【浙教版】2017年浙江省温州市七年级数学第一学期期末考试卷

合集下载

2017-2018学年浙教版七年级数学上册期末考试试题及答案

2017-2018学年浙教版七年级数学上册期末考试试题及答案

2017-2018学年七年级数学上册期末测试卷一.单选题(共10题;共30分)1.现有四种说法:①-a表示负数;②若|x|=-x,则x<0;③绝对值最小的有理数是0;④3×102x2y是5次单项式;其中正确的是( )A. ①B. ②C. ③D. ④2.已知|3x|﹣y=0,|x|=1,则y的值等于()A. 3或﹣3B. 1或﹣1C. -3D. 33.给出条件:①两条直线相交成直角;②两条直线互相垂直;②一条直线是另一直线的垂线,并且能否以上述任何一个为条件得出另外两个为内容的结论,正确的是()A. 能B. 不能C. 有的能有的不能D. 无法确定4.若(a+1)2+|b﹣2|=0,化简a(x2y+xy2)﹣b(x2y﹣xy2)的结果为()A. 3x2yB. ﹣3x2y+xy2C. ﹣3x2y+3xy2D. 3x2y﹣xy25.如果向右走5步记为+5,那么向左走3步记为()A. +3B. ﹣3C. +D. ﹣6.下列四种运算中,结果最大的是()A. 1+(﹣2)B. 1﹣(﹣2)C. 1×(﹣2)D. 1÷(﹣2)7.一个长为19cm,宽为18cm的长方形,如果把这个长方形分成若干个正方形要求正方形的边长为正整数,那么该长方形最少可分成正方形的个数()A. 5个B. 6个C. 7个D. 8个8.在解方程3x+时,去分母正确的是()A. 18x+2(2x-1)=18-3(x+1)B. 3x+(2x-1)=3x-(x+1)C. 18x+(2x-1)=18-(x+1)D. 3x+2(2x-1)=3-3(x+1)9.在数轴上,点A表示的数是﹣5,点C表示的数是4,若AB=2BC,则点B在数轴上表示的数是()A. 1或13B. 1C. 9D. ﹣2或1010.如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有()A. 1条B. 2条C. 3条D. 5条二.填空题(共8题;共24分)11.若|m﹣3|+(n+2)2=0,则m+2n的值为________ .12.一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此规律排列,则第7个单项式为 ________。

