2017年全国高中联赛一试(B卷)数学试题及答案

合集下载

2017年全国数学竞赛真题AB卷

2017年全国数学竞赛真题AB卷

2017年全国数学竞赛真题AB卷2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(x f x f .又当70x 时,)9(log )(2x x f ,则)100(f 的值为__________. 2.若实数y x,满足1cos 22y x ,则y x cos 的取值范围是__________.3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________. 4.若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是5.正三棱锥ABC P中,1AB ,2AP ,过AB 的平面将其体积平分,则棱PC 与平面所成角的余弦值为__________.6.在平面直角坐标系xOy 中,点集1,0,1,),(y x y x K .在K 中随机取出三个点,则这三点中存在两点之间距离为5的概率为__________. 7.在ABC 中,M 是边BC 的中点,N 是线段BM 的中点.若3A ,ABC 的面积为3,则AN AM 的最小值为__________.8.设两个严格递增的正整数数列n n b a ,满足:20171010b a ,对任意正整数n ,有n n n a a a 12,n n b b 21,则11b a 的所有可能值为__________.二、解答题9.设m k,为实数,不等式12m kx x 对所有b a x ,成立.证明:22ab .10.设321,,x x x 是非负实数,满足1321x x x ,求)53)(53(321321x x x x x x 的最小值和最大值.11.设复数21,z z 满足0)Re(1z ,0)Re(2z ,且2)R e()R e(2221z z (其中)Re(z 表示复数z 的实部).(1)求)Re(21z z 的最小值;(2)求212122z z z z 的最小值. 2017年全国高中数学联赛A 卷二试一.如图,在ABC 中,AC AB ,I 为ABC 的内心,以A 为圆心,AB 为半径作圆1,以I 为圆心,IB 为半径作圆2,过点I B,的圆3与1,2分别交于点Q P,(不同于点B ).设IP 与BQ 交于点R .证明:CRBR 二.设数列n a 定义为11a ,,2,1,,,,1n n a n a n a n a a n n n n n .求满足20173r a r 的正整数r 的个数. 三.将3333方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值. 四.设n m,均是大于1的整数,n m,n a a a ,,,21是n 个不超过m 的互不相同的正整数,且n a a a ,,,21互素.证明:对任意实数x ,均存在一个)1(n i i ,使得x m m x a i )1(2,这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A 卷一试答案1.2.3.4.5.6.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分. 1.在等比数列{}n a 中,22a ,333a ,则1201172017a a a a 的值为.2.设复数z 满足91022z z i ,则||z 的值为. 3.设()f x 是定义在R 上的函数,若2()f x x 是奇函数,()2x f x 是偶函数,则(1)f 的值为. 4.在ABC 中,若sin 2sin A C ,且三条边,,a b c 成等比数列,则cos A 的值为. 5.在正四面体ABCD 中,,E F 分别在棱,AB AC 上,满足3BE ,4EF ,且EF 与平面BCD 平行,则DEF 的面积为. 6.在平面直角坐标系xOy 中,点集{(,)|,1,0,1}K x y x y ,在K 中随机取出三个点,则这三个点两两之间距离均不超过2的概率为. 7.设a 为非零实数,在平面直角坐标系xOy 中,二次曲线2220x ay a 的焦距为4,则a 的值为. 8.若正整数,,a b c 满足2017101001000a b c ,则数组(,,)a bc 的个数为.二、解答题(本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa 对所有[1,2]x 成立,求实数a 的取值范围.10.设数列{}n a 是等差数列,数列{}n b 满足212nn n n b a a a ,1,2,n . (1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ,并且存在正整数,s t ,使得s t a b 是整数,求1||a 的最小值.11.在平面直角坐标系xOy 中,曲线21:4C y x ,曲线222:(4)8C x y ,经过1C 上一点P作一条倾斜角为45的直线l ,与2C 交于两个不同的点,Q R ,求||||PQ PR 的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ,令max{,,}d a b c ,证明:2(1)(1)(1)1a b c d 二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集N 分拆为k 个互不相交的子集12,,,k A A A ,每个子集i A 中均不存在4个数,,,a b c d (可以相同),满足ab cd m .三、(本题满分50分)如图,点D 是锐角ABC 的外接圆上弧BC 的中点,直线DA 与圆过点,B C 的切线分别相交于点,P Q ,BQ 与AC 的交点为X ,CP 与AB 的交点为Y ,BQ 与CP 的交点为T ,求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ,1220,,,{1,2,,10}b b b ,集合{(,)120,()()0}i j i j X i j i j a a b b ,求X 的元素个数的最大值.一试试卷答案1.答案:89解:数列{}n a 的公比为33232a qa ,故120111201166720171201118()9a a a a a a q a a q . 2.答案:5解:设,,z a bi a b R ,由条件得(9)10(1022)a bi a b i ,比较两边实虚部可得9101022a ab b ,解得:1,2a b ,故12z i ,进而||5z . 3.答案:74解:由条件知,2(1)1((1)(1))(1)1f f f ,1(1)2(1)2f f ,两式相加消去(1)f ,可知:12(1)32f ,即7(1)4f . 4.答案:24解:由正弦定理知,sin 2sin aA cC ,又2b ac ,于是::2:2:1a b c ,从而由余弦定理得:222222(2)122cos 24221b c aA bc . 5.答案:233解:由条件知,EF 平行于BC ,因为正四面体ABCD 的各个面是全等的正三角形,故4AE AF EF ,7AD AB AE BE .由余弦定理得,222cos60DE AD AE AD AE 49162837,同理有37DF . 作等腰DEF 底边EF 上的高DH ,则122EH EF ,故2233DH DE EH ,于是12332DEF S EF DH .6.答案:514解:注意K 中共有9个点,故在K 中随机取出三个点的方式数为3984C 种,当取出的三点两两之间距离不超过2时,有如下三种情况:(1)三点在一横线或一纵线上,有6种情况,(2)三点是边长为1,1,2的等腰直角三角形的顶点,有4416种情况,(3)三点是边长为2,2,2的等腰直角三角形的顶点,其中,直角顶点位于(0,0)的有4个,直角顶点位于(1,0),(0,1)的各有一个,共有8种情况.综上可知,选出三点两两之间距离不超过2的情况数为616830,进而所求概率为3058414.7.答案:1172解:二次曲线方程可写成2221xy a a ,显然必须0a ,故二次曲线为双曲线,其标准方程为22221()()yx a a ,则2222()()c a a a a ,注意到焦距24c ,可知24a a ,又0a ,所以1172a .8.答案:574解:由条件知2017[]21000c ,当1c 时,有1020b ,对于每个这样的正整数b ,由10201b a 知,相应的a 的个数为20210b ,从而这样的正整数组的个数为2010(1022)11(20210)5722b b ,当2c时,由201720[]100b ,知,20b ,进而2017200[]20110a ,故200,201a ,此时共有2组(,,)a b c .综上所述,满足条件的正整数组的个数为5722574.9.解:设2x t ,则[2,4]t ,于是|||5|t a t 对所有[2,4]t 成立,由于22|||5|()(5)t a t t a t ,(25)(5)0t a a ,对给定实数a ,设()(25)(5)f t t a a ,则()f t 是关于t 的一次函数或常值函数,注意[2,4]t ,因此()0f t 等价于(2)(1)(5)0(4)(3)(5)0f a a f a a ,解得35a 所以实数a 的取值范围是35a .10.解:(1)设等差数列{}n a 的公差为d ,则22123112()()n n n n n n n n b b a a a a a a 23111()()()n nn n n n n a a a a a a a 212()n n n a d a a d 221(2)3n n n a a a d d 所以数列{}n b 也是等差数列.(2)由已知条件及(1)的结果知:23d d ,因为0d,故13d ,这样2212()(2)n n nn n n n b a a a a d a d a 22329n nda d a 若正整数,s t 满足st a b Z ,则1122(1)(1)99s t s t a b a b a s d a t d 122239s t a Z . 记122239s t l a ,则l Z ,且1183(31)1a l s t 是一个非零的整数,故1|18|1a ,从而11||18a . 又当1118a 时,有1311711818a b Z ,综上所述,1||a 的最小值为118.11.解:设2(,2)P t t ,则直线l 的方程为22yx t t ,代入曲线2C 的方程得,222(4)(2)8x x t t ,化简可得:222222(24)(2)80x t t x t t ①,由于l 与2C 交于两个不同的点,故关于x 的方程①的判别式为正,计算得,222222222(24)2((2)8)(2)8(2)162(2)164t t t t t t t t t t。

《全国高中数学联赛真题暨答案(2011-2021)

《全国高中数学联赛真题暨答案(2011-2021)
ቤተ መጻሕፍቲ ባይዱ
2011 年全国高中数学联赛二试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2020 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 72 2020 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 78 2020 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 84 2020 年全国高中数学联赛二试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 89 2019 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 93 2019 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 97 2019 年全国高中数学联赛一试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 101 2019 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 105 2018 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 109 2018 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 114 2018 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 118 2018 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 122 2017 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 125 2017 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 133 2017 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 141 2017 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 147 2016 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 2016 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 2015 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 2015 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 2014 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 2014 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 2013 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 2013 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 2012 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2012 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 2011 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 2011 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

2017年全国高中数学联合竞赛试题(B卷)

2017年全国高中数学联合竞赛试题(B卷)

2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分。

1、在等比数列{}n a 中,22=a ,333=a ,则2017720111a a a a ++为2、设复数z 满足i z z 22109+=+,则z 的值为3、设)(x f 是定义在R 上的函数,若2)(x x f +是奇函数,x x f 2)(+是偶函数,则)1(f 的值 为在平面直角坐标系xOy 中,椭圆C 的方程为110922=+y x ,F 是C 的焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积最大值为4、在ABC ∆中,若C A sin 2sin =,且三条边c b a ,,成等比数列,则A cos 的值为5、在正四面体ABCD 中,F E ,分别在棱AC AB ,上,满足4,3==EF BE ,且EF 与面BCD 平行,则DEF ∆的面积为 .6、在平面直角坐标系xOy 中,点集{}1,0,1,|),(-==y x y x K ,在K 中随机取出三个点,则这三个点两两之间距离不超过2的概率为7、设a 为非零实数,在平面直角坐标系xOy 中,二次曲线0222=++a ay x 的焦距为4,则实数a 的值为 .8、若正整数c b a ,,满足c b a 1000100102017≥≥≥,则数组),,(c b a 的个数为二、解答题:本大题共3小题,共56分。

