高三物理第一轮复习 动能定理及应用学案 新人教版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三课时动能定理及应用
第一关:基础关展望高考
基 础 知 识
一、动能
知识讲解
1.定义:物体由于运动而具有的能叫做动能.
2.公式:E k =12
mv 2,动能的单位是焦耳. 说明:(1)动能是状态量,物体的运动状态一定,其动能就有确定的值,与物体是否受力无关.
(2)动能是标量,且动能恒为正值,动能与物体的速度方向无关.一个物体,不论其速度的方向如何,只要速度的大小相等,该物体具有的动能就相等.
(3)像所有的能量一样,动能也是相对的,同一物体,对不同的参考系会有不同的动能.没有特别指明时,都是以地面为参考系相对地面的动能.
二、动能定理
知识讲解
1.内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化.
2.表达式:W=E 2k -E 1k ,W 是外力所做的总功,E 1k 、E 1k 分别为初末状态的动能.若初、末速
度分别为v 1、v 2,则E 1k =12mv 21,E 2k =12
mv 22. 3.物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来度量.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程.
活学活用
物体质量为2 kg,以4 m/s 的速度在光滑水平面上向左滑行.从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4 m/s,在这段时间内,水平力做功为()
A.0B.8 J
C.16 J
D.32 J
解析:本题容易出错在认为动能有方向,向左的16 J 动能与向右的16 J 动能不同,实际
上动能是标量,没有方向,且是一个恒定的量,由动能定理有W F=1
2
mv2
2
-
1
2
mv2
1
=0
答案:A
第二关:技法关解读高考
解题技法
一、利用功能定理求变力的功
技法讲解
利用动能定理来求解变力所做的功通常有以下两种情况:
①如果物体只受到一个变力的作用,那么:W=E k2-E k1.
只要求出做功过程中物体的动能变化量ΔE k,也就等于知道了这个过程中变力所做的功.
②如果物体同时受到几个力作用,但是其中只有一个力F1是变力,其他的力都是恒力,则可以先用恒力做功的公式求出这几个恒力所做的功,然后再运用动能定理来间接求变力做的功:
W1+W其他=ΔE k.
可见应把变力所做的功包括在上述动能定理的方程中.
③注意以下两点:
a.变力的功只能用表示功的符号W来表示,一般不能用力和位移的乘积来表示.
b.变力做功,可借助动能定理求解,动能中的速度有时也可以用分速度来表示.
典例剖析
例1一辆汽车通过图中的细绳提起井中质量为m的物体,开始时,车在A点,绳子已经拉紧且是竖直,左侧绳长为H,提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A 到B的距离也为H,车过B点时的速度为v,求在车由A移到B的过程中,绳Q端的拉力对物体做的功.(设绳和滑轮的质量及摩擦不计,滑轮尺寸不计.)
解析:本题中汽车和重物构成连接体,但解题通常取重物作为研究对象,根据动能定理
列方程:W-mgh=12
mv 2-0. 要想求出结果,必须弄清重物位移h 和汽车位移H 的关系,重物速度v ′和汽车在B 点的速度v
的关系.
根据几何关系得出:h=)H
由于左边绳端和车有相同的水平速度v ,v 可分解成沿绳子方向和垂直于绳子方向的两个
分速度,如图所示,看出v ′=v x =2
v
解以上关系式得W=14
mv 2二、动能定理的应用技巧
技法讲解
应用动能定理时要灵活选取过程,过程的选取对解题难易程度有很大影响.对复杂运动过程问题,既可以分段利用动能定理列方程求解,也可以对全过程利用动能定理列方程求解,解题时可根据具体情况选择使用,一般利用全过程进行求解比较简单.但在利用全过程列方程求解时,必须明确整个过程中外力的功,即哪个力在哪个过程做功,做什么功,或哪个过程有哪些力做了功,做什么功.
典例剖析
例2如图所示,一质量为2 kg 的铅球从离地面2 m 高处自由下落,陷入沙坑2 cm 深处,求沙子对铅球的平均阻力.