浙教版七年级数学第一学期期末检测卷及答案

浙教版七年级数学第一学期期末检测卷及答案

浙教版七年级数学第一学期期末检测试题考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,必须在答题纸指定位置填写学校、班级、姓名、座位号(写在学校上面). 3.必须在答题卷的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明. 4.不能使用计算器;考试结束后,上交答题纸.试题卷一、仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案. 1.3的倒数是( ) A .-3B .3C .31D .31-2.实数a,b,c 在数轴上的位置如图,则下列关系正确的是( )A .c >a >0>bB .a >b >0>cC .b >0>a >cD . b >0>c >a3.2014年6月止,高新区(滨江)实现地区生产总值279.8亿元,比去年增长11.5%.近似数279.8亿是精确到( )位A .十分B .千C .万D .千万4.在实数:1415926.3,2, 010010001.1(每两个1之间依次多一个0),.5.1.3,722中, 有理数...的个数为( )A .1B .2C .3D . 4 5.一个角的补角是它的余角的3倍,则这个角的度数是( ) A .30° B .45° C .60° D .75°6.如图所示,直线AB ,CD 相交于点O ,OD 平分∠BOE ,∠AOC =42°,则∠AOE 的度数为( ) A .126° B .96° C .102° D .138° 7.下列图形中,表示立体图形的个数是( ).A .2个B .3个C .4个D .5个8.下列说法正确的是( )A .若MN=2MC ,则点C 是线段MN 的中点B .点到直线的距离是指从直线外一点到这条直线的垂线的长度C .有MB MA AB +=,NB NA AB +<,则点M 在线段AB 上,点N 在线段AB 外(第2题)bac(第10题)(第11题)D .一条射线把一个角分成两个角,这条射线是这个角的平分线9.某种商品的进价为300元,出售标价为440元,后来由于该商品积压,商店准备打折销售,但要保证利润率为10%,则商店可打( ) A .6折 B .6.5折C .7.3折D .7.5折10.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①,图②,已知大长方形的长为a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( ) (用a 的代数式表示) A .a - B .aC .a 21-D .21二、认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11.粗心的小马在画数轴时只标了单位长度(一格表示单位长度为1)和正方向,而忘了标上原点(如图),若点B 和点C 表示的两个数的绝对值相等,则点A 表示的数是▲ .12.请你写出一个同时符合下列条件的代数式,(1) 同时含有字母,a b ;(2) 是一个4次单项式;(3)它的系数是一个负无理数, 你写出的一个代数式是 ▲ .13.已知(),0422=++-y x 则x y = ▲ .14. 若3-=x 是关于x 的方程 1+=m x 的解,则关于x 的方程1)12(2+=+m x 的解为 ▲ . 15.已知S 1=x, S 2=3S 1 -2, S 3=3S 2 -2, S 4=3S 3-2,...,S 2014=3S 2 013-2,则 S 2014= ▲ .(结果用含x 的代数式表示).16.已知∠AOB =α,∠BOC =β,(α>β),且OD ,OE 分别为∠AOB ,∠BOC 的角平分线,则∠DOE 的度数为 ▲ (结果用α,β的代数式表示).三、全面答一答 (本题有7个小题, 共66分)解答应写出文字说明, 说理过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17.(本小题满分12分)计算:(1))24()8765143(-⨯-+-(2)42110.51233⎡⎤---⨯⨯--⎣⎦() (3)327421-+- (4) 38°54'+72.5°(结果用度表示) 18.(本小题满分6分)解方程:(1)321+=-y y (2)x -23x +=1-12x -(第19题)19.(本小题满分8分)如图:点C 是∠AOB 的边OB 上的一点,按下列要求画图并回答问题. (1)过C 点画OB 的垂线,交OA 于点D ; (2)过C 点画OA 的垂线,垂足为E ;(3)比较线段CE ,OD ,CD 的大小(请直接写出结论);(4)请写出第(3)小题图中与∠AOB 互余的角(不增添其它字母).20.(本小题满分8分)(1)先化简,再求值:)()2(4)(2b a b a b a ---++,其中a =﹣1,b =2.(2)已知代数式c bx x ++2当x =1时它的值为2,当x =1-时它的值为8.求b ,c 的值. 21.(本小题满分10分)如图,4×4方格中每个小正方形的边长都为1. (1)直接写出图(1)中正方形ABCD 的面积及边长;(2)在图(2)的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的顶点上);并把图(2)中的数轴补充完整......,然后用圆规在数轴上表示实数8.22.(本小题满分10分)小聪和小明假期到服装厂参加社会实践活动,设计每1平方米布裁剪成衣身2片或裁剪成衣袖3个,且1片衣身和2个衣袖恰好做成一件衣服,为了充分利用材料,要求做好的衣身和衣袖正好配套. (1)填空:由题意得,每片衣身需要 平方米布,每个衣袖需 平方米布. (2)请用列方程的方法........解决下列问题: ①现有21平方米的布,问最多能做多少件衣服?②若有25平方米的布,问做成的衣身和衣袖能恰好配套吗?请通过计算说明.③现有n 平方米的布,为了使这样设计出来的衣身和衣袖能恰好配套,请求出n 所需要满足的条件.23.(本小题满分12分)已知在数轴上有A ,B 两点, 点A 表示的数为8,点B 在A 点的左边, 且AB =12.若有一动点P 从数轴上点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t 秒. (1)写出数轴上点B ,P 所表示的数(可以用含t 的代数式表示);(第21题图1)CBDA(第23题)(第21题图2)(2)若点P ,Q 分别从A ,B 两点同时出发,问点P 运动多少秒与Q 相距2个单位长度?(3)若M 为AQ 的中点,N 为BP 的中点.当点P 在线段AB 上运动过程中,探索线段MN 与线段PQ 的数量关系.七年级数学 评分标准一. 选择题 (本题有10个小题, 每小题3分, 共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 CCDCBBBCDC二. 