解答应写出文字说明、证明过程或演算步骤。

9、(本题满分16分) 设为实数,不等式x x a 252-<-对所有[]2,1∈x 成立,求实数a 的取值范围。

10、(本题满分20分)设数列{}n a 是等差数列,数列{}n b 满足221n n n n a a a b -=++, ,2,1=n(1)证明:数列{}n b 也是等差数列;(2) 设数列{}n a 、{}n b 的公差均是0≠d ,并且存在正整数t s ,,使得t s b a +是整数,求1a 的最小值。

(完整版)2017年高考全国卷I-数学试题及答案,推荐文档

(完整版)2017年高考全国卷I-数学试题及答案,推荐文档

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |},则31x <A .{|0}A B x x =< B .A B =RC .{|1}A B x x => D .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .13,p p B .14,p p C .23,p p D .24,p p 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件。

2017年全国高中数学联赛一试(B卷)答案

2017年全国高中数学联赛一试(B卷)答案
x x 9. (本题满分 16 分)设不等式 2 a 5 2 对所有
成立,求实 成立.由于
解:设 t 2 x ,则 t [2, 4] ,于是
对所有
t a 5 t (t a ) 2 (5 t ) 2 (2t a 5)(5 a ) 0 . ………………8 分 对给定实数 a ,设 f (t ) (2t a 5)(5 a ) ,则 f (t ) 是关于 t 的一次函数或常 值函数.注意 t [2, 4] ,因此 f (t ) < 0 等价于 f (2) (1 a )(5 a ) 0, ………………12 分 f (4) (3 a )(5 a ) 0, 解得 3 a 5 . 所以实数 a 的取值范围是 3 a 5 . ………………16 分 10. ( 本 题 满 分 20 分 ) 设 数 列 {an } 是 等 差 数 列 , 数 列 {bn } 满 足 2 , n 1, 2, . bn an1an2 an (1)证明:数列 {bn } 也是等差数列; (2) 设数列 {an } 、 并且存在正整数 s, t , 使得 as bt {bn } 的公差均是 d 0 , 是整数,求 a1 的最小值. 解: (1)设等差数列 {an } 的公差是 d ,则 2 2 bn1 bn ( an2an3 an 1 ) ( an1an2 an ) an2 ( an3 an1 ) ( an1 an )( an1 an ) an2 2d ( an1 an ) d
2017 年全国高中数学联合竞赛一试(B 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不得增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 在等比数列 {an } 中, a2 2, a3 3 ,则

2017年全国高中数学联赛(四川初赛)试题及答案

2017年全国高中数学联赛(四川初赛)试题及答案

2017年全国高中数学联赛(四川初赛)试题及答案22017年全国高中联合竞赛(四川初赛)试题一、单项选择题(本大题共6个小题,每小题5分,共30分)1.已知函数2()ln f x a x x =+在1x =处有极值,则实数a 的值是 ( A )A.2-B.1-C.1D.22.已知0,(,),tan ,tan αβπαβ∈是方程2310x x ++=的两个根,则cos()αβ-的值是( B )A.13B.233.在8()x y z ++的展开式中,所有形如2(,)a bx y z a b N ∈的项的系数之和是 ( C )A.112B.448C.1792D.143364.已知12,F F 为椭圆222210()x y a b ab+=>>的左、右焦点,该椭圆上存在两点,A B ,使得123F A F B =,则该椭圆的离心率的取值范围是 ( C )A.102(,)B.103(,) C.112(,) D.113(,) 5.已知ABC ∆中,3AB BC CA AB ⋅=⋅,则||||||AC AB BC +的最大值是( B )3A.13 B.23C.3D.26.已知数列{}na满足:11))()nnna n N =-∈,用[]x 表示不超过实数x 的最大整数,则2017[]a 的个位数字是 ( A )A.2B.4C.6D.8二、填空题(本大题共6个小题,每小题5分,共30分)7.已知函数25255()x xf x =+,则201612017()k kf ==∑______________。

答案:1008。

8.设a R ∈,复数1232234,,z a i z a i z a i =+=+=+,其中i 是虚数单位。

若123||,||,||z z z 呈等比数列,则实数a 的值是_______________。

答案:0。

9.若(,)P x y 是双曲线22184x y -=上的点,则||x y -的最小值是________________。

2017年普通高等学校招生全国统一考试数学(含答案)

2017年普通高等学校招生全国统一考试数学(含答案)