解析:解法一:小球的运动分为自由下落和陷入沙坑减速运动两个过程,根据动能定理,
分段列式.设铅球自由下落过程到沙面时的速度为v ,则mgH=12
mv 2-0 设铅球在沙中受到的阻力为F ,则:mgh-Fh=0-12
mv 2代入数据解得F=2 020 N 解法二:全程列式:全过程中重力做功mg (H+h ),进入沙中阻力做功-Fh ,全程来看动能变化为零,则由W=E k2-E k1得mg (H+h )-Fh=0解得F=
mg H h h +() = 21020.020.02
⨯⨯+()N=2 020 N 第三关:训练关笑对高考
随 堂 训 练
1.以初速度v 0竖直上抛一个质量为m 的小球,小球运动过程中所受阻力F 阻大小不变,上升最大高度为h ,则抛出过程中,人手对小球做的功() A.12
mv 20 B.mgh C.12
mv 20+mgh D.mgh+F 阻h
解析:应用动能定理,抛出球时手对球做的功应等于小球出手时的动能,即W=12mv 20,故选项A 正确.从小球抛出上升到最高点,重力与阻力对小球均做负功,根据动能定理
-mgh-F 阻h=0-12mv 20
W=12
mv 20=mgh+F 阻h ,故选项D 正确. 答案:AD
2.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7 mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为()
A.mgR/4
B.mgR/3
C.mgR/2
D.mgR
解析:小球在圆周最低点时,设速度为v 1
则7mg-mg=mv 21/R ①
设小球恰能通过最高点的速度为v 2
则mg=mv 22
/R ② 设转过半个圆周过程中小球克服空气阻力做的功为W ,由动能定理得
-mg 2R-W=mv 22/2-mv 21
/2③ 由①②③解得W=mgR/2,选项C 正确.
答案:C
3.如图所示,某人将质量为m 的石块从距地面h 高处斜向上方抛出,石块抛出时的速度大小为v 0,不计空气阻力,石块落地时的动能为()
A.mgh
B.12
mv 20 C.12
mv 20-mgh D.12
mv 20+mgh 解析:在整个过程中只有重力做功,根据动能定理得mgh=E k -
12mv 20,解得E k =mgh+12mv 20. 答案:D
4.如图所示,物体在离斜面底端4 m 处由静止滑下,若动摩擦因数均为0.5,斜面倾角为37°,斜面与平面间由一段圆弧连接,求物体能在水平面上滑行多远?
解析:物体在斜面上受重力mg 、支持力F N1、摩擦力F 1的作用,沿斜面加速下滑(因μ=0.5<tan 37°=0.75),到水平面后,在摩擦力F 2作用下做减速运动,直至停止.对物体在斜面上和水平面上时进行受力分析,如图所示.
物体运动的全过程中,初、末状态速度均为零,对全过程应用动能定理
(mgsin 37°-μmgcos 37°)s 1-μmgs 2=0
所以s 2=331(mgsin 7mgcos 7)s mg
μμ︒-︒ =0.60.50.80.5
-⨯×4 m=1.6 m. 答案:1.6 m
5.如图所示,跨过定滑轮的轻绳两端的物体A 和B 的质量分
别为M 和m,物体A 在水平面上.B 由静止释放,当B 沿竖直方向下落h 时,测得A 沿水平面运动的速度为v,这时细绳与水平面的夹角为θ,试分析计算B 下降h 过程中,地面摩擦力对A 做的功?(滑轮的质量和摩擦均不计)
解析:研究物体A 、B 和连接它们的轻质细绳组成的系统,B 下降h 过程中,B 的重力做正功mgh,摩擦力对A 做负功,设为W f ,由于A 与水平面间的正压力是变化的,又不知动摩擦因数、Wf 不能用功的定义求得,只能应用动能定理求W f .
当A 的速度为v 时,它沿绳子方向的分速度由图可知,v 1=vcos θ,v 1就是该时刻物体B 的瞬时速度,对系统列动能定理表达式
mgh-W f =12Mv 2+12
m(vcos θ)2
可得W f=mgh-1
2
Mv2-
1
2
m(vcosθ)2
答案:mgh-1
2
Mv2-
1
2
m(vcosθ)2
课时作业二十动能定理及应用
1.一质量为2 kg的物体,在水平恒定拉力的作用下以某一速度在粗糙的水平面上做匀速运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图中给出了拉力随位移的变化的关系图象.则根据以上信息可以精确得出或估算得出的物理量有()
A.物体与水平面间的动摩擦因数
B.合外力对物体做的功
C.物体匀速运动时的速度
D.物体运动的时间
解析:因物体在水平恒定拉力F的作用下做匀速运动,则可知F=F f,又F f=μF N,F N=mg,由题意可知F,则物体与水平面间的动摩擦因数可求;因摩擦力是恒力,则摩擦力做的功可求W f=-μmgs,由题图得出s=12m,F是变力,F做的正功等于图线与坐标轴所围成的图形的面积值,其面积大小可以估算出来(估算方法:可以借鉴“单分子油膜法测分子大小”实验中估算油膜面积的方法),所以合外力对物体做的功可以估算求出;根据动能定理,W合=E K2-E K1,又
知E K2=0,则可求E K1,由E K1=1
2
mv2
1
,可求出物体匀速运动时的速度;由于物体在4~12m位移
内做的是非匀变速运动,故无法求出时间.
