数学八年级上册 全等三角形单元达标训练题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学八年级上册全等三角形单元达标训练题(Word版含答案)一、八年级数学轴对称三角形填空题(难)
1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=1
2
BC,则△ABC的顶角的度数为
_____.
【答案】30°或150°或90°
【解析】
试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.
解:①BC为腰,
∵AD⊥BC于点D,AD=1
2 BC,
∴∠ACD=30°,
如图1,AD在△ABC内部时,顶角∠C=30°,
如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,
②BC为底,如图3,
∵AD⊥BC于点D,AD=1
2 BC,
∴AD=BD=CD,
∴∠B=∠BAD,∠C=∠CAD,
∴∠BAD+∠CAD=1
2
×180°=90°,
∴顶角∠BAC=90°,
综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.
故答案为30°或150°或90°.
点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.
2.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.
【答案】4
【解析】
【分析】
过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据BC=32,∠ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.
【详解】
解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,
则CE即为CM+MN的最小值,
∵BC=32,∠ABC=45°,BD平分∠ABC,
∴△BCE是等腰直角三角形,
∴CE=BC•cos45°=32×
2
2
=4.
∴CM+MN的最小值为4.
【点睛】
本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.
3.如图,点P是AOB
∠内任意一点,OP=5 cm,点M和点N分别是射线OA和射线OB上的动点,PN PM MN
++的最小值是5 cm,则AOB
∠的度数是__________.
【答案】30°
【解析】
试题解析:分别作点P关于OA、OB的对称点C、D,连接CD,
分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:
∵点P关于OA的对称点为D,关于OB的对称点为C,
∴PM=DM,OP=OD,∠DOA=∠POA;
∵点P关于OB的对称点为C,
∴PN=CN,OP=OC,∠COB=∠POB,
∴OC=OP=OD,∠AOB=1
2
∠COD,
∵PN+PM+MN的最小值是5cm,
∴PM+PN+MN=5,
∴DM+CN+MN=5,
即CD=5=OP,
∴OC=OD=CD,
即△OCD是等边三角形,
∴∠COD=60°,
∴∠AOB=30°.
4.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第
2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.
【答案】6; 3×22018.
【解析】
【分析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出a3=4a1,a4=8a1,a5=16a1…进而得出答案.
【详解】
解:如图,
∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=3,
∴A2B1=3,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴a2=2a1=6,
a3=4a1,
a 4=8a 1,
a 5=16a 1,
以此类推:a 2019=22018a 1=3×22018
故答案是:6;3×22018.
【点睛】
此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a 2=2a 1=6,a 3=4a 1,a 4=8a 1,a 5=16a 1…进而发现规律是解题关键.
5.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.
【答案】2019122-
【解析】
【分析】
根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:01
2122h =-=-₁同理21122h =-32
11122222h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-
,据此求得2020h 的值. 【详解】
解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上
又∵ D 是AB 中点,∴DA= DB ,
∵DB= DA ₁ ,
∴∠BA ₁D=∠B ,
∴∠ADA ₁=∠B +∠BA ₁D=2∠B,
又∵∠ADA ₁ =2∠ADE ,
∴∠ADE=∠B
∵DE//BC,
∴AA ₁⊥BC ,
∵h ₁=1
∴AA ₁ =2,
∴01
2122h =-=-₁ 同理:21
122h =-; 3211122222
h =-⨯=-; …
∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-
∴20202019122h =-
【点睛】
本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.
6.如图,点A,B,C 在同一直线上,△ABD 和△BCE 都是等边三角形,AE,CD 分别与BD,BE 交于点F,G ,连接FG ,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG ;④AD ⊥CD⑤FG ∥AC 其中,正确的结论有__________________. (填序号)
【答案】①②③⑤
【解析】
【分析】
易证△ABE ≌△DBC ,则有∠BAE =∠BDC ,AE =CD ,从而可证到△ABF ≌△DBG ,则有AF =DG ,BF =BG ,由∠FBG =60°可得△BFG 是等边三角形,证得∠BFG =∠DBA =60°,则有FG ∥AC ,由∠CDB ≠30°,可判断AD 与CD 的位置关系.