2017年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<32}B.A∩B=⌀C.A∪B={x|x<32}D.A∪B=R2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π45.已知F是双曲线C:x2-y 23=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.13B.12C.23D.326.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )7.设x,y满足约束条件{x+3y≤3,x-y≥1,y≥0,则z=x+y的最大值为( )A.0B.1C.2D.38.函数y=sin2x1-cosx的部分图象大致为( )9.已知函数f(x)=ln x+ln(2-x),则( )A. f(x)在(0,2)单调递增B. f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+211.△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=√2,则C=( )A.π12B.π6C.π4D.π312.设A,B是椭圆C:x 23+y2m=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,√3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,√3]∪[4,+∞)第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m= .14.曲线y=x2+1x在点(1,2)处的切线方程为.15.已知α∈(0,π2),tan α=2,则cos(α-π4)= .16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;,求该四棱锥的侧面积.(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为8319.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 1 2 3 4 5 6 7 8零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04抽取次序9 10 11 12 13 14 15 16零件尺寸10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得x =116∑i=116x i =9.97,s=√116∑i=116(x i -x )2=√116(∑i=116x i 2-16x 2)≈0.212,√∑i=116(i -8.5)2≈18.439,∑i=116(x i -x )(i-8.5)=-2.78,其中x i 为抽取的第i 个零件的尺寸,i=1,2, (16)(1)求(x i ,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(x -3s,x +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (i)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii)在(x -3s,x +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01) 附:样本(x i ,y i )(i=1,2,…,n)的相关系数r=∑i=1n(x i -x )(y i -y )√∑i=1n (x i -x )√∑i=1n(y i -y ).√0.008≈0.09.20.(12分)设A,B 为曲线C:y=x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM⊥BM,求直线AB 的方程.21.(12分)已知函数f(x)=e x(e x-a)-a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为{x =3cosθ,y =sinθ(θ为参数),直线l 的参数方程为{x =a +4t ,y =1-t(t 为参数). (1)若a=-1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为√17,求a.23.[选修4—5:不等式选讲](10分)已知函数f(x)=-x 2+ax+4,g(x)=|x+1|+|x-1|. (1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a 的取值范围.2017年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.A 本题考查集合的运算.由3-2x>0得x<32,则B={x |x <32},所以A∩B={x |x <32},故选A.2.B 本题考查样本的数字特征.统计问题中,体现数据的稳定程度的指标为数据的方差或标准差.故选B.3.C 本题考查复数的运算和纯虚数的定义. A.i(1+i)2=i×2i=-2; B.i 2(1-i)=-(1-i)=-1+i; C.(1+i)2=2i;D.i(1+i)=-1+i,故选C. 4.B 本题考查几何概型.设正方形的边长为2,则正方形的内切圆的半径为1,其中黑色部分和白色部分关于正方形的中心对称,则黑色部分的面积为π2,所以在正方形内随机取一点,此点取自黑色部分的概率P=π22×2=π8,故选B.5.D 本题考查双曲线的几何性质. 易知F(2,0),不妨取P 点在x 轴上方,如图.∵PF⊥x 轴,∴P(2,3),|PF|=3,又A(1,3), ∴|AP|=1,AP⊥PF, ∴S △APF =12×3×1=32.故选D.6.A 本题考查线面平行的判定.B 选项中,AB ∥MQ,且AB ⊄平面MNQ,MQ ⊂平面MNQ,则AB ∥平面MNQ;C 选项中,AB ∥MQ,且AB ⊄平面MNQ,MQ ⊂平面MNQ,则AB ∥平面MNQ;D 选项中,AB ∥NQ,且AB ⊄平面MNQ,NQ ⊂平面MNQ,则AB ∥平面MNQ.故选A.7.D 本题考查简单的线性规划问题. 作出约束条件表示的可行域如图:平移直线x+y=0,可得目标函数z=x+y 在A(3,0)处取得最大值,z max =3,故选D.8.C 本题考查函数图象的识辨.易知y=sin2x1-cosx 为奇函数,图象关于原点对称,故排除B 选项;sin 2≈sin 120°=√32,cos 1≈cos 60°=12,则f(1)=sin21-cos1=√3,故排除A 选项; f(π)=sin2π1-cos π=0,故排除D 选项,故选C.9.C 本题考查函数的图象与性质.函数f(x)=ln x+ln(2-x)=ln[x(2-x)],其中0<x<2,则函数f(x)由f(t)=ln t,t(x)=x(2-x)复合而成,由复合函数的单调性可知,x ∈(0,1)时, f(x)单调递增,x ∈(1,2)时, f(x)单调递减,则A 、B 选项错误;t(x)的图象关于直线x=1对称,即t(x)=t(2-x),则f(x)=f(2-x),即f(x)的图象关于直线x=1对称,故C 选项正确,D 选项错误.故选C. 10.D 本题考查程序框图问题.本题求解的是满足3n-2n>1 000的最小偶数n,判断循环结构为当型循环结构,即满足条件要执行循环体,不满足条件应输出结果,所以判断语句应为A≤1 000,另外,所求为满足不等式的偶数解,因此中语句应为n=n+2,故选D.11.B 本题考查正弦定理和两角和的正弦公式.在△ABC 中,sin B=sin(A+C),则sin B+sin A(sin C-cos C) =sin(A+C)+sin A(sin C-cos C)=0,即sin Acos C+cos Asin C+sin Asin C-sin Acos C=0,∴cos Asin C+sin Asin C=0,∵sin C≠0,∴cos A+sin A=0,即tan A=-1,即A=34π. 由a sinA =c sinC 得√22=√2sinC ,∴sin C=12,又0<C<π4,∴C=π6,故选B.12.A 本题考查圆锥曲线的几何性质.当0<m<3时,椭圆C 的长轴在x 轴上,如图(1),A(-√3,0),B(√3,0),M(0,1).图(1)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB≥120°,则|MO|≤1,即0<m≤1; 当m>3时,椭圆C 的长轴在y 轴上,如图(2),A(0,√m ),B(0,-√m ),M(√3,0)图(2)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB≥120°,则|OA|≥3,即√m ≥3,即m≥9.综上,m ∈(0,1]∪[9,+∞),故选A.二、填空题 13.答案 7解析 本题考查向量数量积的坐标运算. ∵a=(-1,2),b=(m,1),∴a+b=(m -1,3),又(a+b)⊥a, ∴(a+b)·a=-(m-1)+6=0,解得m=7. 14.答案 x-y+1=0解析 本题考查导数的几何意义.∵y=x 2+1x,∴y'=2x -1x2,∴y'|x=1=2-1=1,∴所求切线方程为y-2=x-1,即x-y+1=0.15.答案3√1010解析 因为α∈(0,π2),且tan α=sinαcosα=2,所以sin α=2cos α,又sin 2α+cos 2α=1,所以sin α=2√55,cos α=√55,则cos (α-π4)=cos αcos π4+sin αsin π4=√55×√22+2√55×√22=3√1010.16.答案 36π解析 由题意作出图形,如图.设球O 的半径为R,由题意知SB⊥BC,SA⊥AC,又SB=BC,SA=AC,则SB=BC=SA=AC=√2R.连接OA,OB,则OA⊥SC,OB⊥SC,因为平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,所以OA⊥平面SCB,所以OA⊥OB,则AB=√2R,所以△ABC 是边长为√2R 的等边三角形,设△ABC 的中心为O 1,连接OO 1,CO 1. 则OO 1⊥平面ABC,CO 1=23×√32×√2R=√63R,则OO 1=√R 2-(√63R)2=√33R,则V S-ABC =2V O-ABC =2×13×√34(√2R)2×√33R=13R 3=9, 所以R=3.所以球O 的表面积S=4πR 2=36π.三、解答题17.解析 本题考查等差、等比数列. (1)设{a n }的公比为q,由题设可得{a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q=-2,a 1=-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n·2n+13.由于S n+2+S n+1=-43+(-1)n·2n+3-2n+23=2[-23+(-1)n·2n+13]=2S n ,故S n+1,S n ,S n+2成等差数列.18.解析 本题考查立体几何中面面垂直的证明和几何体侧面积的计算. (1)证明:由已知∠BAP=∠CDP=90°, 得AB⊥AP,CD⊥PD. 由于AB∥CD,故AB⊥PD, 从而AB⊥平面PAD. 又AB ⊂平面PAB, 所以平面PAB⊥平面PAD.(2)在平面PAD 内作PE⊥AD,垂足为E.由(1)知,AB⊥平面PAD, 故AB⊥PE,可得PE⊥平面ABCD. 设AB=x,则由已知可得AD=√2x,PE=√22x. 故四棱锥P-ABCD 的体积V P-ABCD =13AB·AD·PE=13x 3.由题设得13x 3=83,故x=2.从而PA=PD=2,AD=BC=2√2,PB=PC=2√2.可得四棱锥P-ABCD 的侧面积为12PA·PD+12PA·AB+12PD·DC+12BC 2sin 60°=6+2√3.19.解析 本题考查统计问题中的相关系数及样本数据的均值与方差. (1)由样本数据得(x i ,i)(i=1,2,…,16)的相关系数为r=∑i=116(x i -x )(i -8.5)√∑i=1(x i -x )2√∑i=1(i -8.5)2=0.212×√16×18.439≈-0.18.由于|r|<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i)由于x =9.97,s≈0.212,由样本数据可以看出抽取的第13个零件的尺寸在(x -3s,x +3s)以外,因此需对当天的生产过程进行检查.(ii)剔除离群值,即第13个数据,剩下数据的平均数为115×(16×9.97-9.22)=10.02, 这条生产线当天生产的零件尺寸的均值的估计值为10.02.∑i=116x i 2=16×0.2122+16×9.972≈1 591.134,剔除第13个数据,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008,这条生产线当天生产的零件尺寸的标准差的估计值为√0.008≈0.09.20.解析 本题考查直线与抛物线的位置关系. (1)设A(x 1,y 1),B(x 2,y 2),则x 1≠x 2,y 1=x 124,y 2=x 224,x 1+x 2=4, 于是直线AB 的斜率k=y 1-y2x 1-x 2=x 1+x 24=1.(2)由y=x 24,得y'=x2,设M(x3,y3),由题设知x32=1,解得x3=2,于是M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|.将y=x+m代入y=x 24得x2-4x-4m=0.当Δ=16(m+1)>0,即m>-1时,x1,2=2±2√m+1.从而|AB|=√2|x1-x2|=4√2(m+1).由题设知|AB|=2|MN|,即4√2(m+1)=2(m+1),解得m=7.所以直线AB的方程为y=x+7.21.解析本题考查了利用导数研究函数的单调性、最值.(1)函数f(x)的定义域为(-∞,+∞), f '(x)=2e2x-ae x-a2=(2e x+a)(e x-a).①若a=0,则f(x)=e2x,在(-∞,+∞)单调递增.②若a>0,则由f '(x)=0得x=ln a.当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0.故f(x)在(-∞,ln a)单调递减,在(ln a,+∞)单调递增.③若a<0,则由f '(x)=0得x=ln(-a2).当x∈(-∞,ln(-a2))时,f '(x)<0;当x∈(ln(-a2),+∞)时, f '(x)>0.故f(x)在(-∞,ln(-a2))单调递减,在(ln(-a2),+∞)单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=ln a时, f(x)取得最小值,最小值为f(ln a)=-a2ln a,从而当且仅当-a 2ln a≥0,即a≤1时, f(x)≥0.③若a<0,则由(1)得,当x=ln (-a 2)时, f(x)取得最小值,最小值为f (ln (-a2))=a 2[34-ln (-a2)].从而当且仅当a 2[34-ln (-a2)]≥0, 即a≥-2e 34时, f(x)≥0. 综上,a 的取值范围是[-2e 34,1].22.解析 本题考查极坐标与参数方程的应用. (1)曲线C 的普通方程为x 29+y 2=1.当a=-1时,直线l 的普通方程为x+4y-3=0. 由{x +4y -3=0,x 29+y 2=1解得{x =3,y =0或{x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),(-2125,2425).(2)直线l 的普通方程为x+4y-a-4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d=√17.当a≥-4时,d 的最大值为√17,由题设得√17=√17,所以a=8;当a<-4时,d 的最大值为√17,由题设得17=√17,所以a=-16.综上,a=8或a=-16.23.解析 本题考查含绝对值不等式的求解问题.(1)当a=1时,不等式f(x)≥g(x)等价于x2-x+|x+1|+|x-1|-4≤0.①当x<-1时,①式化为x2-3x-4≤0,无解;当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;当x>1时,①式化为x2+x-4≤0,从而1<x≤-1+√17.2所以f(x)≥g(x)的解集为}.{x|-1≤x≤-1+√172(2)当x∈[-1,1]时,g(x)=2.所以f(x)≥g(x)的解集包含[-1,1],等价于当x∈[-1,1]时f(x)≥2.又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,所以f(-1)≥2且f(1)≥2,得-1≤a≤1.所以a的取值范围为[-1,1].。

《全国高中数学联赛真题暨答案(2011-202

《全国高中数学联赛真题暨答案(2011-202

−−→ AF1
·
−−→ AF2
+
−−→ BF1
·
−−→ BF2
=
0,

|AB| |F1F2|
的值为

3.
设a
>
0,函数 f (x)
=
x+
100 x
在区间 (0, a] 上的最小值为 m1,在区间 [a, +∞) 上的
最小值为 m2,若 m1m2 = 2020,则 a 的值为 .
4.
设z
为复数,若
z−2 z−i
为实数(i 为虚数单位),则 |z + 3| 的最小值为
.
5. 在 △ABC 中,AB = 6,BC = 4,边 AC 上的中线长为 √10,则 sin6 A + P − ABC 的所有棱长均为 1,L, M, N 分别为棱 P A, P B, P C 的中点,则该 正三棱锥的外接球被平面 LM N 所截的截面面积为 .
2011 年全国高中数学联赛二试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2020 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 72 2020 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 78 2020 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 84 2020 年全国高中数学联赛二试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 89 2019 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 93 2019 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 97 2019 年全国高中数学联赛一试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 101 2019 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 105 2018 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 109 2018 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 114 2018 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 118 2018 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 122 2017 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 125 2017 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 133 2017 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 141 2017 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 147 2016 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 2016 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 2015 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 2015 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 2014 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 2014 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 2013 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 2013 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 2012 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2012 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 2011 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 2011 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

