牛顿第二定律有F 库+mg cos θ=m v 2R ,因物块在最高点时对球壳的压力大小是物块重力大小的2倍,可知F 库=mg ,由机械能守恒定律得mgR(1-cos θ)=12mv 2,联立解得v =233gR ,选项C 正确,D 错误. [答案] BC对应学生用书p 992 如图,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为R 2.一小球在A 点正上方与A 相距R 4处由静止开始自由下落,经A 点沿圆弧轨道运动.(1)求小球在B 、A 两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C 点.[解析] (1)设小球的质量为m ,小球在A 点的动能为E k A ,由机械能守恒定律得E k A =mg R 4①设小球在B 点的动能为E k B ,同理有E k B =mg5R 4② 由①②式得 E k B E k A =5③ (2)若小球能沿轨道运动到C 点,则小球在C 点所受轨道的压力N 应满足N ≥0④设小球在C 点的速度大小为v C ,由牛顿第二定律和向心加速度公式有N +mg =m v 2C R2⑤ 由④⑤式得,v C 应满足mg ≤m 2v 2C R⑥ 由机械能守恒定律得mg R 4=12mv 2C⑦ 由⑥⑦式可知,小球恰好可以沿轨道运动到C 点.考点三 多物体机械能守恒问题对应学生用书p 1001.多物体机械能守恒问题的分析方法(1)对多个物体组成的系统先要判断物体运动过程中,系统的机械能是否守恒;(2)找出用绳或杆相连接的物体间的速度关系和位移关系;(3)列机械能守恒方程时一般运用ΔE k =-ΔE p 的形式.2.多物体机械能守恒问题的三点注意(1)正确选取研究对象;(2)合理选取物理过程;(3)正确选取机械能守恒定律常用的表达形式列式计算.【理解巩固3】 (多选)如图所示,物体A 、B 通过细绳及轻质弹簧连接在轻滑轮两侧,物体A 、B 的质量都为m.现用手托着物体A 使弹簧处于原长,细绳刚好竖直伸直,A 与地面的距离为h ,物体B 静止在地面上.放手后物体A 下落,与地面即将接触时速度大小为v ,此时物体B 对地面恰好无压力.若物体A 落地后不反弹.则下列说法中正确的是( )A .弹簧的劲度系数为mg hB .A 落地时弹簧的弹性势能等于mgh -12mv 2 C .与地面即将接触时A 的加速度大小为g ,方向竖直向上D .物体A 落地后B 能上升到的最大高度为h[解析] 由题意可知,此时弹簧所受的拉力大小等于B 的重力,即F =mg ,弹簧伸长的长度为x =h ,由F =kx 得,k =mg h,故A 正确.A 与弹簧组成的系统机械能守恒,则有:mgh =12mv 2+E p ,则弹簧的弹性势能:E p =mgh -12mv 2,故B 错误.根据牛顿第二定律,对A 有:F -mg =ma ,得a =0,故C 错误.物体A 落地后,物体B 对地面恰好无压力,此时B 的速度恰好为零,即B 静止不动,故D 错误.[答案] AB对应学生用书p 100机械能守恒定律在连接体问题中的应用3 (多选)用轻杆通过铰链相连的小球A 、B 、C 、D 、E 处于竖直平面上,各段轻杆等长,其中小球A 、B 的质量均为2m ,小球C 、D 、E 的质量均为m.现将A 、B 两小球置于距地面高h 处,由静止释放,假设所有球只在同一竖直平面内运动,不计一切摩擦,则在下落过程中( )A .小球A 、B 、C 、D 、E 组成的系统机械能不守恒B .小球B 的机械能一直减小C .小球B 落地的速度大小为2ghD .当小球A 的机械能最小时,地面对小球C 的支持力大小为mg[解析] 小球A 、B 、C 、D 、E 组成的系统机械能守恒,故A 错误;由于D 球受力平衡,所以D 球在整个过程中不会动,所以轻杆DB 对B 不做功,而轻杆BE 对B 先做负功后做正功,所以小球B 的机械能先减小后增加,故B 错误;当B 落地时小球E 的速度等于零,根据功能关系mgh =12mv 2可知小球B 的速度为2gh ,故C 正确;当小球A 的机械能最小时,轻杆AC 没有力,小球C 竖直方向上的力平衡,所以支持力等于重力,故D 正确,故选CD .