答案:ABC
2.光滑水平面上静置一质量为M的木块,一质量为m的子弹以水平速度v1射入木块,以速度v2穿出,木块速度变为v,在这个过程中,下列说法中正确的是()
A.子弹对木块做功为1
2
mv2
1
-
1
2
mv2
2
B.子弹对木块做的功等于子弹克服阻力做的功
C.子弹对木块做的功等于木块获得的动能子弹跟木块间摩擦产生的内能之和
D.子弹损失的动能转变为木块获得的动能与子弹跟木块间摩擦产生的内能之和
解析:子弹对木块做功为12Mv2,子弹克服阻力做的功为1
2
mv2
1
-
1
2
mv2
2
,子弹损失的动能
转变成木块获得的动能和子弹与木板间摩擦产生的内能之和,选项中D正确.
答案:D
3.假定地球、月球都静止不动.用火箭从地球沿地月连线向月球发射一探测器.假定探测器在地球表面附近脱离火箭.用W表示探测器从脱离火箭处飞到月球的过程中克服地球引力做的功,用E k表示探测器脱离火箭时的动能,若不计空气阻力.则()
A.E k必须大于或等于W,探测器才能到达月球
B.E k小于W,探测器也可能到达月球
C.E k=1
2
W,探测器一定能到达月球
D.E k=1
2
W,探测器一定不能到达月球
解析:在探测器由脱离火箭处飞到月球的过程中月球引力做功W月,则W月-W地=0-EK,得
E K=W地-W月<W地,故B正确,而A错.设M地=M月.由对称法可知,当E k=W
2
时,探测器不能飞
越地月中点.当M地>M月时更不能飞越中点到达月球.故C错,D正确.
答案:BD
4.在秦皇岛旅游景点之一的南戴河滑沙场有两个坡度不同的滑道AB和AB′(均可看作斜面),甲、乙两名旅游者分别乘两个完全相同的滑沙橇从A点由静止开始分别沿AB和AB′滑下,最后都停在水平沙面BC上,如图所示.设滑沙橇和沙面间的动摩擦因数处处相同,斜面与水平面连接处可认为是圆滑的,滑沙者保持一定姿势坐在滑沙橇上不动.则下列说法中正确的是()
A.甲在B点的动能一定大于乙在B′点的动能
B.甲滑行的总路程一定大于乙滑行的总路程
C.甲在B点的动量一定大于乙在B′点的动量
D.甲全部滑行的水平位移一定大于乙全部滑行位移
解析:在斜面上对物体应用动能定理:设倾角为θ,斜面长为L ,则12
mv B 2-0=mgh-μmgcos θ·L ,AB ′过程Lcos θ大,所以v B ′>v B ,但由于甲、乙两个质量不知,因此选项A 和C 无法确定.全过程应用动能定理:0-0=mgh-μmgcos θ·L-μmg ·x;得h=μ(Lcos θ+x),所以虽水平方向位移是相同的,但总路程甲大于乙.
答案:B
5.如图所示,固定斜面倾角为θ,整个斜面长分为AB 、BC 两段,AB=2BC.小物块P (可视为质点)与AB 、BC 两段斜面间的动摩擦因数分别为μ1、μ2.已知P 由静止开始从A 点释放,恰好能滑动到C 点而停下,那么θ、μ1、μ2间应满足的关系是()
A.tan θ=12
23μμ+
B.tan θ=1223
μμ+ C.tan θ=2μ1-μ2
D.tan θ=2μ2-μ1
解析:由动能定理可得mg AC sin θ-μ1mg AB cos θ-μ2mg BC cos θ=0,
得mg=3BC sin θ-μ1mg ·2BC cos θ-μ2mg BC cos θ=0
化简整理得tan θ=
1223
μμ+,故B 正确. 答案:B
6.在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m 的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F ,那么在他减速下降高度为h 的过程中,下列说法正确的是:(g 为当地的重力加速度)()
A.他的动能减少了Fh
B.他的重力势能增加了mgh
C.他的机械能减少了(F-mg)h
D.他的机械能减少了Fh
解析:下降过程中由动能定理mgh-Fh=ΔE k ,因为运动员减速,因此ΔE k <0,因而动能减少了Fh-mgh,所以A 错;重力做正功,重力势能减少了mgh,B 错;机械能减少了Fh,C 错、D 正确.
答案:D
7.在篮球赛中经常有这样的场面:在比赛即将结束时,运动员把球投出且准确命中,获得胜利.设运动员投篮过程中以篮球做功为W ,出手时篮球的高度为h 1,篮框距地面的高度为h 2,篮球的质量为m ,不计空气阻力,则篮球进框时的动能为()
A.mgh 1+mgh 2-W
B.W+mgh 2-mgh 1
C.W+mgh 1-mgh 2
D.mgh 2-mgh 1-W
解析:由动能定理可知,在整个过程中有:W-mg(h 2-h 1)=Ek ,得E k =W+mgh 1-mgh 2,故正确答案为C.