全国高中数学联赛B卷试题及答案

全国高中数学联赛B卷试题及答案

一试一、选择题:(每小题8分,共64分){}n a 的各项均为正数,且213263236,a a a a a ++=则24a a +的值为.答案:6.解:由于()2222132632424243622,a a a a a a a a a a a =++=++=+且240,a a +>故24 6.a a +=另解:设等比数列的公比为,则52611.a a a q a q +=+又因()()()()()22252132********2223331111112436222,a a a a a a a q a q a q a q a q a q a qa q a q a q aa =++=⋅+⋅+=+⋅⋅+=+=+而240a a +>,从而24 6.a a +={}|12A a a =-≤≤,则平面点集(){},|,,0B x y x y A x y =∈+≥的面积为.答案:7.解:点集如图中阴影部分所示,其面积为 133227.2MRSMNPQ S S-=⨯-⨯⨯=正方形满足22z z z z +=≠(表示的共轭复数),则的所有可能值的积为. 答案:3.解:设()i ,.z a b a b R =+∈由22z z z +=知,222i 22i i,a b ab a b a b -+++=-比较虚、实部得220,230.a b a ab b -+=+=又由z z ≠知0b ≠,从而有230,a +=即32a =-,进而23.2b a a =±+=±于是,满足条件的复数的积为3333i i 3.2222⎛⎫⎛⎫-+--= ⎪⎪ ⎪⎪⎝⎭⎝⎭()(),f x g x 均为定义在上的函数,()f x 的图像关于直线1x =对称,()g x 的图像关于点()1,2-中心对称,且()()391x f x g x x +=++,则()()22f g 的值为.答案:2016. 解:由条件知 ()()002,f g +=①()()22818190.f g +=++=②由()(),f x g x 图像的对称性,可得()()()()02,024,f f g g =+=-结合①知, ()()()()22400 2.f g f g --=+=③由②、③解得()()248,242,f g ==从而()()2248422016.f g =⨯=另解:因为()()391x f x g x x +=++, ①所以()()2290.f g +=②因为()f x 的图像关于直线1x =对称,所以 ()()2.f x f x =-③又因为()g x 的图像关于点()1,2-中心对称,所以函数()()12h x g x =++是奇函数,()()h x h x -=-,()()1212g x g x ⎡⎤-++=-++⎣⎦,从而()()2 4.g x g x =---④将③、④代入①,再移项,得 ()()3229 5.x f x g x x ---=++⑤在⑤式中令0x =,得()()22 6.f g -=⑥由②、⑥解得()()248,246.f g ==于是()()222016.f g =5.将红、黄、蓝3个球随机放入5个不同的盒子,,,,A B C D E 中,恰有两个球放在同一盒子的概率为.解:样本空间中有35125=个元素.而满足恰有两个球放在同一盒子的元素个数为成角的余弦值为.设异面直线,AM BN所成的角为,则112AM BNAM BN⋅-=⋅正整数满足2016n ≤,且不超过的最大整数.解:由于对任意整数,有二、解答题:(共3小题,共56分)9.(16解(100a a =10.(20中,已知AB ⋅(1的长分别记为,a b (2解 (1cos AB AC cb ⋅=222222,.22a cb a bc BA BC CA CB +-+-⋅=⋅=故已知条件化为()()222222223,a a c b a b c ++-=+- 2.c(2)由余弦定理及基本不等式,得11.(20解这意味着符合条件的只可能为加试一、(40(1(2解:由已知条件(1由条件(21.二、(40分)设是正整数,且是奇数.已知的不超过的正约数的个数为奇数,证明:有一个约数,满三、(50点在线段上.四、(50分)设是任意一个11少于负数个数.下面分类讨论:情况一:中没有负数.情况二:中至少有一个负数.它们是中的76,,2,2±±是个17元集合.综上所述,的元素个数的最小值为。

高中数学联赛真题数列B辑(解析版)

高中数学联赛真题数列B辑(解析版)