【详解】
∵△ABD 和△BCE 都是等边三角形,∴BD =BA =AD ,BE =BC =EC ,∠ABD =∠CBE =60°. ∵点A 、B 、C 在同一直线上,∴∠DBE =180°﹣60°﹣60°=60°,∴∠ABE =∠DBC =120°. 在△ABE 和△DBC 中,
∵BD BA ABE DBC BE BC ∠∠=⎧⎪=⎨⎪=⎩
,∴△ABE ≌△DBC ,∴∠BAE =∠BDC ,∴AE =CD ,∴①正确; 在△ABF 和△DBG
中,60BAF BDG AB DB
ABF DBG ∠∠∠∠=⎧⎪=⎨⎪==︒⎩
,∴△ABF ≌△DBG ,∴AF =DG ,BF =BG . ∵∠FBG =180°﹣60°﹣60°=60°,∴△BFG 是等边三角形,∴∠BFG =60°,∴②正确; ∵AE =CD ,AF =DG ,∴EF =CG ;∴③正确;
∵∠ADB =60°,而∠CDB =∠EAB ≠30°,∴AD 与CD 不一定垂直,∴④错误.
∵△BFG 是等边三角形,∴∠BFG =60°,∴∠GFB =∠DBA =60°,∴FG ∥AB ,∴⑤正确. 故答案为①②③⑤.
【点睛】
本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE ≌△DBC 是解题的关键.
7.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12
MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法:①AD 是∠BAC 的平分线;
②∠ADC =60°;③点D 在AB 的垂直平分线上;④S △DAC :S △ABC =1:3.其中正确的是__________________.(填所有正确说法的序号)
【答案】4 【解析】 【分析】 ①连接NP ,
MP ,根据SSS 定理可得△ANP ≌△AMP ,故可得出结论;
②先根据三角形内角和定理求出∠CAB 的度数,再由AD 是∠BAC 的平分线得出
∠1=∠2=30°,根据直角三角形的性质可知∠ADC =60°;
③根据∠1=∠B 可知AD =BD ,故可得出结论;
④先根据直角三角形的性质得出∠2=30°,CD =
12
AD ,再由三角形的面积公式即可得出结论.
【详解】 ①连接NP ,MP .在△ANP 与△AMP 中,∵AN AM NP MP AP AP =⎧⎪=⎨⎪=⎩
,∴△ANP ≌△AMP ,则∠CAD =∠BAD ,故AD 是∠BAC 的平分线,故此选项正确;
②∵在△ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°.
∵AD 是∠BAC 的平分线,∴∠1=∠2=
12∠CAB =30°,∴∠3=90°﹣∠2=60°,∴∠ADC =60°,故此选项正确;
③∵∠1=∠B =30°,∴AD =BD ,∴点D 在AB 的中垂线上,故此选项正确;
④∵在Rt △ACD
中,∠2=30°,∴CD =
12AD ,∴BC =BD +CD =AD +12AD =32AD ,S △DAC =12AC •CD =14AC •AD ,∴S △ABC
=12AC •BC =12AC •32AD =34
AC •AD ,∴S △DAC :S △ABC =1:3,故此选项正确. 故答案为①②③④.
【点睛】
本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.
8.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1), 若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个
【答案】5
【解析】
【分析】
分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可
【详解】
解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个
故答案为:5
【点睛】
本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键
9.如图,在Rt△ABC中,∠C=30°,将△ABC绕点B旋转α(0<α<60°)到△A′BC′,边AC 和边A′C′相交于点P,边AC和边BC′相交于Q.当△BPQ为等腰三角形时,则α=__________.