[答案] CD机械能守恒定律在涉及弹簧问题中的应用4 (多选)如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力.图中SD 水平,位置R 和Q 关于S 对称.现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大.下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos θ2[审题指导] 根据除重力外其他力做功影响机械能变化来判断机械能的变化情况.根据物块A 和小环C 在Q 点的速度关系以及机械能守恒定律可以求得A 、C 的动能之比.[解析] 在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,故A 正确;小环C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,故B 正确;由于小环从R 到S 过程中,小环的机械能一直增大,所以AB 弹簧组成的系统机械能减小,由于A 的机械能增大,所以弹簧的弹性势能减小,小环从S 到Q 过程中,小环的机械能减小,AB 弹簧组成的系统机械能增大,A 的机械能不一定减小,所以弹性势能不一定增大,故C 错误;在Q 点将小环速度分解可知v A =v cos θ,在Q 点小环C 受力平衡:m c g =22m A g cos θ,根据动能E k =12mv 2可知,物体A 与小环C 的动能之比为cos θ2,故D 正确. [答案] ABD, 1.用机械能守恒定律解题的基本思路2.系统机械能守恒时,内部的相互作用力分为两类:(1)刚体产生的弹力:如轻绳产生的弹力,斜面产生的弹力,轻杆产生的弹力等.(2)弹簧产生的弹力:系统中有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转化.在前两种情况中,轻绳的拉力、斜面的弹力、轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能守恒.虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒.3.对系统应用机械能守恒定律列方程的角度:(1)系统初态的机械能等于末态的机械能;(2)系统中某些物体减少的机械能等于其他物体增加的机械能.)。
(浙江选考)版高考物理一轮复习 第五章 机械能及其守恒定律 第1节 功和功率达标检测(含解析)-人教

第1节 功和功率 1.(2017·11月浙江选考)如下列图,质量为60 kg 的某运动员在做俯卧撑运动,运动过程中可将她的身体视为一根直棒.重心在c点,其垂线与脚、两手连线中点间的距离Oa 、Ob 分别为0.9 m 和0.6m .假设她在1 min 内做了30个俯卧撑,每次肩部上升的距离均为0.4 m ,如此抑制重力做的功和相应的功率约为( )A .430 J ,7 WB .4 300 J ,70 WC .720 J ,12 WD .7 200 J ,120 W 答案:B2.质量为m 的汽车,启动后沿平直路面行驶,如果发动机的功率恒为P ,且行驶过程中受到的摩擦阻力大小一定,汽车能够达到最大速度为v ,那么当汽车的速度为13v 时,汽车的瞬时加速度的大小为( )A.P mvB.2P mvC.3P mvD.4P mv解析:选B.以恒定功率起步的机车,因P =Fv ,v 逐渐增大,F 逐渐减小,即牵引力逐渐减小,所以机车做加速度逐渐减小的加速运动,当牵引力等于阻力时,不再加速,速度达到最大,可知阻力为f =F =P v ,如此当速度为13v 时,可求得牵引力F ′=P 13v =3P v ,如此此时的加速度为a =F ′-f m =2P mv,故此题的正确选项为B. 3.