备战2021年高中数学联赛之历年真题汇编(1981-2020)专题10数列B辑历年联赛真题汇编1.【2020高中数学联赛A卷(第01试)】在等比数列{a n}中, a9=13,a3=1,则log a113的值为.【答案】13【解析】由等比数列的性质知a1a9=(a9a13)2, a1=a93a132=133.所以log a113=13.2.【2019高中数学联赛B卷(第01试)】设等差数列{a n}的各项均为整数,首项a1=2019,且对任意正整数n,总存在正整数m,使得a1+a2+⋯+a n=a m.这样的数列{a n}的个数为.【答案】5【解析】设{a n}的公差为d.由条件知a1+a2=a k(k是某个正整数),则2a1+d=a1+(k−1)d,即(k-2)d=a1,因此必有k≠2,且d=a1k−2.这样就有a n=a1+(n−1)d=a1+n−1k−2a1,而此时对任意正整数n,a1+a2+⋯+a n=a1n+n(n−1)2d=a1+(n−1)a1+n(n−1)2d=a1+((n−1)(k−2)+n(n−1)2)d,确实为{a n}中的一项.因此,仅需考虑使k−2|a1成立的正整数k的个数.注意到2019为两个素数3与673之积,易知k-2可取-1,1,3,673,2019这5个值,对应得到5个满足条件的等差数列.3.【2018高中数学联赛A卷(第01试)】设整数数列a1,a2,⋯,a10满足a10=3a1,a2+a8=2a5,且a i+1∈{1 +a i,2+a i},i=1,2,⋯,9,则这样的数列的个数为.【答案】80【解析】设b i=a i+1−a i∈{1,2}(i=1,2,⋯,9),则有2a1=a10−a1=b1+b2+⋯+b9①b2+b3+b4=a5−a2=a8−a5=b5+b6+b7②用t表示b2,b3,b4中值为2的项数.由②知,t也是b5,b6,b7中值为2的项数,其中t∈{0,1,2,3}.因此b2,b3,⋯,b7的取法数为(C30)2+(C31)2+(C32)2+(C33)2=20.取定b2,b3,⋯,b7后,任意指定b8,b9的值,有22=4种方式.最后由①知,应取b1∈{1,2}使得b1+b2+⋯+b9为偶数,这样的b1的取法是唯一的,并且确定了整数a1的值,进而数列b1,b2,⋯,b9唯一对应一个满足条件的数列a1,a2,⋯,a10.综上可知,满足条件的数列的个数为20×4=80.4.【2018高中数学联赛B卷(第01试)】在平面直角坐标系xOy中,直线l通过原点,n⃑=(3,1)是l的一个法向量.已知数列{a n}满足:对任意正整数n,点(a n+1,a n)均在l上.若a2=6,则a1a2a3a4a5的值为.【答案】−32【解析】易知直线l的方程是3x+y=0.因此对任意正整数n,有3a n+1+a n=0,即a n+1=−13a n,故{a n}是以−13为公比的等比数列于是a3=−13a2=−2.由等比数列的性质可得a1a2a3a4a5=a35=(−2)5=−32.5.【2017高中数学联赛A卷(第01试)】设两个严格递增的正整数数列{a n},{b n}满足:a10=b10<2017,对任意正整数n,有a n+2=a n+1+a n,b n+1=2b n,则a1+b1的所有可能值为.【答案】13、20【解析】由条件可知:a 1,a 2,b 1均为正整数,且a 1<a 2. 由于2017>b 10=29⋅b 1=512b 1,故b 1∈{1,2,3}.反复运用{a n }的递推关系知a 10=a 9+a 8=2a 8+a 7=3a 7+2a 6 =5a 6+3a 5=8a 5+5a 4=13a 4+8a 3=21a 3+13a 2=34a 2+21a 1, 因此21a 1≡a 10=b 10=512b 1≡2b 1( mod 34),而13×21=34×8+1,故有a 1≡13×21a 1≡13×2b 1=26b 1( mod 34) ①另一方面,注意到a 1<a 2,有55a 1<34a 2+21a 1=512b 1,故a 1<51255b 1②当b 1=1时,①、②分别化为a 1≡26( mod 34),a 1<51255,无解当b 1=2时,①、②分别化为a 1≡52( mod 34),a 1<102455,得到唯一的正整数a 1=18,此时a 1+b 1=20.当b 1=3时,①、②分别化为a 1≡78( mod 34),a 1<153655,得到唯一的正整数a 1=10,此时a 1+b 1=13.综上所述,a 1+b 1的所有可能值为13、20.6.【2017高中数学联赛B 卷(第01试)】在等比数列{a n }中,a 2=√2,a 3=√33,则a 1+a2011a 7+a2017的值为.【答案】89【解析】数列{a n }的公比为q =a 3a 2=√33√2,故a 1+a 2011a 7+a 201=a 1+a 2011q 6(a 1+a 2011)=1q 6=89.7.【2016高中数学联赛(第01试)】设a 1,a 2,a 3,a 4是1,2,…,100中的4个互不相同的数,满足(a 12+a 22+a 32)(a 22+a 32+a 42)=(a 1a 2+a 2a 3+a 3a 4)2,则这样的有序数组(a 1,a 2,a 3,a 4)的个数为.【答案】40【解析】由柯西不等式知,(a12+a22+a32)(a22+a32+a42)⩾(a1a2+a2a3+a3a4)2,等号成立的充分必要条件是a1a2=a2a3=a3a4,即a1,a2,a3,a4成等比数列.于是问题等价于计算满足{a1,a2,a3,a4}⊆{1,2,3,⋯,100}的等比数列a1,a2,a3,a4的个数.设等比数列的公比q≠1,且q为有理数.记q=nm,其中m、n为互素的正整数,且m≠n.先考虑n>m的情况:此时a4=a1⋅(nm )3=a1n3m3,注意到m3与n3互素,故l=a1m3为正整数.相应地,a1,a2,a3,a4分别等于m3l,m2nl,mn2l,n3l,它们均为正整数.这表明,对任意给定的q=nm>1,满足条件并以q为公比的等比数列a1,a2,a3,a4的个数,即为满足不等式n3l⩽100的正整数l的个数,即[100n3].由于53>100,故仅需考虑q=2,3,32,4,43,这些情况,相应的等比数列的个数为[100 8]+[10027]+[10027]+[10064]+[10064]=12+3+3+1+1=20.当n<m时,由对称性可知,亦有20个满足条件的等比数列a1,a2,a3,a4,综上可知,共有40个满足条件的有序数组(a1,a2,a3,a4).8.【2014高中数学联赛(第01试)】数列{a n}满足a1=2,a n+1=2(n+2)n+1a n(n∈N∗),则a2014a1+a2+⋯+a2013=.【答案】20152013【解析】由题设a n=2(n+1)n a n−1=2(n+1)n⋅2nn−1a n−2=⋯=2(n+1)n⋅2n n−1⋯⋅⋅2⋅32a 1=2n−1(n +1),记数列{a n }的前n 项和为S n ,则S n =2+2×3+22×4+⋯+2n−1(n +1), 所以2S n =2×2+22×3+23×4+⋯+2n (n +1),将上面两式相减, 得S n =2n (n +1)−(2n−1+2n−2+⋯+2+2)=2n (n +1)−2n =2n n ,故a 2014a 1+a 2+⋯+a 2013=22013×201522013×2013=20152013.9.【2013高中数学联赛(第01试)】已知数列{a n }共有9项,其中a 1=a 9=1,且对每个i ∈{1,2,⋯,8},均有a i+1a i∈{2,1,−12},则这样的数列的个数为.【答案】491【解析】令b i =a i+1a i(1⩽i ⩽8),则对每个符合条件的数列{a n },有∏b i8i=1=∏a i+1a i8i=1=a 9a 1=1,(b i ∈{2,1,−12},1⩽i ⩽8)①反之,由符合条件①的8项数列{b n }可唯一确定一个符合题设条件的9项数列{a n }.记符合条件①的数列{b n }的个数为N .显然b i (1≤i ≤8)中有偶数个−12,即2k 个−12;继而有2k 个2,8-4k 个1.当给定k 时,{b n }的取法有C 82k C 8−2k 2k 种,易知k 的可能值只有0,1,2,所以N =1+C 82C 62+C 84C 44=1+28×15+70×1=491.因此,根据对应原理,符合条件的数列{a n }的个数为491.10.【2011高中数学联赛(第01试)】已知a n =C 200n ⋅(√63)200−n⋅(√2)n(n =1,2,⋯,95),则数列{a n }中整数项的个数为 .【答案】15【解析】由题意知a n =C 200n ⋅3200−n3⋅2400−5n6,要使a n (1≤n ≤95)为整数,必有200−n 3,400−5n 6均为整数,从而6|n +4.当n =2,8,14,20,26,32,38,44,50,56,62,68,74,80时,200−n 3和400−5n6均为非负整数,所以a n 为整数,共有14个.当n =86时,a 86=C 20086⋅338⋅2−5, 在C 20086=200!86!⋅114!中,200!中因数2的个数为[2002]+[20022]+[20023]+[20024]+[20025]+[20026]+[20027]=197,同理可计算得86!中因数2的个数为82,114!中因数2的个数为110,所以C 20086中因数2的个数为197−82−110=5,故a 86是整数.当n =92时a 92=C 20092⋅336⋅2−10,在C 20092=200!92!⋅108!中,同样可求得92!中因数2的个数为88,108!中因数2的个数为105.故C 20086中因数2的个数为197−88−105=4,故a 92不是整数. 因此,整数项的个数为14+1=15.11.【2010高中数学联赛(第01试)】已知{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=3,b 1=1,a 2=b 2,3a 5=b 3,且存在常数α,β使得对每一个正整数n 都有a n =log αb n +β,则α+β= .【答案】√33+3【解析】设{a n }的公差为d ,{b n }的公比为q ,则3+d =q①3(3+4d)=q 2②式①代入式②得9+12d =d 2+6d +9,求得d =6,q =9, 从而有3+6(n −1)=log α9n−1+β对一切正整数n 都成立, 即6n −3=(n −1)log α9+β对一切正整数n 都成立. 从而log α9=6,−3=−log α9+β,求得α=√33,β=3,α+β=√33+3.12.【2009高中数学联赛(第01试)】一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是(可以用指数表示)【答案】101×298 【解析】易知: (1)该数表共有100行;(2)每一行构成一个等差数列,且公差依次为d 1=1,d 2=2,d 3=22,⋯,d 99=298, (3)a 100为所求.设第n (n ≥2)行的第一个数为a n ,则a n =a n−1+(a n−1+2n−2)=2a n−1+2n−2=2[2a n−2+2n−3]+2n−2=22[2a n−3+2n−4]+2×2n−2=23a n−3+3×2n−2=⋯=2n−1a 1+(n −1)×2n−2=(n +1)2n−2. 故a 100=101×298.13.【2008高中数学联赛(第01试)】设数列{a n }的前n 项和S n 满足:S n +a n =n−1n(n+1),n =1,2,…,则通项an =. 【答案】12n−1n(n+1)【解析】因为a n+1=S n+1−S n =n (n+1)(n+2)−a n+1−n−1n(n+1)+a n ,即2a n+1=n+2−2(n+1)(n+2)−1n+1+1n(n+1)+a n =−2(n+1)(n+2)+a n +1n(n+1),由此得2(a n+1+1(n+1)(n+2))=a n +1n(n+1),令b n =a n +1n(n+1),因此b 1=a 1+12=12(a 1=0),b n+1=12b n ,故b n =12n,可得a n =12n−1n(n+1).14.【2007高中数学联赛(第01试)】已知等差数列{a n }的公差d 不为0,等比数列{b n }的公比q 是小于1的正有理数.若a 1=d,b 1=d 2,且a 12+a 22+a 32b 1+b 2+b 3是正整数,则q 等于 .【答案】12【解析】因为a 12+a 22+a 32b 1+b 2+b 3=a 12+(a 1+d )2+(a 1+2d )2b 1+b 1q+b 1q 2=141+q+q 2,故由已知条件可知:1+q +q 2为14m,其中m 为正整数.令1+q +q 2=14m,则q =−12+√14+14m−1=−12+√56−3m 4m,由于q 是小于1的正有理数,所以1<14m<3,即5⩽m ⩽13且56−3m 4m是某个有理数的平方,由此可知q =12.15.【2005高中数学联赛(第01试)】将关于x 的多项式f(x)=1−x +x 2−x 3+⋯−x 19+x 20表示为关于y 的多项式g(y)=a 0+a 1y +a 2y 2+⋯+a 19y 19+a 20y 20,其中y =x -4.则a 0+a 1+⋯+a 20=.【答案】521+16【解析】由题设知,f (x )和式中的各项构成首项为1,公比为-x 的等比数列,由等比数列的求和公式,得f(x)=(−x)21−1−x−1=x 21+1x+1,令x =y +4,得g(y)=(y+4)21+1y+5,取y =1,有a 0+a 1+a 2+⋯+a 20=g(1)=521+16.16.【2005高中数学联赛(第01试)】如果自然数a 的各位数字之和等于7,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列a 1,a 2,a 3,…,若a n =2005,则a 5n = .【答案】52000【解析】因为方程x 1+x 2+⋯+x k =m 的非负整数解的个数为C m+k−1m,而使x 1⩾1,x i ⩾0 (i ⩾2)的整数解个数为C m+k−2m−1.现取m =7,可知,k 位“吉祥数”的个数为P(k)=C k+56.2005是形如2abc 的数中最小的一个“吉祥数”,且P(1)=C 66=1,P(2)=C 76=7,P(3)=C 86=28,对于四位“吉祥数”1abc ,其个数为满足a +b +c =6的非负整数解个数,即C 6+3−16=28个.因为2005是第1+7+28+28+1=65个“吉祥数”,即a 65=2005.从而n =65,5n =325,又P(4)=C 96=84,P(5)=C 106=210,而∑5k=1P(k)=330,所以从大到小最后6个五位“吉祥数”依次是70000,61000,60100,60010,60001,52000. 故第325个“吉祥数”是52000,即a 5n =52000.17.【2004高中数学联赛(第01试)】已知数列a 0,a 1,a 2,⋯,a n ,⋯满足关系式(3-a n +1)(6+a n )=18,且a 0=3,则∑1a ini=0的值是 .【答案】13(2n+2−n −3)【解析】设b n =1a n(n =0,1,2,⋯),则(3−1b n+1)(6+1b n)=18,即3b n+1−6b n−1=0.所以b n+1=2b n +13,b n+1+13=2(b n +13),故数列{b n +13}是公比为2的等比数列.因此b n +13=2n (b 0+13)=2n (1a 0+13)=13×2n+1,所以b n =13(2n+1−1),则∑1a ini=0=∑b in i=0=∑13ni=0(2i+1−1)=13[2(2n+1−1)2−1−(n +1)]=13(2n+2−n −3).18.【2003高中数学联赛(第01试)】设M n ={(十进制)n 位纯小数0.a 1a 2⋯a n |a i 只取0或1(i =1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则limn→∞S nT n= .【答案】118【解析】因为M n 中的小数的小数点后均有n 位,而除最后一位上的数字必为1外,其余各位上的数字均有两种选择(0或1)方法,故T n =2n−1,又因在这2n−1个数中,小数点后第n 位上的数字全是1,而其余各位上数字是0或1,各有一半.故:S n =12⋅2n−1(110+1102+⋯+110n−1)+2n−1⋅110n =2n−2⋅110(1−110n−1)1−110+2n−1⋅110n=2n−2⋅19(1−110n−1)+2n−1⋅110n,故limS n T n=lim n→∞[118(1−110n−1)+110n]=118.19.【2000高中数学联赛(第01试)】设a n 是(3−√x)n 的展开式中x 项的系数(n =2,3,4,…),则lim n→∞(32a 2+33a 3+⋯+3n a n)= .【答案】18【解析】由题意,由二项式定理有a n =C n 23n−2, 所以3n a n=3n ×2n(n−1)=18(1n−1−1n),所以lim n→∞(32a 2+33a 3+⋯+3n a n)=lim n→∞18(1−12+12− 13+⋯+1n−1−1n)=lim n→∞18(1−1n)=18.20.【2000高中数学联赛(第01试)】等比数列a+log23,a+log43,a+log83的公比是.【答案】13【解析】由题意,不妨设公比为q,可知q=a+log43a+log23=a+log83a+log43,又根据比例的性质,有q=a+log43−(a+log83) a+log23−(a+log43)=log43−log83log23−log43=12log23−13log23log23−12log23=13.21.