填空题 (本题有6个小题, 每小题4分, 共24分) 11 . -3 ; 12. 不唯一)(23b a - ; 13. 16 ;14. 45-=y ; 15. 13x 320132013+- ; 16. 或 (每个给2分)三. 解答题 (本题有4个小题, 共38分) 解答应写出文字说明, 证明过程或推演步骤. 17.(本小题满分12分)(1))24()8765143(-⨯-+-=18-44+21 ----------------------------2分(说明:展开式中每错误一项扣一分) =5- -----------------------------1分(说明:方法不唯一,若答案前的过程都正确,只有最后一步结果错误则给2分)(2)42110.51233⎡⎤---⨯⨯--⎣⎦() = ()110.573--⨯⨯------------------------------2分(说明:化简中每错一项扣一分)61=-----------------------------1分(3)327421-+-=2123+------------------------------2分(说明:化简中每错一项扣一分)2-2= -----------------------------1分(4) 38°54'+72.5°(结果用度表示) =38.75º+72.5°----------------------2分 =111.25°----------------------1分或原式=38°54'+72°30′-----------------------1分 =111°'15 -----------------------------1分 =111.25° -----------------------------1分18.(本小题满分6分)解方程:(1)321+=-y yy-2y 31=+ -----------------------------2分(说明:每个移项正确各得一分)4y -= -----------------------------1分(2)x -23x +=1-12x -6x-2(x+2)63(1)x =-- -----------------------------1分6x-2x-4633x =-+ -----------------------------1分(说明:化错一个括号不得分)713x =-----------------------------1分19.(本小题满分8分)(1) 见图-----------------------------2分(说明:没有垂足扣一分)(2) 见图-----------------------------2分(说明:没有垂足扣一分) 两条垂线画出射线或线段共扣1分(3) CE<CD<OD -----------------------------2分(每个不等式各1分)(4)与∠AOB 互余的角有∠OCE , ∠CDO -----------------2分(说明:写对一个给一分)20.(本小题满分8分)(1)解:原式=2284a b a b a b ++--+--------------------1分=9a b ------------------------------1分当a =﹣1,b =2时,原式=9(1)2⨯-------------------------------1分=11------------------------------1分(2)解:由题意得17b c b c +=⎧⎨-+=⎩-------------------2分(每个方程各1分) 解得34b c =-⎧⎨=⎩------------------------2分(每个值各1分)21.(本小题满分10分)(1)面积=5 ; -----------------------------2分边长分(2)说明:正方形ABCD 画图------------3分 数轴三要素不全扣1分分(弧线轨迹没有不得分)22. (本小题满分10分) 解:方法一、(1) 由题意可知每片一身需要21米布,每个衣袖需要31米布.-----------2分 (2) ①设可以做x 套衣服.则2131221=⨯+x x -----------1分 解得x=18---------------------1分 (不用列方程的方法求得得1分) ②设可以做y 套衣服.2531221=⨯+y y ---------------------1分 解得y=7150---------------------1分 得y=7150不是整数,所以不可能---------------------1分(不用列方程的方法求得得1分) ③设可以做a 套衣服.n a a =⨯+31221 -----------------1分解得76na =-----------------------------------------------1分 因为a 为整数,所以n 是 7的倍数-------------------1分(不用列方程的方法求得1分)方法二、(同方法一不用列方程的方法求得正确,各小题得1分) (2)①设x 米用来做衣身,则做衣袖为(21-x )米 列出方程:2×2x=3(21-x )...............1分 解得x=9所以用21平方米的布恰好做成18件衣服. ..............1分②设y 米用来做衣身,则做衣袖为(25-y )米 列出方程:2×2y=3(25-y )...............1分 解得y=775不是整数...............1分 所以不能恰好配套. ...............1分③设a 米用来做衣身,则做衣袖为(n-a )米 列出方程:2×2a=3(n-a )...............1分解得a=37n...............1分 若需恰好配套,则37n必须是整数,则 n 是 7的倍数. ..............1分23. (本小题满分12分)解:(1)点B,P 点所表示的数分别为-4,8-3t-------------------------2分(各1分)(2)相遇前,则 22312t t ++=-----------------2分得12t =--------------------------1分相遇后,则 22312t t -+=-------------------1分得514=t ------------1分 所以当点P 运动2秒或514秒时与Q 相距2个单位长度. (3)MN=AB-BN-AM=AB -分125221223121222--------=----=-t t t AQ BP 分时,当分时,当112512324t 512;151223-12512t 0------=-+=------=-=≤t t t PQ t t t PQ分)(或者时,当分或者时,当1----------621224t 5121)62(;122512t 0=-=-------=+=+≤PQ MN PQ MN PQMN PQ MNQPP M N Q。