答案:C
8.如图所示,一物体从高为H 的斜面顶端由静止开始滑下,滑上与该斜面相连的一光滑曲面后又返回斜面,在斜面上能上升到的最大高度为12
H.若不考虑物体经过斜面底端转折处的能量损失,则当物体再一次滑回斜面时上升的最大高度为()
A.0
B.14
H C.H 与12
H 之间 D.0与
14H 之间 解析:对物体滑回斜面的过程应用功能关系有mg H H 2⎛
⎫- ⎪⎝⎭ =f ·H H sin 2sin θθ⎛⎫+ ⎪⎝⎭
① 设当物体再一次滑回斜面时上升的最大高度为H ′,根据功能关系有 mg H H 2⎛⎫-' ⎪⎝⎭=f ·H H 2sin sin θθ'⎛⎫+ ⎪⎝⎭②
由①②两式可得H ′=
H 4
,故B 选项正确. 答案:B 9.如图所示,质量为5.0×103
kg 的汽车由静止开始沿平直公路行驶,当速度达到一定值后,关闭发动机滑行.速度图象如图所示,则在汽车行驶的整个过程中,发动机做功为 ________,汽车克服摩擦力做功为_______________.
解析:根据动能定理分析汽车的加速过程应得
W-F f ·x 1=12
mv 2,① 分析减速过程应得F f ·x 2=
12mv 2.② 由图象可知x 2=2x 1.联立①②两式可得 W=12mv 2+14mv 2=34
(5×103×202)J=1.5×106J. 由能量守恒可知,克服摩擦力做功为W F =W=1.5×106J.
答案:1.5×106J 1.5×106
J
10.某兴趣小组设计了如图所示的玩具轨道,其中“2008”四个等高数字用内壁光滑的薄壁细圆管弯成,固定在竖直平面内(所有数字均由圆或半圆组成,圆半径比细管的内径大得多),底端与水平地面相切.弹射装置将一个小物体(可视为质点)以v a =5 m/s 的水平初速度由a 点弹出,从b 点进入轨道,依次经过“8002”后从p 点水平抛出.小物体与地面ab 段间的动摩擦因数μ=0.3,不计其他机械能损失.已知ab 段长L=1.5m ,数字“0”的半径R=0.2m,
小物体质量m=0.01 kg,g=10 m/s 2.求:小物体从p 点抛出时的速度.
解析:设小物体运动到p 点时速度大小为v ,对小物体由a 运动到p 过程应用动能定理得 -μmgL-2mgR=12mv 2- x 12
mv 2a
解得
答案:
11.汽车刹车后,停止转动的轮胎在地面上滑动,其滑动的痕迹可以明显地看出,这就是我们常说的刹车线.由刹车线的长短可以得知汽车刹车前后速度大小,因此刹车线的长度是分析交通事故的一个重要依据.某汽车质量为 1.0×103 kg,刹车前正在做匀速直线运动,运动中所受阻力是车重力的0.1倍.若刹车后在滑动过程中该车所受阻力是车重力的0.7倍,刹车线长14 m,g取10 m/s2,求:
(1)刹车前该汽车的速度大小;
(2)刹车前该汽车牵引力的功率.
解析:(1)刹车后,由动能定理有f阻·l=1
2
mv2
解得 =14 m/s.
(2)刹车前,牵引力F=f阻=0.1mg由P=Fv
解得P=1.4×104 W
答案:(1)14 m/s(2)1.4×104 W
12.如图所示,某人乘雪橇从雪坡经A点滑至B点,接着沿水平路在滑至C点停止.人与雪橇的总质量为70 kg.表中记录了沿坡滑下过程中的有关数据,请根据图表及图中的数据解决下列问题:(取g=10 m/s2)
位置 A B C
速度 2.0 12.0 0
时间0 4 10 (1)人与雪橇从A到B的过程中,损失的机械能为多少?
(2)设人与雪橇在BC段所受阻力恒定,求阻力的大小. (3)人与雪橇从B到C的过程中,运动的距离.
解析:(1)从A到B的过程中,人与雪橇损失的机械能为:
ΔE=mgh+1
2
mv A2-
1
2
mv B2①
代入数据得:ΔE=9100 J
(2)人与雪橇在BC段做减速运动的加速度:
a=vC vB
t
-
∆
②
根据牛顿第二定律:F f=ma③由②③得:F f=140 N.
(3)由动能定理得:-F fx=0-1
2
mv B2
代入数据解得:x=36 m.
答案:(1)9100 J(2)140 N(3)36 m。