当前我国“高铁〞事业开展迅猛,假设一辆高速列车在机车牵引力和恒定阻力作用下,在水平轨道上由静止开始启动,其v -t 图象如下列图,0~t 1时间内为过原点的倾斜直线,t 1时刻达到额定功率P ,此后保持功率P不变,在t 3时刻达到最大速度v 3,以后匀速运动.如下判断正确的答案是( )A .从0至t 3时间内,列车一直做匀加速直线运动B .t 2时刻的加速度大于t 1时刻的加速度C .在t 3时刻以后,机车的牵引力为零D .该列车所受的恒定阻力大小为P v 3解析:选D.0~t 1时间内,列车做匀加速运动,t 1~t 3时间内,加速度逐渐变小,故A 、B 错误;t 3以后列车做匀速运动,牵引力大小等于阻力大小,故C 错误;匀速运动时F f =F牵=Pv3,故D正确.4.(2017·11月浙江选考)如下列图是具有登高平台的消防车,具有一定质量的伸缩臂能够在5 min内使承载4人的登高平台(人连同平台的总质量为400 kg)上升60 m到达灭火位置.此后,在登高平台上的消防员用水炮灭火,水炮的出水量为3 m3/min,水离开炮口时的速率为20 m/s,如此用于( )A.水炮工作的发动机输出功率约为1×104 WB.水炮工作的发动机输出功率约为4×104 WC.水炮工作的发动机输出功率约为2.4×106 WD.伸缩臂抬升登高平台的发动机输出功率约为800 W答案:B[课后达标]一、选择题1.一辆汽车在平直公路上从静止开始运动,假设汽车的功率保持不变,所受的阻力恒定,如此如下说法正确的答案是( )A.汽车一直做匀加速运动B.汽车先匀加速运动,后匀速运动C.汽车先匀加速运动,后匀减速运动直至静止D.汽车做加速度越来越小的加速运动,直至匀速运动答案:D2.设飞机飞行中所受阻力与其速度的平方成正比,假设飞机以速度v匀速飞行,其发动机功率为P,如此飞机以3v匀速飞行时,其发动机的功率为( )A.3P B.9PC.27P D.无法确定答案:C3.(2020·湖州质检)如下列图,细线的一端固定于O点,另一端系一小球,在水平拉力作用下,小球以恒定速率在竖直平面内由A点运动到B点,在此过程中拉力的瞬时功率变化情况是( )A.逐渐增大B.逐渐减小C.先增大,后减小D.先减小,后增大答案:A4.如下列图,木板可绕固定水平轴O 转动.木板从水平位置OA 缓慢转到OB 位置,木板上的物块始终相对于木板静止.在这一过程中,物块的重力势能增加了2 J .用F N 表示物块受到的支持力,用F f 表示物块受到的摩擦力.在此过程中,以下判断正确的答案是( )A .F N 和F f 对物块都不做功B .F N 对物块做功为2 J ,F f 对物块不做功C .F N 对物块不做功,F f 对物块做功为2 JD .F N 和F f 对物块所做功的代数和为0答案:B5.中国已成为世界上高铁运营里程最长、在建规模最大的国家.报道称,新一代高速列车正常持续运行牵引功率达 9 000 kW ,速度为300 km/h.假设一列高速列车从杭州到金华运行路程为150 km ,如此( )A .列车从杭州到金华在动力上消耗的电能约为9 000 kW ·hB .列车正常持续运行时的阻力大小约为105NC .如果该列车以150 km/h 运动,如此牵引功率为4 500 kWD .假设从杭州到金华阻力大小不变,如此列车抑制阻力做功大小等于阻力与位移的乘积解析:选B.根据题意,不知道该列车运行时间,所以无法求出杭州到金华列车消耗的电能,A 错误;根据P =Fv 可知,F =1.08×105 N ,B 正确;列车的瞬时速度为150 km/h ,但不能确定是匀速运动还是其他运动,所以不能确定牵引功率,C 错误;假设阻力大小不变,如此抑制阻力做功应该为阻力大小与其路程的乘积,D 错误.6.(2020·丽水高三期中)如下列图为牵引力F 和车速的倒数1v的关系图象,假设汽车质量为2×103kg ,它由静止开始沿平直的公路行驶,设阻力恒定且最大车速为30 m/s ,如此( )A .汽车所受的阻力为6×103NB .汽车的速度为15 m/s 时,功率为6×104 WC .汽车匀加速运动的加速度为3 m/s 2D .