【答案】20°或40°
【解析】
【分析】
过B作BD⊥AC于D,过B作BE⊥A'C'于E,根据旋转可得△ABC≌△A'BC',则
BD=BE,进而得到BP平分∠A'PC,再根据∠C=∠C'=30°,∠BQC=∠PQC',可得
∠CBQ=∠C'PQ=θ,即可得出∠BPQ=1
2
(180°-∠C'PQ)=90°-
1
2
θ,分三种情况讨论,利
用三角形内角和等于180°,即可得到关于θ的方程,进而得到结果.【详解】
如图,过B作BD⊥AC于D,过B作BE⊥A'C'于E,
由旋转可得,△ABC≌△A'BC',则BD=BE,∴BP平分∠A'PC,
又∵∠C=∠C'=30°,∠BQC=∠PQC',
∴∠CBQ=∠C'PQ=θ,
∴∠BPQ=1
2
(180°-∠C'PQ)=90°-
1
2
θ,
分三种情况:
①如图所示,当PB=PQ时,∠PBQ=∠PQB=∠C+∠QBC=30°+θ,∵∠BPQ+∠PBQ+∠PQB=180°,
∴90°-1
2
θ+2×(30°+θ)=180°,
解得θ=20°;
②如图所示,当BP=BQ时,∠BPQ=∠BQP,
即90°-1
2
θ=30°+θ,
解得θ=40°;
③当QP=QB时,∠QPB=∠QBP=90°-1
2θ,
又∵∠BQP=30°+θ,
∴∠BPQ+∠PBQ+∠BQP=2(90°-1
2
θ)+30°+θ=210°>180°(不合题意),
故答案为:20°或40°.
【点睛】
本题主要考查了等腰三角形的性质以及旋转的性质的运用,解决问题的关键是利用全等三角形对应边上高相等,得出BP平分∠A'PC,解题时注意分类思想的运用.
10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在
AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B′F 的长为_________
【答案】8
5
【解析】
【分析】 首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,然后求得△ECF 是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE ,得出BF 的长,即 B′F 的长.
【详解】 解:根据折叠的性质可知:DE=AE ,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,B′F=BF ,
∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF ,
∵∠ACB=90°,
∴∠ECF=45°,
∴△ECF 是等腰直角三角形, ∴EF=CE ,∠EFC=45°,
∴∠BFC=∠B′FC=135°,
∴∠B′FE=90°,
∵S △ABC =
12AC•BC=12
AB•CE , ∴AC•BC=AB•CE , ∵根据勾股定理得:22226810AB
AC BC ∴ 4.8AC BC CE AB
⋅== ∴EF=4.8,22 3.6AE AC EC -=
∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=8
5,
故答案是:85
.
【点睛】
此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE 、AE 是解决问题的关键.
二、八年级数学轴对称三角形选择题(难)
11.已知40MON ∠=︒,P 为MON ∠内一定点,OM 上有一点A ,ON 上有一点B ,当PAB ∆的周长取最小值时,APB ∠的度数是( )
A .40︒
B .50︒
C .100︒
D .140︒
【答案】C
【解析】
【分析】 设点P 关于OM 、ON 对称点分别为P '、P '',当点A 、B 在P P '''上时,PAB ∆周长为PA AB BP P P ++=''',此时周长最小.根据轴对称的性质,可求出APB ∠的度数.
【详解】
分别作点P 关于OM 、ON 的对称点P '、P '',连接OP '、OP ''、P P ''',P P '''交OM 、ON 于点A 、B ,连接PA 、PB ,此时PAB ∆周长的最小值等于P P '''.
由轴对称性质可得,OP OP OP '=''=,P OA POA ∠'=∠,P OB POB ∠''=∠,
224080P OP MON ∴∠'''=∠=⨯︒=︒,
(18080)250OP P OP P ∴∠'''=∠'''=︒-︒÷=︒,
又50BPO OP B ∠=∠''=︒,50APO AP O ∠=∠'=︒,
100APB APO BPO ∴∠=∠+∠=︒.
故选:C .
【点睛】
此题考查轴对称作图,最短路径问题,将三角形周长最小转化为最短路径问题,根据轴对称作图是解题的关键.
12.已知∠AOB =30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点构成的三角形是 ( )
A .直角三角形
B .钝角三角形
C .等边三角形
D .等腰三角形 【答案】C
【解析】
【分析】
根据题意,作出相应的图形,然后对相应的角进行标记;本题先证明P 1,O ,P 2三点构成的三角形中1260POP ∠=︒,然后证边12OP OP OP ==,得到P 1,O ,P 2三点构成的三角形为等腰三角形,又因为该等腰三角形有一个角为60︒,故得证P 1,O ,P 2三点构成的三角形是等边三角形。
【详解】
如图所示,根据题意,作出相应的图形,可知:
∵P 和1p 点关于OB 对称,p 和2p 关于OA 对称
∴可得1
1POB POB ∠=∠=∠,22P OA POA ∠=∠=∠ 12OP OP OP ==(垂线段的性质)
∴12POP △为等腰三角形
∵1230AOB ∠=∠+∠=︒
1221222(12)60POP ∠=∠+∠=∠+∠=︒
∴等腰12POP △为等边三角形.故本题选C.
