八年级数学下册6平行4边形课题三角形的中位线 精品导学案 北师大版8

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题三角形的中位线
【学习目标】
1.了解三角形中位线的概念,探索得出三角形中位线定理.
2.经历探索三角形中位线性质的过程,体会转化的数学思想.
【学习重点】
三角形中位线性质定理的推导及应用.
【学习难点】
三角形中位线性质定理的灵活运用.
行为提示:点燃激情,引发学生思考本节课学什么.
行为提示:教会学生怎么交流,先对学,再群学,充分在小组内展示自己,分析答案,提出疑惑,共同解决.
知识链接:三角形中位线有三条,它是任意两条中点的连线段,不同于三角形的中线.
情景导入生成问题
旧知回顾:
1.你能将任意一个三角形分成四个全等的三角形吗?
答:连接每两边的中点,如图.
2.你能通过剪拼的方式,将一个三角形拼成一个与其面积相等的平行四边形吗?
答:能.接上题图,将△ADE 绕点E 旋转180°.
自学互研 生成能力
知识模块 三角形的中位线
阅读教材P 150-151的内容,回答下列问题:
什么是三角形的中位线?三角形中位线定理内容是什么?如何证明? 答:1.连接三角形两边中点的线段叫做三角形的中位线.
2.三角形中位线定理:三角形的中位线平行于第三边且等于第三边的一半.
证明如下:已知如图,DE 是△ABC 的中位线,求证:DE∥BC,DE =1
2
BC.
证明:延长DE 至F ,使FE =DE ,连接CF.在△ADE 和△CFE 中,∵AE =CE ,∠1=∠2,DE =FE ,∴△ADE ≌△CFE ,∴∠A =∠ECF,AD =CF ,∴CF ∥AB.∵BD =AD ,∴CF =BD ,∴四边形DBCF 是平行四边形.∴DF∥BC,DF =
BC ,∴DE ∥BC ,DE =1
2
BC.
范例1:如图1,▱ABCD 的周长为36,对角线AC 、BD 相交于点O.点E 是CD 的中点,BD =12,则△DOE 的周长为15.
(图1)
(图2)
(图3)
仿例1:如图2所示,在Rt △ABC 中,∠B =90°,D 、E 分别是AB 、AC 的中点,DE =4 cm ,AC =10 cm ,则AB =6__cm .
仿例2:如图3,在四边形ABCD 中,AD =BC.E 、F 、G 分别是AB 、CD 、AC 的中点,若∠DAC=36°,∠ACB =84°,则∠FEG 的度数为24°.
范例2:
我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,依次连接各边中点得到中点四边形EFGH.
(1)这个中点四边形EFGH 的形状是平行四边形;
(2)请证明你的结论.
证明:连接AC.∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC ,EF =12AC.同理HG∥AC,HG =1
2
AC.∴EF ∥HG ,EF
=HG.∴四边形EFGH 是平行四边形.
学习笔记:三角形中位线平行第三边并且等于第三边的一半,利用平行关系可以解决角度问题,利用与第三边的关系可以求线段的长和周长.
行为提示:找出自己不明白的问题,先对学,再群学,对照答案,提出疑惑,小组内解决不了的问题,写在小黑板上,在小组展示的时候解决.
学习笔记:
教会学生整理反思. 仿例1:
如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若∠CDE=48°,则∠APD 等于( B )
A .42°
B .48°
C .52°
D .58° 仿例2:;如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,
CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( D ) A .7 B .9 C .10 D .11
交流展示 生成新知
【交流预展】
1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”. 【展示提升】
知识模块 三角形的中位线
检测反馈 达成目标
【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.
课后反思 查漏补缺
1.收获:________________________________________________________________________
2.存在困惑:________________________________________________________________________教
师个人研修总结
在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。

所以在学习上级的精神下,本期个人的研修经历如下:
1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。

2.观摩研讨:以年级组、教研组为单位,围绕一定的主题,定期组织教学观摩,开展以课例为载体的“说、做、评”系列校本研修活动。

3.师徒结对:充分挖掘本校优秀教师的示范和带动作用,发挥学校名师工作室的作用,加快新教师、年轻教师向合格教师和骨干教师转化的步伐。

4.实践反思:倡导反思性教学和教育叙事研究,引导教师定期撰写教学反思、教育叙事研究报告,并通过组织论坛、优秀案例评选等活动,分享教育智慧,提升教育境界。

5.课题研究:立足自身发展实际,学校和骨干教师积极申报和参与各级教育科研课题的研究工作,认真落实研究过程,定期总结和交流阶段性研究成果,及时把研究成果转化为教师的教育教学实践,促进教育质量的提高和教师自身的成长。

6.专题讲座:结合教育教学改革的热点问题,针对学校发展中存在的共性问题和方向性问题,进行专题理论讲座。

7.校干引领:从学校领导开始,带头出示公开课、研讨课,参与本校的教学观摩活动,进行教学指导和引领。

8.网络研修:充分发挥现代信息技术,特别是网络技术的独特优势,借助教师教育博客等平台,促进自我反思、同伴互助和专家引领活动的深入、广泛开展。

我们认识到:一个学校的发展,将取决于教师观念的更新,人才的发挥和校本培训功能的提升。

多年来,我们学校始终坚持以全体师生的共同发展为本,走“科研兴校”的道路,坚持把校本培训作为推动学校建设和发展的重要力量,进而使整个学校的教育教学全面、持续、健康发展。

反思本学期的工作,还存在不少问题。

很多工作在程序上、形式上都做到了,但是如何把工作做细、做好,使之的目的性更加明确,是继续努力的方向。

另外,我校的研修工作压力较大,各学科缺少领头羊、研修氛围有待加强、师资缺乏等各类问题摆在我们面前。

缺乏专业人员的引领,各方面的工作开展得还不够规范。

相信随着课程改革的深入开展,在市教育教学研究院的领导和专家的亲临指导下,我校校本研修工作一定能得以规范而全面地展开。

“校本研修”这种可持续的、开放式的继续教育模式,一定能使我校的教育教学工作又上一个台阶。

相关文档
最新文档