汽车匀加速所需的时间为7.5 s答案:B7.(2020·温州乐清期中)塔吊吊起货物沿竖直方向匀速上升过程中,钢丝绳对货物的拉力与其功率变化说法正确的答案是( )A .拉力增大,功率不变B .拉力不变,功率变大C .拉力减小,功率变大D .拉力不变,功率不变解析:选D.因为货物匀速上升,知F =mg ,如此拉力不变,根据P =Fv 知,拉力功率不变.故D 正确,A 、B 、C 错误.8.“激流勇进〞是一种常见的水上机动游乐设备,常见于主题游乐园中.游客们在一定安全装置的束缚下,沿着设计好的水道漂行.其间通常会有至少一次大幅度的机械提升和瞬时跌落.图中所示为游客们正坐在皮筏艇上从高处沿斜坡水道向下加速滑行,在此过程中如下说法正确的答案是( )A .合力对游客做负功B .皮筏艇对游客不做功C .重力对游客做正功D .游客的机械能增加 答案:C9.(2020·宁波质检)汽车发动机的额定功率是60 kW ,汽车的质量为2×103kg ,在平直路面上行驶,受到的阻力是车重的0.1.假设汽车从静止出发,以0.5 m/s 2的加速度做匀加速运动,如此出发50 s 时,汽车发动机的实际功率为(g 取10 m/s 2)( )A .25 kWB .50 kWC .60 kWD .75 kW解析:选C.汽车受到的阻力F f =0.1mg =2 000 N ,汽车以0.5 m/s 2的加速度做匀加速运动,由牛顿第二定律得F -F f =ma ,解得F =3 000 N ,假设50 s 内车做匀加速运动,如此v =at =25 m/s ,50 s 末汽车功率P =Fv =75 000 W =75 kW ,但汽车发动机的额定功率是60 kW ,如此50 s 内车不是匀加速运动,而是先匀加速运动后变加速运动,出发50 s 时,汽车发动机的实际功率为60 kW ,故C 正确.10.一辆汽车在平直的公路上以某一初速度运动,运动过程中保持恒定的牵引功率,其加速度a 和速度的倒数1v的关系图象如下列图.假设汽车的质量,如此根据图象所给的信息,不能求出的物理量是( ) A .汽车的功率B .汽车行驶的最大速度C .汽车所受到的阻力D .汽车运动到最大速度所需的时间解析:选D.由F -F f =ma ,P =Fv 可得:a =P m ·1v -F f m ,对应图线可知,P m=k =40,可求出汽车的功率P ,由a =0时,1v m =0.05可得:v m =20 m/s ,再由v m =P F f,可求出汽车受到的阻力F f ,但无法求出汽车运动到最大速度的时间.11.(2020·浙江温岭高二月考)如图是武广铁路上某机车在性能测试过程中的v -t 图象,测试时机车先以恒定的牵引力F 启动发动机使机车在水平铁轨上由静止开始运动,t 1时刻机车关闭发动机,到t 2时刻机车完全停下.图象中θ>α,设整个测试过程中牵引力F 做的功和抑制摩擦力f 做的功分别为W 1、W 2,0~t 1时间内F 做功的平均功率和全过程抑制摩擦力f 做功的平均功率分别为P 1、P 2,如此如下判断正确的答案是( )A .W 1>W 2,F =2fB .W 1=W 2,F >2fC .P 1<P 2,F >2fD .P 1=P 2,F =2f解析:选B.机车整个运动过程中,根据动能定理有W 1-W 2=0,所以W 1=W 2,又P 1=W 1t 1,P 2=W 2t 2,因t 2>t 1,所以P 1>P 2;根据牛顿第二定律,机车的牵引力为F 时的加速度大小a 1=F -f m ,关闭发动机后机车加速度大小a 2=f m,根据v -t 图象斜率的意义可知a 1>a 2,即F -f >f ,所以有F >2f ,综上分析可知,B 正确.12.如下列图,汽车停在缓坡上,要求驾驶员在保证汽车不后退的前提下向上启动,这就是汽车驾驶中的“坡道起步〞,驾驶员的正确操作是:变速杆挂入低速挡,徐徐踩下加速踏板,然后慢慢松开离合器,同时松开手刹,汽车慢慢启动,如下说法正确的答案是( )A .变速杆挂入低速挡,是为了增大汽车的输出功率B .变速杆挂入低速挡,是为了能够提供较大的牵引力C .