【点睛】
本题主要考查垂线段的性质和定理,以及等边三角形的证明方法(有一个角为60︒的等腰三角形为等边三角形).
13.如图,ABC ∆中,3AC DC ==,BD 垂直BAC ∠的角平分线于D ,E 为AC 的中点,则图中两个阴影部分面积之差的最大值为( )
A.1.5 B.3 C.4.5 D.9
【答案】C
【解析】
【分析】
首先证明两个阴影部分面积之差=S△ADC,然后由DC⊥AC时,△ACD的面积最大求出结论即可.
【详解】
延长BD交AC于点H.设AD交BE于点O.
∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°.
∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH.
∵AD⊥BH,∴BD=DH.
∵DC=CA,∴∠CDA=∠CAD.
∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC.
∵BD=DH,AC=CH,∴S△CDH=1
2
S△ADH
1
4
=S△ABH.
∵AE=EC,∴S△ABE
1
4
=S△ABH,∴S△CDH=S△ABE.
∵S△OBD﹣S△AOE=S△ADB﹣S△ABE=S△ADH﹣S△CDH=S△ACD.
∵AC=CD=3,∴当DC⊥AC时,△ACD的面积最大,最大面积为1
2
⨯3×3
9
2
=.
故选C.
【点睛】
本题考查了等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.
14.如图所示,把多块大小不同的30角三角板,摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与x 轴重合且点A 的坐标为()2,0,30ABO ∠=︒,第二块三角板的斜边1BB 与第一块三角板的斜边AB 垂直且交x 轴于点1B ,第三块三角板的斜边12B B 与第二块三角板的斜边1BB 垂直且交y 轴于点2B ,第四块三角板斜边23B B 与第三块三角板的斜边12B B 垂直且交x 轴于点3B ,按此规律继续下去,则点2018B 的坐标为( )
A .()20182(3)
,0-⨯ B .()20180,2(3)-⨯ C .()20192(3),0⨯ D .()
20190,2(3)-⨯ 【答案】D
【解析】
【分析】 计算出OB 、OB 1、 OB 2的长度,根据题意和图象可以发现题目中的变化规律,从而可以求得点B 2018的坐标.
【详解】
解:由题意可得,
OB = 2242-= 23,
OB 1= 3 OB= 233⨯ = 22(3)⨯,
OB 2= 3 OB 1= 32(3)⨯,
…
∵2018÷4=504…2,
∴点B 2018在y 轴的负半轴上,
∴点B 2018的坐标为()20190,2(3)
-⨯.
故答案为:D .
【点睛】
本题考查规律型:点的坐标规律及含30度角的直角三角形的性质,解答本题的关键是明确题意,找出题目中坐标的变化规律,求出相应的点的坐标.
15.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,在直线AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )
A .6个
B .5个
C .4个
D .3个
【答案】C
【解析】
【分析】 根据等腰三角形的判定定理即可得到结论.
【详解】
解:根据题意,
∵△PAB 为等腰三角形,
∴可分为:PA=PB ,PA=AB ,PB=AB 三种情况,如图所示:
∴符合条件的点P 共有4个;
故选择:C.
【点睛】
本题考查了等腰三角形的判定来解决实际问题,其关键是根据等腰三角形的判定定理解答.
16.如图,已知AD 为ABC ∆的高线,AD BC =,以AB 为底边作等腰Rt ABE ∆,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED ∆为等腰三角形;⑤BDE ACE S S ∆∆=,其中正确的有( )
A .①③
B .①②④
C .①③④
D .①②③⑤
【答案】D
【解析】
【分析】 ①根据等腰直角三角形的性质即可证明∠CBE =∠DAE ,再得到△ADE ≌△BCE ;
②根据①结论可得∠AEC =∠DEB ,即可求得∠AED =∠BEG ,即可解题;
③证明△AEF ≌△BED 即可;
④根据△AEF ≌△BED 得到DE=EF, 又DE ⊥CF ,故可判断;
⑤易证△FDC 是等腰直角三角形,则CE =EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .
【详解】
①∵AD 为△ABC 的高线,
∴CBE +∠ABE +∠BAD =90°,
∵Rt △ABE 是等腰直角三角形,
∴∠ABE =∠BAE =∠BAD +∠DAE =45°,AE =BE ,
∴∠CBE +∠BAD =45°,
∴∠DAE =∠CBE ,故①正确;
在△DAE 和△CBE 中,
AE BE DAE CBE AD BC ⎧⎪∠∠⎨⎪⎩
===,
∴△ADE ≌△BCE (SAS );
②∵△ADE ≌△BCE ,
∴∠EDA =∠ECB ,
∵∠ADE +∠EDC =90°,
∴∠EDC +∠ECB =90°,
∴∠DEC =90°,
∴CE ⊥DE ;
故②正确;
③∵∠BDE =∠ADB +∠ADE ,∠AFE =∠ADC +∠ECD ,
∴∠BDE =∠AFE ,
∵∠BED +∠BEF =∠AEF +∠BEF =90°,
∴∠BED =∠AEF ,
在△AEF 和△BED 中,
BDE AFE BED AEF AE BE ∠∠⎧⎪∠∠⎨⎪⎩
===,
∴△AEF ≌△BED (AAS ),
∴BD =AF
故③正确;
∵△AEF ≌△BED
∴DE=EF, 又DE ⊥CF ,
∴△DEF 为等腰直角三角形,故④错误;
④∵AD =BC ,BD =AF ,
∴CD=DF,
∵AD⊥BC,
∴△FDC是等腰直角三角形,
∵DE⊥CE,
∴EF=CE,
∴S△AEF=S△ACE,
∵△AEF≌△BED,
∴S△AEF=S△BED,
∴S△BDE=S△ACE.
故④正确;
故选:D.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证
△BFE≌△CDE是解题的关键.
17.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于G点,交AC于F点,且EG=AE,分别延长CE,BG交于点H,若EH平分∠AEG,HD平分∠CHG则下列说法:①∠GDH=45°;②GD=ED;③EF=2DM;④CG=2DE+AE,正确的是()
A.①②③B.①②④C.②③④D.①②③④
【答案】B
【解析】
【分析】
首先证明△AEC≌△GEC(SAS),推出CA=CG,∠A=∠CGE=45°,推出DE=DG,故②正确;再证明△EDC≌△GDB,推出∠CED=∠BGD,ED=GD,由三角形外角的性质得出
∠HDG=∠HDE,进而得出∠GDH=∠EDH=45°,即可判断①正确;
通过证明△EDC和△EMD是等腰直角三角形,得到ED2MD,再通过证明
△EFC≌△EDC,得到EF=ED,从而可判断③错误;由CG=CD+DG,CD=AD,ED=GD,变形即可判断④正确.
【详解】
∵AC=BC,∠ACB=90°,AD=DB,
∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°.
∵EH平分∠AEG,
∴∠AEH=∠GEH.
∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,∴∠AEC=∠CEG.
∵AE=GE,EC=EC,
∴△AEC≌△GEC(SAS),
∴CA=CG,∠A=∠CGE=45°.
∵∠EDG=90°,
∴∠DEG=∠DGE=45°,
∴DE=DG,∠AEF=∠DEG=∠A=45°,
故②正确;
∵DE=DG,∠CDE=∠BDG=90°,DC=DB,
∴△EDC≌△GDB(SAS),
∴∠CED=∠BGD,ED=GD.
∵HD平分∠CHG,
∴∠GHD=∠EHD.
∵∠CED=∠EHD+∠HDE,∠BGD=∠GHD+∠HDG,∴∠HDG=∠HDE.
∵∠EDG=∠ADC=90°,
∴∠GDH=∠EDH=45°,故①正确;
∵∠EDC=90°,ED=GD,
∴△EDC是等腰直角三角形,
∴∠DEG=45°.
∵∠GDH=45°,
∴∠EDH=45°,
∴△EMD是等腰直角三角形,
∴ED MD.