浙教版七年级(上)期末数学试卷(含答案)

浙教版七年级(上)期末数学试卷(含答案)

浙教版七年级(上)期末数学试卷(含答案) 浙教版七年级数学第一学期期末教学质量检测试卷一、选择题(共10小题,每小题3分,共30分)1.如果零上2℃记作+2℃,那么零下3℃记作(▲ )。

A。

+2℃ B。

-2℃ C。

+3℃ D。

-3℃2.太阳中心的温度可达xxxxxxxx℃,用科学记数法表示正确的是(▲ )。

A。

0.155×10^8 B。

1.55×10^7 C。

15.5×10^6 D。

155×10^53.下列合并同类项正确的是(▲ )。

A。

3x + 3y = 6xy B。

2m^2n - m^2n = m^2n C。

7x^2 -5x^2 = 2x^2 D。

4 + 5ab = 9ab4.下列几何图形中,不是立体图形的是(▲ )。

A。

球 B。

圆柱 C。

圆锥 D。

圆5.在实数5.2有(▲ )。

A。

5个 B。

4个 C。

3个 D。

2个6.将一副直角三角尺按如下不同方式摆放,则图中锐角∠1与∠2互余的是(▲ )。

7.下列各对数中,相等的一对数是(▲ )。

A。

-(-3)与-| -3 | B。

-2^2与(-2)^2 C。

(-2)^3与-2^3 D。

3与3^28.在算式3-|-12|中的“| |”里,选择一个运算符号,使得算式的值最大(▲ )。

A。

+ B。

- C。

× D。

÷9.在长方形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE。

若设AE=x(cm),则由题意,得方程(▲ )。

A。

14-3x=6 B。

14-3x=6+2x C。

6+2x=x+(14-3x) D。

6+2x=14-x10.图中有4根绳子,在绳的两端用力拉,有一根绳子是能打成结的,请问是哪一根?(▲ )A。

A B。

B C。

C D。

D二、填空题(共8小题,每小题3分,共24分)11.3-8 = ▲。

12.把45.2°化成以度、分、秒的形式,则结果为▲。

13.请写出一个解为4的一个一元一次方程▲。

浙江省温州市七年级上学期数学期末考试试卷

浙江省温州市七年级上学期数学期末考试试卷

浙江省温州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果水位下降3m,记作-3m,那么水位上升4m,记作()A . +1mB . +7mC . +4mD . -7m2. (2分)(2015·衢州) 一个几何体零件如图所示,则它的俯视图是()A .B .C .D .3. (2分)(2016·深圳模拟) 据深圳特区报3月30日早间消息,华为公司获得2016中国质量领域最高奖.华为公司将2016年销售收入目标定为818亿美元,是国内互联网巨头BAT三家2014年收入的两倍以上.其中818亿美元可用科学记数法表示为()美元.A . 8.18×109B . 8.18×1010C . 8.18×1011D . 0.818×10114. (2分)火车站、机场、邮局等场所都有为旅客提供打包服务的项目。

现有一个长、宽、高分别为a、b、c的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为()A . a+3b+cB . 2a+4b+6cC . 4a+10b+4cD . 6a+6b+8c5. (2分) (2016七上·揭阳期末) 若3x3yn-1与-xm+1y2是同类项,则m-n的值为()A . —1B . 0C . 2D . 36. (2分)已知线段AB=6,在直线AB上画线段BC,使BC=2,则线段AC的长()A . 2B . 4C . 8D . 8或47. (2分) (2018七上·宜昌期末) 已知x=﹣1是方程ax+4x=2的解,则a的值是()A . ﹣6B . 6C . 2D . ﹣28. (2分)若,则代数式的值是()。

A . 12B . -12C . -64D . 649. (2分)已知一组数据含有三个不同的数12,17,25,它们的频率分别是 , , ,则这组数据的平均数是()A . 19B . 16.5C . 18.4D . 2210. (2分)把1400元的奖金按两种奖给22名学生,其中一等奖每人200元,二等奖每人50元,设获一等奖的学生有x人,则下列方程错误的是()A . 200x+50(22-x)=1400B .C . 50x+200×(22-x)=1400D . (200-50)x+50×22=1400二、填空题 (共5题;共6分)11. (2分) (2019七上·靖远月考) 用“>”,“<”,“=”填空:﹣ ________﹣;﹣(﹣)________﹣|﹣ |.12. (1分)(2017·普陀模拟) 如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方向是________.13. (1分)(2017·姑苏模拟) 在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间为8小时的人数是________.14. (1分)学校春游,如果每辆汽车坐45人,则有28人没有上车,如果每辆车坐50人,则有一辆车还可以坐12人,设有x辆汽车,可列方程________.15. (1分)(2017·乌鲁木齐模拟) 用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形的个数是________.三、解答题 (共9题;共64分)16. (10分) (2018七上·灵石期末)(1)计算:① ;②-22+[12-(-3)×2]÷(-3)(2)先化简,再求值:(2x2-5xy+2y2)-2(x2-3xy+2y2),其中x=-1,y=2.17. (5分)讨论x=12是不是方程的解.18. (5分) (2016七上·六盘水期末) 知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?19. (5分) (2018七上·灵石期末) 如图,已知线段AB,请用尺规按照下列要求作图:①延长线段AB到C,使得BC=2AB;②连接PC;③作射线AP.如果AB=2cm,求AC的值20. (7分)(2017·玄武模拟) 某公司在某市五个区投放共享单车供市民使用,投放量的分布及投放后的使用情况统计如下.(1)该公司在全市一共投放了________万辆共享单车;(2)在扇形统计图中,B区所对应扇形的圆心角为________°;(3)该公司在全市投放的共享单车的使用量占投放量的85%,请计算C区共享单车的使用量并补全条形统计图.21. (5分)已知方程=4与关于x的方程4x﹣=﹣2(x﹣1)的解相同,求a的值.22. (10分) (2017七上·丹江口期末) 解答题(1)如图,点C是线段AB上一点,D、E分别是AC、BC的中点,已知DE=6,求AB的长;(2)若(1)中改为点C是射线AB上一点(不在线段AB上),其它条件不变,请画出图形,并直接写出相应的AB长.23. (10分) (2018七上·三河期末) 为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费见价目表.例如:某居民元月份用水9吨,则应收水费2×6+4×(9﹣6)=24元每月用水量(吨)单价不超过6吨2元/吨超过6吨,但不超过10吨的部分4元/吨超过10吨部分8元/吨(1)若该居民2月份用水12.5吨,则应收水费多少元?(2)若该居民3、4月份共用15吨水(其中4月份用水多于3月份)共收水费44元(水费按月结算),则该居民3月、4月各用水多少吨?24. (7分) (2020七上·高淳期末) 如图,∠AOB是平角,OD是∠AOC的角平分线,∠COE=∠BOE.(1)若∠AOC= 50 ,则∠DOE=________ ;(2)若∠AOC= 50 ,则图中与∠COD互补的角为________;(3)当∠AOC的大小发生改变时,∠DOE的大小是否发生改变?为什么?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共64分)16-1、16-2、17-1、18-1、19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、第11 页共11 页。