徐徐踩下加速踏板,是为了让牵引力对汽车做更多的功D .徐徐踩下加速踏板,是为了让汽车的输出功率保持为额定功率解析:选B.由P =Fv 可知,在功率一定的情况下,当速度减小时,汽车的牵引力就会增大,此时更容易上坡,如此换低速挡,增大牵引力,故A 错误,B 正确;徐徐踩下加速踏板,发动机的输出功率增大,根据P =Fv 可知,是为了增大牵引力,故C 、D 错误.13.一物体在粗糙的水平面上滑行.从某时刻起,对该物体再施加一水平恒力F ,如此在此后的一段时间内( )A .如果物体改做匀速运动,如此力F 一定对物体做负功B .如果物体改做匀加速直线运动,如此力F 一定对物体做正功C .如果物体仍做匀减速运动,如此力F 一定对物体做负功D .如果物体改做曲线运动,如此力F 一定对物体不做功解析:选B.物体在粗糙的水平面上做匀减速直线运动.施加一水平恒力F 后,如果物体改做匀速运动,如此力F 一定与摩擦力等大、反向,与物体运动方向一样,对物体做正功,A 错误;如果物体改做匀加速直线运动,如此力F 一定与物体运动方向一样,且大于摩擦力,力F 对物体做正功,B 正确;如果物体仍做匀减速运动,如此力F 可能与物体运动方向一样,但大小小于摩擦力,对物体做正功,也可能与物体运动方向相反,对物体做负功,C 错误;只要物体受力F 与物体运动方向不共线,物体就做曲线运动,力F 与速度的夹角既可以是锐角也可以是钝角,还可以是直角,各种做功情况都有可能,D 错误.14.(2020·舟山高二期中)在水平面上,有一弯曲的槽道弧AB ,槽道由半径分别为R2和R 的两个半圆构成(如下列图),现用大小恒为F 的拉力将一光滑小球从A 点沿滑槽道拉至B 点,假设拉力F 的方向时时刻刻均与小球运动方向一致,如此此过程中拉力所做的功为( )A .0B .FRC.32πFR D .2πFR 解析:选C.虽然拉力方向时刻改变,但力与运动方向始终一致,用微元法,在很小的一段位移内可以看成恒力,小球的路程为πR +πR 2,如此拉力做的功为32πFR ,故C 正确.二、非选择题15.如图甲所示,在水平路段AB 上有一质量为2×103kg 的汽车,正以10 m/s 的速度向右匀速运动,汽车前方的水平路段BC 较粗糙,汽车通过整个ABC 路段的v -t 图象如图乙所示(在t =15 s 处水平虚线与曲线相切),运动过程中汽车发动机的输出功率保持20 kW 不变,假设汽车在两个路段上受到的阻力(含地面摩擦力和空气阻力等)各自有恒定的大小.求:(1)汽车在AB 路段上运动时所受的阻力F f1;(2)汽车刚好到达B 点时的加速度a ;(3)BC 路段的长度.解析:(1)汽车在AB 路段时,有F 1=F f1,P =F 1v 1,F f1=P v 1,联立解得: F f1=20×10310N =2 000 N. (2)t =15 s 时汽车处于平衡态,有F 2=F f2, P =F 2v 2,F f2=P v 2, 联立解得:F f2=20×1035 N =4 000 N. t =5 s 时汽车开始减速运动,有F 1-F f2=ma ,解得a =-1 m/s 2.(3)Pt -F f2x =12mv 22-12mv 21 解得x =68.75 m.答案:(1)2 000 N (2)-1 m/s 2(3)68.75 m。
高考物理一轮复习 第五章 第33课时 验证机械能守恒定律(实验增分课)课件

(实验增分课)
第一页,共四十二页。
NO.1 实验(shíyàn)基础全知晓 NO.2 常规(chángguī)考法掌握牢
NO.3 创新(chuàngxīn)考法迁移好
第二页,共四十二页。
NO.1 实验 基础全知晓 (shíyàn)
12/9/2021
第八页,共四十二页。
五、数据处理 1.求瞬时速度 由公式 vn=hn+12-Thn-1可以计算出重物下落 h1、h2、h3、… 的高度时对应的瞬时速度 v1、v2、v3、…。 2.验证守恒 方法一:利用起始点和第 n 点计算,代入 ghn 和12vn2,如 果在实验误差允许的范围内,ghn=12vn2,则验证了机械能守 恒定律。