【1999高中数学联赛(第01试)】已知正整数n不超过2000,并且能表示成不少于60个连续正整数之和,那么,这样的n的个数是.【答案】6【解析】首项为a的连续k个正整数之和为S k=ka+k(k+1)2⩾k(k+1)2,由S k⩽2000可得60⩽k⩽62,当k=60时S k=60a+30×59,由S k⩽2000可得a⩽3,故S k=1830,1890,1950;当k=61时S k=61a+30×61,由S k⩽2000可得a≤2,故S k=1891,1952;当k=62时S k=62a+31×61,由S k⩽2000可得a≤1,故S k=1953.所以题中的n有6个.22.【1998高中数学联赛(第01试)】各项为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有项.【答案】8【解析】设a1,a2,⋯,a n是公差为4的等差数列,则a12+a2+a3+⋯+a n⩽100,等价于a12+(a1+4)+[a1+4(n−1)]2(n−1)⩽100,等价于a12+(n−1)a1+(2n2−2n−100)⩽0①当且仅当Δ=(n−1)2−4(2n2−2n−100)⩾0时,至少不存在一个实数a1满足不等式①.因为Δ⩾0等价于7n2−6n−401⩽0,等价于n1⩽n⩽n2②其中n1=3−√28167<0,8<n2=3+√28167<9,所以,满足不等式②的自然数n的最大值为8,即满足题设的数列至多有8项.23.【1994高中数学联赛(第01试)】已知95个数a1,a2,a3,⋯,a95,每个数都只能取+1或-1两个值之一,那么它们的两两之积的和a1a2+a1a3+⋯+a94a95的最小值是.【答案】13【解析】记N=a1a2+a1a3+⋯+a94a95①设a1,a2,⋯,a95中有m个+1,n个-1,则m+n=95②式①乘2,加上a12+a22+⋯+a952=95得(a1+a2+⋯+a95)2=2N+95.又a1+a2+⋯+a95=m−n,所以(m−n)2=2N+95.使上式成立的最小自然数N=13,此时(m−n)2=112,即m−n=±11③联立式②与③可求出m=53,n=42或m=42,n=53.据此可构造出N达到最小值的情况,故所求最小正值为13.24.【1992高中数学联赛(第01试)】设x,y,z是实数,3x,4y,5z成等比数列,且1x ,1y,1z成等差数列,则xz+zx的值是.【答案】3415【解析】由题意得{(4y)2=15xz①2y=1x+1z②,由式②得y =2xz x+z,以此代入式①有16(2xz x+z)2=15xz ,即(x+z)2xz=6415,故x z+z x=3415.25.【1992高中数学联赛(第01试)】设数列a 1,a 2,⋯,a n ,⋯满足a 1=a 2=1,a 3=2,且对任何自然数n ,都有a n a n+1a n+2≠1,又a n a n+1a n+2a n+3=a 1+a n+1+a n+2+a n+3,则a 1+a 2+⋯+a 100的值是 .【答案】200【解析】因为a 1=a 2=1,a 3=2,又a 1a 2a 3a 4=a 1+a 2+a 3+a 4,所以a 4=4. 又由条件得a n a n+1a n+2a n+3=a n +a n+1+a n+2+a n+3, a n+1a n+2a n+3a n+4=a n+1+a n+2+a n+3+a n+4.将上述两式相减,得a n+1a n+2a n+3(a n −a n+4)=a n −a n+4, 即(a n −a n+4)(a n+1a n+2a n+3−1)=0. 依已知条件a n+1a n+2a n+3≠1,故a n+4=a n . 从而∑a k 100i=1=1004(a 1+a 2+a 3+a 4)=200.26.【1988高中数学联赛(第01试)】(1)设x ≠y ,且两数列x,a 1,a 2,a 3,y 和b 1,x,b 2,b 3,y,b 4均为等差数列,那么b 4−b 3a 2−a 1= .(2)(√x +2)2n+1的展开式中,x 的整数次幂的各项系数之和为.(3)在△ABC 中,已知∠A =a ,CD ,BE 分别是AB ,AC 上的高,则DE BC= .(4)甲、乙两队各出7名队员按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛……直到有一方队员全被淘汰为止,另一方获胜,形成一种比赛过程,那么所有可能出现的比赛过程的种数为.【答案】3432【解析】(1)设两个数列的公差分别为d,d',则y−x=4d=3d′,dd′=34.所以b4−b3a2−a1=2d′d=2×43=223.(2)设(√x+2)2n+1=f(x)+√xg(x),其中f(x),g(x)是x的多项式,那么所求的是f(1).而(2+√x)2n+1+(2−√x)2n+1=f(x)+√xg(x)+f(x)−√xg(x),所以f(1)=12[(2+√1)2n+1+(2−√1)2n+1]=12(32n+1+1).(3)因为∠BDC=∠BEC,所以B,D,E,C共圆.∠ADE=∠ACB,△AED∽△ABC,DE2BC2=SΔAEDSΔABC=AD⋅AEAB⋅AC=cos2a.所以DEBC=|cosa|.(4)设甲队队员为a1,a2,⋯,a7,乙队队员为b1,b2,⋯,b7,下标表示事先安排好的出场顺序,比赛过程可表示为这14个字母互相穿插地依次排列,其前后顺序就是先后被淘汰的顺序,但最后一定是胜队中不被淘汰的队员和可能未曾参赛的队员,所以比赛过程表示为14个位置中任取7个位置安排甲队员(当然,其余位置安排乙队队员),比赛过程的总数为C147=3432.优质模拟题强化训练1.一个三角形的三条边成等比数列,那么,公比q的取值范围是__________.【答案】√5−12<q<√5+12【解析】设三边按递增顺序排列为a,aq,aq2,其中a>0,q≥1.则a+aq>aq2,即q2−q−1<0.解得1−√52<q<1+√52.由q≥1 知q的取值范围是1≤q<1+√52.设三边按递减顺序排列为a,aq,aq2,其中a>0,0<q<1.则aq2+aq>a,即q2+q−1>0.解得√5−12<q<1.综上所述,1−√52<q<1+√52.2.在数列{a n}中,a1=2,a n+a n+1=1(n∈N+),设S n为数列{a n}的前n项和,则S2017−2S2018+S2019的值为____________ .【答案】3【解析】当n为偶数时,a1+a2=a3+a4=⋯=a n−1+a n=1,故S n=n2.当n奇数时,a1=2,a2+a3=a4+a5=⋯=a n−1+a n=1,故S n=2+n−12=n+32.故S2017−2S2018+S2019=1010−2018+1011=3.故答案为:3.3.已知集合A ={1,2,3,…,2019},对于集合A 的每一个非空子集的所有元素,计算它们乘积的倒数.则所有这些倒数的和为____________ . 【答案】2019 【解析】集合A 的22019-1个非空子集中,每一个集合的所有元素之积分别为:1,2,…,2019,1×2,1×3…,2018×2019,…,1×2×…×2019,它们的倒数和为1+12+⋯+12019+11×2+11×3+⋯+12018×2019+⋯+11×2×⋯×2019=(1+1)(1+12)⋯(1+12019)−1=2×32×⋯×20202019−1=2019.故答案为:2019.4.已知数列{a n }满足:a n =[(2+√5)n +12n](n ∈N ∗),其中[x ]表示不超过实数x 的最大整数.设C 为实数,且对任意的正整数n ,都有∑1a k a k+2nk=1⩽C ,则C 的最小值是_____ .【答案】1288 【解析】记x 1=2+√5,x 2=2−√5,则a n =[x 1n+12n ]. 记T n =x 1n +x 2n,则T n+2=(x 1+x 2)T n+1−x 1x 2T n =4T n+1+T n ,而T 1=x 1+x 2=4,T 2=x 12+x 22=(x 1+x 2)2−2x 1x 2=18,因此,对任意的正整数n ,T n ∈Z .又注意到−12<2−√5<0,从而|x 2|<12,于是−1+12n ⩽−12n <x 2n<12n .因此,x 1n +x 2n −1<x 1n +12n −1<a n ⩽x 1n +12n =x 1n +(−1+12n )+1<x 1n +x 2n +1. 又注意到x 1n +x 2n −1,a n ,x 1n +x 2n +1均为整数,故a n =x 1n +x 2n. 于是a n+2=4a n+1+a n ,且a 1=4,a 2=18.又1ak a k+2=14⋅4a k+1a k a k+1a k+2=14⋅a k+2−a k a k a k+1a k+2=14(1a k a k+1−1a k+1a k+2),故∑1a k a k+2nk=1=14∑(1a k a k+1−1a k+1a k+2)nk=1=14(1a 1a 2−1a n+1a n+2)=1288−14a n+1a n+2.显然a n >0,于是a n+2>4a n+1,从而a n ⩾4n−2a 2(n ⩾2), 故limn→∞1a n+1a n+2=0.因此,∑1a k a k+2nk=1<1288,且lim n→∞(∑1a k a k+2nk=1)=1288.所以,常数C 的最小值为1288.故答案为:1288.5.等差数列{a n }中,a 2=5,a 6=21,记数列{1a n}的前n 项和为S n ,若S 2n+1−S n ⩽m15对任意的n ∈N +恒成立,则正整数m 的最小值为____________ . 【答案】5 【解析】由题意可得:{a 1+d =5a 1+5d =21,解得a 1=1,d =4,∴1a n=11+4(n−1)=14n−3,∵(S 2n+1−S n )−(S 2n+3−S n+1)=(1a n+1+1a n+2+⋯+1a2n+1)−(1a n+2+1a n+3+⋯+1a2n+3)=1a n+1−1a2n+2−1a2n+3=14n+1−18n+5−18n+9=(18n+2−18n+5)+(18n+2−18n+9)>0,∴数列{S2n+1−S n}(n∈N∗)是递减数列,数列{S2n+1−S n}(n∈N∗)的最大项为S3−S1=15+19=1445,∵1445⩽m15,∴m⩾143,又∵m是正整数,∴m的最小值为5.故答案为:5.6.公差为d,各项皆为正整数的等差数列{a n},若a1=1919,a m=1949,a n=2019,则正整数m+n的最小值是___ _________ .【答案】15【解析】1949=1919+(m−1)d,2019=1919+(n−1)d,显然有m>1,n>1,d=30m−1,以及d=100n−1,得去d得:10m−3n=7,其通解为{m=1+3tn=1+10t,为使m>1,n>1且d为正整数,则正整数t只能在{1,2,5,10}中取值(因(30,100)=10,t取值只能为10的正因数).当t=1时,m=4,n=11为最小,此时m+n=15.故答案为:15.7.数列{a n}满足:a0=√3,a n+1=[a n]+1{a n}(其中[a n]和{a n}分别表示实数a n的整数部分与小数部分),则a2019= ____________ .【答案】3029+√3−12【解析】a0=1+(√3−1),a1=1√3−1=2+√3−12,a2=2√3−1=3+√3=4+(√3−1),a3=4√3−1=5+√3−12,归纳易得,a2k=3k+1+(√3−1),a2k+1=3k+2+√3−12.因此a2019=3029+√3−12.故答案为:3029+√3−12.8.设等差数列{a n}的公差为d(d≠0),前n项和为S n.若数列{√8S n+2n}也是公差为d的等差数列,则数列{a n}的通项a n=________.【答案】4n−94【解析】设a n=a1+(n−1)d=dn+a,这里a=a1-d,于是S n=na1+n(n−1)2d=d2n2+(a1−d2)n=d2n2+(a+d2)n,所以√8S n+2n=√4dn2+(8a+4d+2)n,故√4dn2+(8a+4d+2)n=dn+b,这里b=√8a1+2−d.所以4dn2+(8a+4d+2)n=d2n2+2bdn+b2,于是4d=d2,8a+4d+2=2bd,b2=0,解得d=4,b=0,a=−94,故a n=4n−94.故答案为:4n−94.9.设数列{a n}满足:a1=1,4a n+1−a n+1a n+4a n=9,则a2018=______.【答案】53【解析】由4a n+1−a n+1a n+4a n=9可得(4−a n)(4−a n+1)=7.设b n=4−a n,则有b n b n+1=7.又b1=4−a1=3,故b2=73.一般地,有b2k−1=3,b2k=73,于是a2k−1=4−3=1,a2k=4−73=53,所以a2018=53.10.数列{a n}满足a1=1,a2=3,且a n+2=|a n+1|−a n(n∈N+),记{a n}的前n项和为S n.则S100=_________ _.【答案】89【解析】由已知得a k+9=a k,则S100=a1+11(a1+a2+⋯+a9)=8911.已知数列{a n}前n项和为S n,a1=15,且对任意正整数m、n,均有a m+n=a m a n若S n<a对任意的n∈Z+恒成立,则实数a的最小值为______.【答案】14【解析】由题意,取m =1得a n+1=a 1a n =15a n .又a 1=15,则{a n }是以为首项、为公比的等比数列,即a n =15n (n ∈Z +)故S n =a 1+a 2+⋯+a n =15+152+⋯+15n =15×1−15n 1−15=14(1−15n ) 由对任意的n ∈Z +,均有S n <a 1,知a =14.12.已知数列{a n }满足a 1=0,|a n+1|=|a n −2|.记数列{a n }的前2016项和为S .则S 的最大值为______.【答案】2016【解析】由|a k+1|=|a k −2|⇒a k+12=a k 2−4a k +4(k =1,2,⋅⋅⋅,2016).累加得a 20172=a 12−4S +4×2016≥0.因此,S ≤2016.当k 为奇数时,a k =0;当k 为偶数时,a k =2,此时可取等号. 13.已知数列{a n }满足a n+1=3n+1⋅a n a n +3n+1,a 1=3,则数列{a n }的通项公式是______. 【答案】a n =2⋅3n 3n −1【解析】 由a n+1=3n+1⋅a n an +3n+1可得1a n+1−1a n =13n+1,a 1=3, 则1a 2−1a 1=132,1a 3−1a 2=133,⋅⋅⋅,1a n −1a n−1=13n .以下用累加法得,1a n −1a 1=132+133+⋅⋅⋅+13n . 得到1a n =13+132+⋅⋅⋅+13n =13(1−13n )1−13=12(1−13n ),从而,a n =2⋅3n3n −1.14.在数列{a n }中,若a n 2−a n−12=p(n ≥2,n ∈N ∗,p 为常数),则称{a n }为“等方差数列”.下列是对“等方差数列”的判断:①数列{(−1)n }是等方差数列;②若{a n }是等方差数列,则{a n 2}是等差数列;③若{a n }是等方差数列,则{a kn }(k ∈N ∗,k 为常数)也是等方差数列; ④若{a n }既是等方差数列,又是等差数列,则该数列为常数列.其中正确的命题序号为________.(将所有正确的命题序号填在横线上)【答案】①②③④【解析】①因为[(−1)n ]2−[(−1)n−1]2=0,所以{(−1)n }符合“等方差数列”定义; ②根据定义,显然{a n 2}是等差数列;③a kn 2−a k(n−1)2=a kn 2−a kn−12+a kn−12−a kn−22+⋯+a kn−k+12−a k(n−1)2=kp 符合定义; ④数列{a n }满足a n 2−a n−12=p ,a n −a n−1=d (d 为常数).若d=0,显然{a n }为常数列; 若d≠0,则两式相除得a n +a n−1=p d ,所以a n =d 2+p 2d (常数),即{a n }为常数列.故答案为:①②③④15.设数列{a n }满足a 1=1 ,a n+1=5a n +1 (n =1,2,…),则 ∑2018n=1a n =________.【答案】5201916−807716【解析】由a n+1=5a n +1⇒a n+1+14=5(a n +14)⇒a n =5n 4−14,所以∑2018n=1a n =14(51+52+⋯+52018)−20184=516(52018−1)−20184=5201916−807716.16.已知数列{a n }满足a 1=1,a n+1=na n +2(n+1)2n+2,则数列{a n }的通项公式为__________. 【答案】16n(n +1)(n +2)【解析】由题设得(n +2)a n+1=na n +2(n +1)2⇒(n +1)(n +2)a n+1=n(n +1)a n +2(n +1)3. 令b n =n(n +1)a n ,则b 1=2,b n+1=b n +2(n +1)3.故b n =b 1+∑(b i+1−b i )n−1i=1=2(1+23+33+⋯+n 3)=12n 2(n +1)2.于是,数列{a n }的通项公式为a n =b n n(n+1)=12n(n +1). 因此,前n 项的和为S n =12(∑n k=1k 2+∑n k=1k) =12[n(n+1)(2n+1)6+n(n+1)2]=16n(n +1)(n +2).17.已知2015个正整数a 1,a 2,⋯,a 2015满足a 1=1,a 2=8,a n+1=3a n −2a n−1(n ≥2,且n ∈N).则a 2015−a 2014的所有正因子之和为_________。