浙教版七年级第一学期期末数学试卷及答案一

浙教版七年级第一学期期末数学试卷及答案一

浙教版七年级第一学期期末数学试卷及答案一、选择题(本题共10小题,共30分) 1. 2022的相反数是( )A. −2202B. 2202C. −2022D. 20222. 据科学家估计,地球的年龄大约是4600000000年,将数据4600000000用科学记数法表示应为( )A. 0.46×1010B. 46×108C. 4.6×1010D. 4.6×1093. 下列各组数中,互为倒数的是( )A. −134与−143B. −0.25与14C. −0.5与−2D. −1与14. 在实数−1,√3−1,227,3.14中,属于无理数的是( )A. −1B. √3−1C. 227D. 3.145. 下列四个式子中,计算结果最大的是( )A. −23+(−1)2B. −23−(−1)2C. −23×(−1)2D. −23÷(−1)26. 下列说法中,正确的是( )A. 相等的角是对顶角B. 若AB =BC ,则点B 是线段AC 的中点C. 过一点有一条而且仅有一条直线垂直于已知直线D. 若一个角的余角和补角都存在,则这个角的补角一定比这个角的余角大90度7. 下列计算正确的是( )A. 13−13×(−2)=0×(−2)=0 B. (−14)÷(13−12)=(−14)÷(−16)=32 C. 3÷(−12)×(−2)=3÷1=3 D. (−112)2−22=114−4=−2348. 关于平方根与立方根知识,下列说法正确的是( )A. 如果一个数有平方根,那么这个数也一定有立方根B. 如果一个数有立方根,那么这个数也一定有平方根C. 平方根是它本身的数只有0,立方根是它本身的数也只有0D. 如果一个数有正负两个平方根,那么这个数也有正负两个立方根9. 某轮船在两个码头之间航行,已知顺水航行需要3小时,逆水航行需要5小时,水流速度是4千米/时,求两个码头之间的距离,若设两个码头之间的距离为x 千米,则可得方程为( )A. x 3−4=x5+4B. x 3−x5=4C. x 3+4=x5−4D.x−43=x+45第2页,共12页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………10. 已知a ,b 都是有理数,如果|a +b|=b −a ,那么对于下列两种说法:①a 可能是负数;②b 一定不是负数,其中判断正确的是( )A. ①②都错B. ①②都对C. ①错②对D. ①对②错二、填空题(本题共6小题,共24分) 11. −1的立方根是______.12. 用四舍五入法把数1.3579精确到百分位,所得的近似数是______. 13. 若∠α=42°24′,∠β=15.3°,则∠α与∠β的和等于______. 14. 计算:124÷(13−14+112)=______.15. 甲每小时生产某种零件15个,甲生产3小时后,乙也加入生产同一种零件,再经过5小时,两人共生产这种零件210个,则乙每小时生产这种零件______个.16. 已知线段AB =24cm ,点D 是线段AB 的中点,直线AB 上有一点C ,且CD =3BC ,则线段CD =______cm . 三、填空题(本题共7小题,共66分)17. 把下列各数表示在数轴上,并按从小到大的顺序用“<”连接.−12,0,−1,1.5,3.18. 计算:(1)|−3|−(−2);(2)(−6)2×(12−13)+(−2)3. 19. 解下列方程:(1)1+2x =7−x .(2)y 3−y −16=1−23y. 20. (1)已知一个长方形的长是宽的2倍,面积是10,求这个长方形的周长.(2)如图,已知长方形内两个相邻正方形的面积分别为9和3,求图中阴影部分的面积.21. (1)先化简,再求值:2(a 2+ab)−3(23a 2−ab),其中a =2,b =−3.(2)已知2x +y =3,求代数式3(x −2y)+5(x +2y −1)−2的值.22.数学家欧拉最先把关于x的多项式用记号f(x)来表示.例如:f(x)=x2+x−1,当x=a时.多项式的值用f(a)来表示,即f(a)=a2+a−1.当x=3时,f(3)=32+3−1=11.(1)已知f(x)=x2−2x+3,求f(1)的值.(2)已知f(x)=mx2−2x−m,当f(−3)=m−1时,求m的值.(3)已知f(x)=kx2−ax−bk(a.b为常数),对于任意有理数k,总有f(−2)=−2,求a,b的值.23.如图,已知OB,OC,OD是∠AOE内三条射线,OB平分∠AOE,OD平分∠COE.(1)若∠AOB=70°,∠DOE=20°,求∠BOC的度数.(2)若∠AOE=136°,AO⊥CO,求∠BOD的度数.(3)若∠DOE=20°,∠AOE+∠BOD=220°,求∠BOD的度数.第4页,共12页答案和解析1.【答案】C【解析】解:2022的相反数是−2022. 故选:C .相反数的概念:只有符号不同的两个数叫做互为相反数. 本题考查了相反数,掌握相反数的定义是解答本题的关键.2.【答案】D【解析】解:4600000000=4.6×109. 故选:D .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.【答案】C【解析】解:A 、−134的倒数是−73,故该选项不符合题意; B 、−0.25=−14,与−4互为倒数,故该选项不符合题意; C 、−0.5的倒数是−2,故该选项符合题意; D 、−1的倒数是−1,故该选项不符合题意; 故选:C .