5.速度不能用 vn=gtn 或 vn= 2ghn计算,否则犯了用机 械能守恒定律验证机械能是否守恒的错误。
12/9/2021
第十三页,共四十二页。
NO.2 常规 考法掌握牢 (chángguī)
12/9/2021
第十四页,共四十二页。
考法一 实验原理与操作
1.(2019·漳州检测)用如图所示的实验装置验证机 械能守恒定律。实验所用的电源为学生电源, 输出电压有 6 V 的交流电和直流电两种。重物 从高处由静止开始下落,重物拖着纸带通过打
12/9/2021
第七页,共四十二页。
3.选纸带 分两种情况说明 (1)如果根据12mv2=mgh 验证时,应选点迹清晰,打点成一条 直线,且 1、2 两点间距离小于或接近 2 mm 的纸带。若 1、2 两点 间的距离大于 2 mm,则可能是由于先释放纸带,后接通电源造成 的。这样,第 1 个点就不是运动的起始点了,这样的纸带不能选。 (2)如果根据12mvB2-12mvA2=mgΔh 验证时,由于重力势能的 变化是绝对的,处理纸带时,选择适当的点为基准点,这样纸带 上打出的第 1、2 两点间的距离是否接近 2 mm 就无关紧要了,只 要后12面/9/2的021 点迹清晰就可选用。
【名师一号】2014高考物理一轮 5-3机械能守恒定律双基练 新人教版

2014名师一号高考物理一轮双基练:5-3机械能守恒定律A级双基达标1.关于机械能是否守恒的叙述,正确的是( )A.做匀速直线运动的物体的机械能一定守恒B.做加速运动的物体机械能不可能守恒C.合外力对物体做功为零时,机械能一定守恒D.只有重力对物体做功时,物体机械能一定守恒解析只有重力做功或弹簧弹力做功,其他力不做功或做功等于零时,物体的机械能守恒,D项正确.答案 D2.(2013·河北唐山一中月考)奥运会中的投掷链球、铅球、铁饼和标枪等体育比赛项目都是把物体斜向上抛出的运动,如练图5-3-1所示,若不考虑空气阻力,这些物体从被抛出到落地的过程中( )练图5-3-1A.物体的机械能先减小后增大B.物体的机械能先增大后减小C.物体的动能先增大后减小,重力势能先减小后增大D.物体的动能先减小后增大,重力势能先增大后减小答案 D3.练图5-3-2伽利略曾设计如练图5-3-2所示的一个实验,将摆球拉至M 点放开,摆球会达到同一水平高度上的N 点.如果在E 或F 处放钉子,摆球将沿不同的圆弧达到同一高度的对应点;反过来,如果让摆球从这些点下落,它同样会达到原水平高度上的M 点.这个实验可以说明,物体由静止开始沿不同倾角的光滑斜面(或弧线)下滑时,其末速度的大小( )A .只与斜面的倾角有关B .只与斜面的长度有关C .只与下滑的高度有关D .只与物体的质量有关解析 伽利略设计的实验表明在空气阻力忽略的情况下物体机械能守恒,所以对于物体由静止沿不同角度的光滑斜面下滑时末动能与开始的重力势能相等,mgh =12mv 2,v =2gh ,因此末速度大小只与下滑的高度有关,选项C 正确. 答案 C 4.练图5-3-3(多选题)半径为R 的圆桶固定在小车上,有一光滑小球静止在圆桶的最低点,如练图5-3-3所示.小车以速度v 向右匀速运动.当小车遇到障碍物突然停止,小球在圆桶中上升的高度可能为( )A .等于v 22gB .大于v 22gC .小于v 22gD .等于2R解析 由动能定理得12mv 2=mgh ,得A 项正确;能通过圆桶的最高点,高度等于2R ,D项对;在到达最高点前脱离圆周做斜抛运动最大高度小于v22g,因这时有动能,B项错、C项对.答案ACD5.练图5-3-4(多选题)如练图5-3-4所示,一轻弹簧固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且弹簧保持原长的A点无初速地释放,让它自由摆下,不计空气阻力,在重物由A点摆向最低点的过程中,以下四个选项中正确的是( )A.重物的机械能守恒B.重物的机械能减少C.重物的重力势能与弹簧的弹性势能之和不变D.