2017年全国高中数学联赛(福建省赛区)预赛暨2017年福建省高中数学竞赛试卷及答案

2017年全国高中数学联赛(福建省赛区)预赛暨2017年福建省高中数学竞赛试卷及答案

2017年全国高中数学联赛(福建省赛区)预赛 暨2017年福建省高中数学竞赛试卷参考答案(考试时间:2017年5月21日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。

请直接将答案写在题中的横线上) 1.已知集合{}2log (1)1A x x =-<,{}2B x x a =-<,若A B ⋂≠∅,则实数a 的取值范围为。

【答案】(15)-,【解答】由2log (1)1x -<,得012x <-<,13x <<,(13)A =,。

由2x a -<,得22x a -<-<,22a x a -<<+,(22)B a a =-+,。

若A B ⋂=∅,则21a +≤或23a -≥,1a ≤-或5a ≥。

∴ A B ⋂≠∅时,a 的取值范围为(15)-,。

2.已知()f x 是定义在R 上的奇函数,且函数(1)y f x =+为偶函数,当10x -≤≤时,3()f x x =,则9()2f =。

【答案】18【解答】由函数(1)y f x =+为偶函数,知(1)(1)f x f x -+=+。

又()f x 为奇函数,∴ (2)()()f x f x f x +=-=-,(4)(2)()f x f x f x +=-+=。

∴ 391111()()()()22228f f f ==--=--=。

3.已知{}n a 为等比数列,且120171a a =,若22()1f x x =+,则12320()()()()f a f a f a f a ++++=L 。

【答案】2017【解答】由22()1f x x =+知,2222212222()()211111()x f x f x x x x x+=+=+=++++。

∵ {}n a 为等比数列,且120171a a =, ∴ 12017220163201521a a a a a a a a =====L 。

2017年全国高中数学联赛一试二试试题整理详解汇编(一试二试为A卷)(教师版)

2017年全国高中数学联赛一试二试试题整理详解汇编(一试二试为A卷)(教师版)
综上所述, 的所有可能值为
二、解答题:(本大题共3小题,满分56分.解答应写出文字说明、证明过程或解答步骤).
9、(本题满分16分)设 为实数,不等式 对所有 成立,证明: .
证明:令 则 于是
当 时不等式等号成立,故所求的最小值为1.
因为
当 时不等式等号成立,故所求的最大值为
11.(本题满分20分)设复数 满足 且 (其中 表示复数 的实部).
2017年全国高中数学联赛一试试题参考答案
一、填空题(本大题共8小题,每小题8分,共64分)
1、设 是定义在 上的函数,对任意实数 有 .又当 时, ,则 的值为.
【答案】
【解析】由条件知,
2、若实数 满足 ,则 的取值范围是.
【答案】
3、在平面直角坐标系 中,椭圆 的方程为 , 为 的上焦点, 为 的右顶点, 是 上位于第一象限内的动点,则四边形 的面积的最大值为.
所以
又易知直线 在平面 上的射影是直线
所以
故棱 与平面 所成的角的余弦值为
6、在平面直角坐标系 中,点集 ,在 中随机取出三个点,则这三点中存在两点之间距离为 的概率为.
【答案】
【解析】易知 中有9个点,故在 中随机取出三个点的方式数为 种.
将中的点按图标记为 ,其中有8对点之间的距离为 ,由对称性,考虑取 两点的情况,则剩下的一个点有7种取法,这样有 个三点组(不计每组中三点的顺序),对每个 , 中恰有 两点与之距离为 (这里下标按模8理解),因而恰有 这8个三点组被计了两次,从而满足条件的三点组个数为 ,进而所求概率为 .
【答案】
【解析】易知 设 的坐标是 则
其中 时,四边形 面积的最大值为
4、若一个三位数中任意两个相邻数码的差均不超过1,则称其为“平稳数”.平稳数的个数是.