根据倒数的定义判断即可.本题考查了倒数的定义,掌握乘积为1的两个数互为倒数是解题的关键.4.【答案】B【解析】解:A.−1是整数,属于有理数,故本选项不合题意; B .√3−1是无理数,故本选项符合题意; C .227是分数,属于有理数,故本选项不合题意; D .3.14是有限小数,属于有理数,故本选项不合题意.故选:B.根据无理数是无限不循环小数,可得答案.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.5.【答案】A【解析】解:−23+(−1)2=−8+1=−7,−23−(−1)2=−8−1=−9,−23×(−1)2=−8×1=−8,−23÷(−1)2=−8÷1=−8,∵−7>−8>−9,∴计算结果最大的是选项A.故选:A.各式计算得到结果,即可作出判断.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.【答案】D【解析】解:A、对顶角相等,但是相等的角不一定是是对顶角,故本选项不符合题意;B、三点不在一条直线上,AB=BC,但是B不是线段AC的中点,故本选项不符合题意;C、平面内,过一点有且只有一条直线与已知直线垂直,正确,故此选项不符合题意;D、若一个角的余角和补角都存在,则这个角的补角一定比这个角的余角大90度,故此选项符合题意;故选:D.根据对顶角性质、线段中点的定义、点到直线的距离,逐一判定即可解答.本题考查了点到直线的距离,解决本题的关键是熟记点到直线的距离.第6页,共12页7.【答案】B【解析】解:A 、13−13×(−2) =13+23=1,不符合题意; B 、(−14)÷(13−12) =(−14)÷(−16) =(−14)×(−6) =32,符合题意; C 、3÷(−12)×(−2) =3×(−2)×(−2) =12,不符合题意; D 、(−112)2−22 =94−4=−134,不符合题意. 故选:B .各式计算得到结果,即可作出判断.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.【答案】A【解析】解:A.根据平方根以及立方根的定义,一个数有平方根,则这个数非负数,这个数一定有立方根,那么A 正确,故A 符合题意.B .根据平方根以及立方根的定义,一个数有立方根,则这个数可能是负数,但负数没有平方根,那么B 错误,故B 不符合题意.C .根据平方根以及立方根的定义,平方根等于本身的数是0,立方根等于本身的数有1或0或−1,那么C 错误,故C 不符合题意.D .根据平方根以及立方根的定义,一个数有正负两个平方根,则这个数正数,但这个正数只有一个立方根,那么D 错误,故D 不符合题意. 故选:A .根据平方根以及立方根的定义解决此题.本题主要考查平方根以及立方根,熟练掌握平方根以及立方根的定义是解决本题的关键.9.【答案】A【解析】解:设若设两个码头之间的距离为x 千米, 因此可列方程为x3−4=x5+4, 故选:A .首先要理解题意找出题中存在的等量关系:顺水时的路程=逆水时的路程,根据此列方程即可. 此题考查了由实际问题抽象出一元一次方程,求出船在静水中的速度的等量关系是解决本题的关键.10.【答案】B【解析】解:|a +b|={a +b(a +b ≥0)−a −b(a +b ≤0),当a +b =b −a 时,可得到2a =0,即a =0,此时把a =0代入等式|a +b|=b −a ,则|b|=b ,即b ≥0, ∴②b 一定不是负数,正确;当−a −b =b −a 时,得到2b =0,即b =0,此时把b =0代入等式|a +b|=b −a ,则|a|=−a ,即a ≤0; ∴a 有可能是负数,①正确; ∴①②都正确,符合题意, 故选:B .利用绝对值的定义,分情况讨论结果.本题主要考查了绝对值,做题关键是掌握绝对值的定义.11.【答案】−1【解析】解:∵(−1)3=−1 ∴−1的立方根是−1. 直接利用立方根的定义计算.此题主要考查了立方根的定义,注意负数的立方根还是负数.12.【答案】1.36【解析】解:1.3579≈1.36(精确到百分位). 故答案为:1.36.把千分位上的数字7进行四舍五入即可.第8页,共12页本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.13.【答案】57°42′【解析】解:∵∠β=15.3°=15°+0.3×60′=15°18′, ∴∠α+∠β=42°24′+15°18′=57°42′. 故答案为:57°42′.先将0.3°化成18′,即∠β=15.3°=15°18′,然后计算两个角的和即可.本题考查度、分、秒的换算,掌握度、分、秒的换算方法以及单位之间的进率是正确解答的前提.14.【答案】14【解析】解:124÷(13−14+112) =124÷(412−312+112) =124÷16 =124×6 =14. 故答案为:14.先算小括号里面的加减法,再算括号外面的除法.本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.15.【答案】18【解析】解:设乙每小时生产这种零件x 个, 根据题意列方程得,15×3+(15+x)×5=210, 解得x =18, 故答案为:18.