重物与弹簧组成的系统机械能守恒解析重物由A点下摆到B点的过程中,弹簧被拉长,弹簧的弹力对重物做了负功,所以重物的机械能减少,故A项错、B项正确;此过程中,由于有重力和弹簧的弹力做功,所以重物与弹簧所组成的系统机械能守恒,即重物减少的重力势能等于重物获得的动能与弹簧增加的弹性势能之和,故C项错、D项正确.答案BD6.练图5-3-5(2013·四川自贡一诊)如练图5-3-5所示,一直角斜面体固定在水平地面上,左侧斜面倾角为60°,右侧斜面倾角为30°,A、B两个物体分别系于一根跨过定滑轮的轻绳两端且分别置于斜面上,两物体下边缘位于同一高度且处于平衡状态,不考虑所有的摩擦,滑轮两边的轻绳都平行于斜面.若剪断轻绳,让物体从静止开始沿斜面滑下,下列叙述错误的是( )A.着地瞬间两物体的速度大小相等B.着地瞬间两物体的机械能相等C.着地瞬间两物体所受重力的功率相等D.两物体的质量之比为m A:m B=1:3解析根据初始时刻两物体处于平衡状态,由平衡条件可知,m A g sin60°=m B g sin30°,由此可得,两物体的质量之比为m A:m B=1:3;由机械能守恒定律可知,着地瞬间两物体的速度大小相等,选项A、D叙述正确;着地瞬间,A物体重力功率P A=m A gv sin60°,B物体重力功率P B=m B gv sin30°,两物体所受重力的功率相等,选项C叙述正确;由于两物体质量不等,初始状态两物体的机械能不等,所以着地瞬间两物体的机械能不相等,选项B 叙述错误.答案 B7.(多选题)如练图5-3-6所示,一个小环套在竖直放置的光滑圆环形轨道上做圆周运动.小环从最高点A滑到最低点B的过程中,其线速度大小的平方v2随下落高度h变化的图象可能是下图所示四个图中的( )练图5-3-6解析 如果小环从最高点A 开始滑动时有初速度v 0,下滑过程中用机械能守恒得:12mv 2+mgh =12mv 2,所以v 2=v 20+2gh ,A 项正确;如小环在A 点的速度为0,同理可得:v 2=2gh ,B 项正确,C 、D 项均错误.答案 AB 8.练图5-3-7(2013·广东汕头金山中学测试)如练图5-3-7所示,物体A 的质量为M ,圆环B 的质量为m ,通过绳子连接在一起,圆环套在光滑的竖直杆上,开始时连接圆环的绳子处于水平,长度l =4 m ,现从静止释放圆环.不计定滑轮和空气的阻力,取g =10 m/s 2,求:(1)为使圆环能下降h =3 m ,两个物体的质量应满足什么关系?(2)若圆环下降h =3 m 时的速度v =5 m/s ,则两个物体的质量有何关系? (3)不管两个物体的质量为多大,圆环下降h =3 m 时的速度不可能超过多大? 解析 (1)若圆环恰好能下降h =3 m ,由机械能守恒定律得mgh =Mgh A , h 2+l 2=(l +h A )2,解得两个物体的质量应满足关系M =3m .(2)若圆环下降h =3 m 时的速度v =5 m/s ,由机械能守恒定律得mgh =Mgh A +12mv 2+12Mv 2A ,如练答图5-3-1所示,A 、B 的速度关系为v A =v cos θ=vh h 2+l 2.解得两个物体的质量关系为M m =3529.练答图5-3-1(3)B 的质量比A 的大得越多,圆环下降h =3 m 时的速度越大,当m ≫M 时可认为B 下落过程机械能守恒,有mgh =12mv 2m .解得圆环的最大速度v m =60 m/s =7.8 m/s. 即圆环下降h =3 m 时的速度不可能超过7.8 m/s. 答案 (1)M =3m(2)M m =3529(3)7.8 m/sB 级 能力提升1.如练图5-3-8所示,在高1.5 m 的光滑平台上有一个质量为2 kg 的小球被一细线拴在墙上,球与墙之间有一根被压缩的轻质弹簧.当烧断细线时,小球被弹出,小球落地时的速度方向与水平方向成60°角,则弹簧被压缩时具有的弹性势能为(g =10 m/s 2)( )练图5-3-8A .10 JB .15 JC .20 JD .25 J解析 由h =12gt 2和v y =gt 得:v y =30 m/s ,落地时,tan60°=v y v 0, 可得v 0=v ytan60°=10 m/s ,由机械能守恒得:E p =12mv 20,可求得E p =10 J , 故A 项正确. 