2017高中数学全国联赛试题及答案B卷

2017高中数学全国联赛试题及答案B卷

2017高中数学全国联赛试题及答案B卷一、选择题(每题5分,共30分)1. 下列函数中,哪个函数是奇函数?A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin x \)D. \( y = \cos x \)答案:B2. 已知函数 \( f(x) = \frac{1}{x} \),那么 \( f(1) \) 的值是多少?A. 0B. 1C. -1D. 不存在答案:B3. 计算下列极限:\( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是多少?A. 0B. 1C. 2D. 无穷大答案:B4. 已知 \( a \) 和 \( b \) 是两个正数,且 \( a + b = 1 \),那么 \( a^2 + b^2 \) 的最小值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{4} \)答案:D5. 一个圆的半径是 \( r \),那么它的面积 \( A \) 与半径 \( r \) 之间的关系是什么?A. \( A = \pi r \)B. \( A = 2\pi r \)C. \( A = \pi r^2 \)D. \( A = 4\pi r^2 \)答案:C6. 已知 \( \log_2 8 = 3 \),那么 \( \log_2 16 \) 的值是多少?A. 4B. 2C. 3D. 1答案:A二、填空题(每题5分,共20分)1. 计算 \( \int_{0}^{1} x^2 dx \) 的值是 _______。

答案:\( \frac{1}{3} \)2. 如果 \( \sin \theta = \frac{1}{2} \),那么 \( \cos 2\theta \) 的值是 _______。

答案:\( \frac{1}{2} \)3. 一个等差数列的前三项分别是 2,5,8,那么它的第五项是_______。

2017高中数学全国联赛试题及答案B卷

2017高中数学全国联赛试题及答案B卷

2017高中数学全国联赛试题及答案B卷一、选择题(每题5分,共30分)1. 若函数f(x) = x^2 - 4x + 3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的首项a1 = 3,公差d = 2,求第5项a5的值。

A. 13B. 15C. 17D. 19答案:A3. 计算复数z = 3 + 4i的模。

A. 5B. √41C. 7D. √49答案:A4. 已知圆的方程为(x-2)^2 + (y-3)^2 = 25,求圆心到直线2x + 3y- 12 = 0的距离。

A. 2B. 3C. 4D. 5答案:C5. 计算定积分∫(0到1) (3x^2 - 2x + 1) dx。

A. 1B. 2C. 3D. 4答案:B6. 已知函数y = sin(x) + cos(x),求y'的值。

A. cos(x) - sin(x)B. cos(x) + sin(x)C. -cos(x) + sin(x)D. -cos(x) - sin(x)答案:B二、填空题(每题5分,共20分)7. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f'(2)的值。

答案:58. 计算二项式(3x - 2)^5的展开式中含x^3的系数。

答案:-809. 若直线y = 2x + 1与抛物线y^2 = 4x相交于点A和点B,求AB的长度。

答案:√510. 计算定积分∫(0到π) sin(x) dx。

答案:2三、解答题(每题10分,共50分)11. 已知函数f(x) = x^3 - 3x^2 + 2x,求f'(x)和f''(x)。

答案:f'(x) = 3x^2 - 6x + 2,f''(x) = 6x - 612. 已知数列{an}满足a1 = 2,an+1 = 2an + 1,求证:数列{an}是递增的。

答案:略13. 已知圆心在原点,半径为r的圆与直线y = x + b相切,求b的值。

2017年高考全国卷I-数学试题及答案(K12教育文档)

2017年高考全国卷I-数学试题及答案(K12教育文档)

2017年高考全国卷I-数学试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考全国卷I-数学试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考全国卷I-数学试题及答案(word版可编辑修改)的全部内容。

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分.考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁.考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则A .{|0}AB x x =<B .A B =RC .{|1}A B x x =>D .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年全国高中数学联合竞赛一试(B 卷)
一、填空题:本大题共8个小题,每小题8分,共64分.
1.在等比数列{}n a
中,2a =
,3a =12011
72017
a a a a ++的值为 .
2.设复数z 满足91022z z i +=+,则||z 的值为 .
3.设()f x 是定义在R 上的函数,若2()f x x +是奇函数,()2x f x +是偶函数,则(1)f 的值为 .
4.在ABC ∆中,若sin 2sin A C =,且三条边,,a b c 成等比数列,则cos A 的值为 .
5.在正四面体ABCD 中,,E F 分别在棱,AB AC 上,满足3BE =,4EF =,且EF 与平面BCD 平行,则DEF ∆的面积为 .
6.在平面直角坐标系xOy 中,点集{(,)|,1,0,1}K x y x y ==-,在K 中随机取出三个点,则这三个点两两之间距离均不超过2的概率为 .
7.设a 为非零实数,在平面直角坐标系xOy 中,二次曲线2
2
2
0x ay a ++=的焦距为4,则a 的值为 .
8.若正整数,,a b c 满足2017101001000a b c ≥≥≥,则数组(,,)a b c 的个数为 .
二、解答题 (本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.)
9.设不等式|2||52|x
x
a -<-对所有[1,2]x ∈成立,求实数a 的取值范围.
10.设数列{}n a 是等差数列,数列{}n b 满足2
12n n n n b a a a ++=-,1,2,
n =.
(1)证明:数列{}n b 也是等差数列;
(2)设数列{}n a 、{}n b 的公差均是0d ≠,并且存在正整数,s t ,使得s t a b +是整数,求1||a 的最小值. 11.在平面直角坐标系xOy 中,曲线21:4C y x =,曲线222:(4)8C x y -+=,经过1C 上一点P 作一条倾斜角为45的直线l ,与2C 交于两个不同的点,Q R ,求||||PQ PR 的取值范围.
试卷答案
1.答案:
89
解:数列{}n a
的公比为32a q a ==
,故120111201166720171201118()9a a a a a a q a a q ++===++. 2.
解:设,,z a bi a b R =+∈,由条件得(9)10(1022)a bi a b i ++=+-+,比较两边实虚部可得
9101022
a a
b b +=⎧⎨
=-+⎩,解得:1,2a b ==,故12z i =+
,进而||z 3.答案:74
-
解:由条件知,2(1)1((1)(1))(1)1f f f +=--+-=---,1(1)2(1)2
f f +=-+, 两式相加消去(1)f -,可知:12(1)32f +=-
,即7(1)4
f =-. 4.
答案:解:由正弦定理知,
sin 2sin a A c C
==,又2b ac =
,于是::a b c =
,从而由余弦定理得:222222cos 24b c a A bc +-===-
. 5.
答案:解:由条件知,EF 平行于BC ,因为正四面体ABCD 的各个面是全等的正三角形,故4AE AF EF ===,
7AD AB AE BE ==+=.
由余弦定理得,DE
==
同理有DF =作等腰DEF ∆底边EF 上的高DH ,则1
22
EH EF ==
,故DH =, 于是1
2332
DEF S EF DH ∆=
=
6.答案:
514
解:注意K 中共有9个点,故在K 中随机取出三个点的方式数为3
984C =种,
当取出的三点两两之间距离不超过2时,有如下三种情况: (1)三点在一横线或一纵线上,有6种情况,
(2
)三点是边长为4416⨯=种情况,
(3
的等腰直角三角形的顶点,其中,直角顶点位于(0,0)的有4个,直角顶点位于(1,0)±,(0,1)±的各有一个,共有8种情况.
综上可知,选出三点两两之间距离不超过2的情况数为616830++=,进而所求概率为
305
8414
=. 7.
答案:
12
解:二次曲线方程可写成22
21x y a a
--
=,显然必须0a ->
,故二次曲线为双曲线,其标准方程为2221()x a -=-
,则2222
()c a a a =+-=-,注意到焦距24c =,可知24a a -=,又0a <,
所以a =
. 8.答案:574 解:由条件知2017
[
]21000
c ≤=,当1c =时,有1020b ≤≤,对于每个这样的正整数b ,由10201b a ≤≤知,相应的a 的个数为20210b -,从而这样的正整数组的个数为
20
10
(1022)11
(20210)5722
b b =+⨯-=
=∑,
当2c =时,由201720[
]100b ≤≤,知,20b =,进而2017
200[]20110
a ≤≤=, 故200,201a =,此时共有2组(,,)a
b
c .
综上所述,满足条件的正整数组的个数为5722574+=.
9.解:设2x
t =,则[2,4]t ∈,于是|||5|t a t -<-对所有[2,4]t ∈成立,由于
22|||5|()(5)t a t t a t -<-⇔-<-,(25)(5)0t a a ⇔---<,
对给定实数a ,设()(25)(5)f t t a a =---,则()f t 是关于t 的一次函数或常值函数,注意[2,4]t ∈,因
此()0f t <等价于(2)(1)(5)0
(4)(3)(5)0f a a f a a =---<⎧⎨
=--<⎩
,解得35a <<
所以实数a 的取值范围是35a <<.
10.解:(1)设等差数列{}n a 的公差为d ,则22
123112()()n n n n n n n n b b a a a a a a ++++++-=---
23111()()()n n n n n n n a a a a a a a +++++=--+-212()n n n a d a a d ++=-+221(2)3n n n a a a d d ++=--=
所以数列{}n b 也是等差数列.
(2)由已知条件及(1)的结果知:2
3d d =,因为0d ≠,故1
3
d =
,这样22
12()(2)n n n n n n n
b a a a a d a d a ++=-=++- 22
329
n n da d a =+=+
若正整数,s t 满足s t a b Z +∈,则1122(1)(1)99
s t s t a b a b a s d a t d +=++
=+-++-+ 122
239s t a Z +-=+
+∈. 记122
239
s t l a +-=+
+,则l Z ∈,且1183(31)1a l s t =--++是一个非零的整数,故1|18|1a ≥,从而11||18
a ≥.
又当1118a =时,有13117
11818
a b Z +=
+=∈, 综上所述,1||a 的最小值为1
18.
11.解:设2
(,2)P t t ,则直线l 的方程为2
2y x t t =+-,代入曲线2C 的方程得,2
22
(4)(2)8x x t t -++-=, 化简可得:2
2
2
2
22(24)(2)80x t t x t t --++-+=①,
由于l 与2C 交于两个不同的点,故关于x 的方程①的判别式∆为正,计算得,
222222222(24)2((2)8)(2)8(2)162(2)164
t t t t t t t t t t ∆
=-+--+=---+---
222(2)8(2)t t t t =--+-22(2)(28)t t t t =----(2)(2)(4)t t t t =--+-,
因此有(2,0)
(2,4)t ∈-,②
设,Q R 的横坐标分别为12,x x ,由①知,21224x x t t +=-+,2
2121((2)8)2
x x t t =-+, 因此,结合l 的倾斜角为45可知,
2224121212||||2()2()22()2PQ PR x t x t x x t x x t =--=-++ 22224(2)82(24)2t t t t t t =-+--++
43243244482482t t t t t t t =-++-+-+ 4248t t =-+
22(2)4t =-+,③
由②可知,2
2(2,2)
(2,14)t -∈-,故22(2)[0,4)(4,196)t -∈,从而由③得:
22||||(2)4[4,8)(8,200)PQ PR t =-+∈
注1:利用
2C 的圆心到l 的距离小于2C 的半径,列出不等式2
<
同样可以求得②中t 的范围.
注2:更简便的计算||||PQ PR 的方式是利用圆幂定理,事实上,2C 的圆心为(4,0)M ,半径为r =
故22222242||||||(4)(2)48PQ PR PM r t t t t =-=-+-=-+.。

相关文档
最新文档