设乙每小时生产这种零件x 个,根据题意列方程求解即可.本题主要考查一元一次方程的应用,熟练根据题中等量关系列方程求解是解题的关键.16.【答案】9或18【解析】解:∵AB=24cm,点D是线段AB的中点,∴BD=12cm,设BC=x cm,则CD=3BC=3x cm,当C点在B、D之间时,DC=BD−BC,即3x=12−x,解得x=3,∴CD=9(cm);当C点在DB的延长线上时,DC=DB+BC,即3x=12+x,解得x=6,∴CD=18(cm);故答案为:9或18.根据线段中点的性质,可得BD的长,设BC=x,根据线段的和差列出方程解答便可.本题考查了两点间的距离,利用线段的和差是解题关键,要分类讨论以防遗漏.17.【答案】解:把各数在数轴上表示为:从小到大的顺序用不等号连接起来为:−1<−12<0<1.5<3.【解析】在数轴上找出对应的点,根据数轴方向朝右时,右边的数总比左边的数大,按从小到大的顺序用“<”连接即可.此题主要考查了利用数轴比较实数的大小,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.18.【答案】解:(1)|−3|−(−2)=3+2=5;(2)(−6)2×(12−13)+(−2)3=36×16−8第10页,共12页=6−8 =−2.【解析】(1)先算绝对值,再算减法;(2)先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算.本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.【答案】解:(1)1+2x =7−x ,2x +x =7−1, 3x =6, x =2;(2)y3−y−16=1−23y , 2y −(y −1)=6−4y , 2y −y +1=6−4y , 2y −y +4y =6−1, 5y =5, y =1.【解析】(1)移项,合并同类项,系数化成1即可; (2)去分母,去括号,移项,合并同类项,系数化成1即可.本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.20.【答案】解:(1)设长方形的宽为x ,则长方形的长为2x ,则x ⋅2x =10,解得x =√5 或−√5(舍去), ∴长方形的长为2√5,∴长方形的周长为(√5+2√5)×2=6√5. (2)由题意可知,大正方形的边长为3,小正方形的变成为√3, ∴阴影部分的面积为(3−√3)×√3=3√3−3.【解析】(1)根据长方形面积公式为长×宽,代入计算即可;(2)两个小阴影部分可以组成一个长为√3,宽为(3−√3)的长方形,直接计算即可.本题考查二次根式的应用,能够将图形的面积公式和二次根式熟练的结合在一起是解答本题的关键.21.【答案】解:(1)2(a2+ab)−3(2a2−ab)3=2a2+2ab−2a2+3ab=5ab.当a=2,b=−3时,原式=5×2×(−3)=−30.(2)3(x−2y)+5(x+2y−1)−2=3x−6y+5x+10y−5−2=8x+4y−7.∵2x+y=3,∴原式=4(2x+y)−7=4×3−7=12−7=5.【解析】(1)先化简整式,再代入求值;(2)先化简整式,再整体代入求值.本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.22.【答案】解:(1)当x=1时,f(1)=1−2+3=2;(2)当x=−3时,f(−3)=mx2−2x−m=9m+6−m=m−1,∴m=−1;(3)当x=−2时,f(−2)=kx2−ax−bk=4k+2a−bk=−2,∴(4−b)k+2a=−2,∵k为任意有理数,∴4−b=0,2a=−2,∴a=−1,b=4.【解析】(1)将x=1代入f(x)=x2−2x+3中进行计算即可;(2)将x=−3代入f(x)=mx2−2x−m中,根据f(−3)=m−1列方程计算即可;第12页,共12页(3)根据题意将x =−2代入f(x)=kx 2−ax −bk 中,可知k 的倍数4−b =0,从而可解答此题. 本题主要考查的是求代数式的值,读懂记号f(x)的运算方法是解题的关键.23.【答案】解:(1)∵OB 平分∠AOE ,OD 平分∠COE ,∴∠BOE =∠AOB =70°, ∠COE =2∠DOE =40°, ∵∠BOC =−∠BOE −∠COE , ∴∠BOC =70°−40°=30°. (2)∵OB 平分∠AOE ,OD 平分∠COE , ∴∠BOE =12∠AOE ,∠DOE =12∠COE , ∵∠BOD =∠BOE −∠DOE ,∴∠BOD =12(∠AOE −∠COE)=12∠AOC , ∵AO ⊥CO , ∴∠AOC =90°, ∴∠BOD =45°. (3)∵OB 平分∠AOE , ∴∠AOE =2∠BOE , ∵∠AOE +∠BOD =220°, ∴2∠BOE +∠BOD =220°, ∵∠BOE −∠BOD =∠DOE , ∴∠BOE −∠BOD =20°, ∴2∠BOE −2∠BOD =40°, ∴3∠BOD =180°, ∴∠BOD =60°.【解析】(1)由角平分线的定义,表示出∠BOC ,即可求解; (2)由角平分线的定义,表示出∠BOD ,即可求解;(3))由角平分线的定义,列出关于∠BOD 的方程组,即可求解. 本题考查角的计算,关键是由角平分线定义得出有关等式.。