答案 A2.如练图5-3-9所示,一均质杆长为2r ,从图示位置由静止开始沿光滑面ABD 滑动,AB 是半径为r 的14圆弧,BD 为水平面.则当杆滑到BD 位置时的速度大小为( )练图5-3-9A.gr2B.grC.2grD .2gr解析 由机械能守恒定律得:mg ·r 2=12mv 2,解得v =gr ,故B 项对.答案 B3.如练图5-3-10①所示,竖直平面内的光滑轨道由直轨道AB 和圆轨道BC 组成,小球从轨道AB 上高H 处的某点由静止滑下,用力传感器测出小球经过圆轨道最高点C 时对轨道的压力为F ,并得到如练图5-3-10②所示的压力F 随高度H 的变化关系图象.(小球在轨道连接处无机械能损失,g =10 m/s 2)求:练图5-3-10(1)小球从H =3R 处滑下,它经过最低点B 时的向心加速度的大小; (2)小球的质量和圆轨道的半径. 解析 (1)由机械能守恒得mgH =12mv 2B ,向心加速度a =v 2B R=6g =60 m/s 2.(2)由机械能守恒得mgH -mg ·2R =12mv 2C ,由牛顿第二定律得mg +F =m v 2CR,解得F =2mgRH -5mg ,根据图象代入数据得:m =0.1 kg ,R =0.2 m.答案 (1)60 m/s 2(2)0.1 kg 0.2 m4.(2013·山东省日照市一中第三次质量检测)如练图5-3-11所示,水平桌面上有一轻弹簧,左端固定在A 点,弹簧处于自然状态时其右端位于B 点.水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.8 m 的圆环剪去了左上角135°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离也是R .用质量m 1=0.4 kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点.用同种材料、质量为m 2=0.2 kg 的物块将弹簧也缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =6t -2t 2,物块从桌面右边缘D 点飞离桌面后,由P 点沿圆轨道切线落入圆轨道.g =10 m/s 2,求:练图5-3-11(1)BP 间的水平距离;(2)判断m 2能否沿圆轨道到达M 点;(3)物块将弹簧缓慢压缩到C 点时弹性势能E p ; (4)释放后m 2运动过程中克服摩擦力做的功.解析 (1)设物块由D 点以初速度v D 做平抛,落到P 点时其竖直速度为v y ,有v 2y =2gR , 且v y v D=tan45°, 解得v D =4 m/s.设平抛运动时间为t ,水平位移为x 1, 有R =12gt 2,x 1=v D t ,解得x 1=1.6 m.由题意可知物块过B 点后做初速度为v 0=6 m/s , 加速度大小a =4 m/s 2的匀减速运动 减速到v D ,BD 间位移为x 2, 有v 20-v 2D =2ax 2,所以BP 水平间距为x =x 1+x 2=4.1 m.(2)若物块能沿轨道到达M 点,其速度为v M ,有 12m 2v 2M =12m 2v 2D -22m 2gR , 解得v M =16-82<gR ,即物块不能到达M 点.(3)设弹簧长为AC 时的弹性势能为E p ,物块与桌面间的动摩擦因数为μ, μm 2g =m 2a ,释放m 1时,E p =μm 1gx CB , 释放m 2时,E p =μm 2gx CB +12m 2v 20,解得E p =7.2 J.(4)设m 2在桌面上运动过程中克服摩擦力做功为W f ,有E p -W f =12m 2v 2D ,解得W f =5.6 J. 答案 (1)4.1 m (2)不能到达M 点 (3)7.2 J (4)5.6 J。