∵∠AEF=∠DEG=∠A=45°,
∴∠AFE=∠CFG=90°.
∵∠EDC=90°,
∴∠EFC=∠EDC=90°.
∵EH平分∠AEG,
∴∠AEH=∠GEH.
∵∠FEC=∠GEH,∠DEC=∠AEH,
∴∠FEC=∠DEC.
∵EC=EC,
∴△EFC≌△EDC,
∴EF=ED,
∴EF=2MD.
故③错误;
∵CG=CD+DG=AD+ED=AE+ED+ED,
∴CG=2DE+AE,
故④正确.
故选B.
【点睛】
本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.
18.如图, 在△DAE中, ∠DAE=40°, B、C两点在直线DE上,且∠BAE=∠BEA,∠CAD=
∠CDA,则∠BAC的大小是()
A.100°B.90°C.80°D.120°
【答案】A
【解析】
【分析】
由已知条件,利用了中垂线的性质得到线段相等及角相等,再结合三角形内角和定理求解.【详解】
解:
如图,∵BG是AE的中垂线,CF是AD的中垂线,
∴AB=BE,ACECD
∴∠AED=∠BAE=∠BAD+∠DAE,∠CDA=∠CAD=∠DAE+∠CAE,
∵∠DAE+∠ADE+∠AED=180°
∴∠BAD+∠DAE+∠DAE+∠CAE+∠DAE=3∠DAE+∠BAD+∠EAC=120°+∠BAD+
∠EAC=180°
∴∠BAD+∠EAC=60°
∴.∠BAC=∠BAD+∠EAC+∠DAE=60°+40°=100°;
故选:A
【点睛】
本题考查了中垂线的性质、三角形内角和定理及等腰三角形的判定与性质;找着各角的关系利用内角和列式求解是正确解答本题的关键.
19.如图,已知,点A (0,0)、B (43,0)、C (0,4),在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B 1A 2B 2,第3个△B 2A 3B 3,…则第2017个等边三角形的边长等于( )
A 3
B 3
C 3
D 3
【答案】A
【解析】
【分析】
【详解】
根据锐角三函数的性质,由OB=3OC=1,可得∠OCB=90°,然后根据等边三角形的性质,可知∠A 1AB=60°,进而可得∠CAA 1=30°,∠CA 1O=90°,因此可推导出∠A 2A 1B=30°,同理得到∠CA 2B 1=∠CA 3B 2=∠CA 4B 3=90°,∠A 2A 1B=∠A 3A 2B 2=∠A 4A 3B 3=30°,故可得后一个等边三角形的边长等于前一个等边三角形的边长的一半,即OA 1=OCcos ∠CAA 1=3B 1A 2=1232⨯2017个等边三角形的边长为:2017201513()4322
⨯=. 故选A.
【点睛】
此题主要考查了等边三角形的性质,属于规律型题目,解题关键是仔细审图,得出:后一个等边三角形的边长等于前一个等边三角形的边长的一半.
20.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:
①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).
A .①②
B .①③
C .②③
D .①②③
【答案】D
【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出
∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.
详解:∵60BAC ∠=︒,
∴18060120ABC ACB ∠+∠=︒-︒=︒,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴12EBC ABC ∠=∠,12
ECB ACB ∠=∠, ∴11()1206022
EBC ECB ABC ACB ∠+∠=
∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.
如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴AD 为BAC ∠的平分线,
∴DF DG =,
∴36090260120FDG ∠=︒-︒⨯-︒=︒,
又∵120BDC ∠=︒,
∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.
∴BDF CDG ∠=∠,
∵在BDF 和CDG △中,
90BFD CGD DF DG
BDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩
, ∴BDF ≌()CDG ASA ,
∴DB CD =, ∴1(180120)302
DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,
∵BE 平分ABC ∠,AE 平分BAC ∠,
∴ABE CBE ∠=∠,1302
BAE BAC ∠=
∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,
∴DEB DBE ∠=∠,
∴DB DE =,故②正确.
∵DB DE DC ==,
∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,
∴2BDE BCE ∠=∠,故③正确,
综上所述,正确结论有①②③,
故选:D .
点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.。