浙江省温州市七年级上学期数学期末考试试卷

浙江省温州市七年级上学期数学期末考试试卷

浙江省温州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)零上3℃记作+3℃,零下2℃可记作()A . 2B . -2C . 2℃D . -2℃2. (2分)(2020·重庆A) 在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A . 26×103B . 2.6×103C . 2.6×104D . 0.26×1053. (2分) (2019七上·嘉定期中) 代数式0,3–a,,6(x2+y2),–3x+6y,a,π+1中,单项式有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2018七上·江岸期末) 下列变形中错误的是()A . 如果,那么B . 如果,那么C . 如果,那么D . 如果,那么5. (2分)(2020·咸宁) 早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年,下列各式计算结果为负数的是()A .B .C .D .6. (2分) (2017七上·黔东南期末) 下列语句正确的个数为()①圆是立体图形:②射线只有一个端点;③线段AB就是A、B两点之间的距离:④等角的余角相等A . 1个B . 2个C . 3个D . 4个7. (2分)(2011·内江) 如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A . 32°B . 58°C . 68°D . 60°8. (2分) (2018七上·文山月考) 元旦来临之际,某商场为了吸引顾客,把某品牌的电视机按进价提高60%标价,然后再按7折出售,这样商场每卖出一台电视机就可赢利240元.设每台电视机的进价是x元,根据题意列一元一次方程,正确的是().A . (1+60%)x-x=240B . (1+60%)x×70%-x=240C . (1+60%)x×70% =240D . 60%x×70%-x=240二、填空题 (共7题;共7分)9. (1分) (2016七上·中堂期中) ﹣的倒数的绝对值是________.10. (1分) (2018七上·前郭期末) 已知关于x的方程2x+a=x﹣1的解为﹣4,则a=________.11. (1分) (2020七上·汽开区期末) 计算: =________.12. (1分) (2020七上·龙泉驿期末) 如图,直线AB , CD相交于点O ,OE⊥CD ,∠BOE=38°,则∠AOC等于________度.13. (1分) (2019八上·成都月考) 实数a、b、c在数轴上的位置如图所示,化简下列代数式的值=________.14. (1分) (2019七上·港闸期末) 已知关于x的方程=x﹣4与方程2x+5=3(x﹣1)的解相同,则m=________.15. (1分) (2020七上·济南期中) 如图是用棋子摆成的“ ”字图案.从图案中可以看出,第1个“ ”字图案需要4枚棋子,第2个“ ”字图案需要7枚棋子,第3个“ ”字图案需要10枚棋子.照此规律,摆成第个“ ”字图案需要2020枚棋子,则的值为________.三、解答题 (共8题;共90分)16. (30分) (2018七上·长春月考) 计算:(1)(2)(3)(4)(5)(6)17. (10分) (2018七上·长春期末) 解方程:(1) 3(x﹣2)+2(x+1)=1;(2).18. (5分)化简或求值(本小题5题, 4+4+5+5+5="23" )(1)(2)( 3 ) 若A=, B=,求:当x= -1时,3A-2B的值.( 4 ) 根据右边的数值转换器,当输入的满足时,请列式求出输出的结果.(5)如果代数式(2x2+ax-y+6)-(2bx2-3x+5y-1)的值与字母x所取的值无关,试求代数式的值19. (5分) (2020七上·槐荫期末) 如图:线段,是上一点,且,是的中点,求线段的长度.20. (5分) (2018七上·南召期末) 某商场购进一批西服,进价为每套250元,原定每套以390元的价格销售,这样每天可销售50套.如果每套比原销售价降低10元销售,则每天可多销售5套.该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论(每套西服的利润=每套西服的销售价﹣每套西服的进价)(1)①按原销售价销售,每天可获利润________元;②若每套降低10元销售,每天可获利润________元;(2)如果每套销售价降低10元,每天就多销售5套,每套销售价降低20元,每天就多销售10套,每套销售价降低30元,每天就多销售15套…按这种方式:①若每套降低10a元,则每套的销售价格为________元;(用代数式表示)②若每套降低10a元,则每天可销售________套西服:(用代数式表示)③若每套降低10a元,则每天共可以获利润________元.(用代数式表示)21. (10分)(2020·九江模拟) 如图,点A,B在长方形的边上.(1)用圆规和无刻度的直尺在长方形的内部作∠ABC=∠ABO;(保留作图痕迹,不写作法)(2)在(1)的条件下,若BE是∠CBD的角平分线,探索AB与BE的位置关系,并说明理由.22. (10分) (2019七上·嘉陵期中) 一小虫沿着一条东西朝向放着的长木杆爬行觅食,取向东爬行为正,向西爬行为负.在一段时间内小虫从A处开始爬行若干次(每次休息一分钟),最后爬到B处找到了食物,停止爬行.其爬行记录如下(单位:m):+3,-1.5,+2,-4.5,+1.5,-2.5,+6.(1) B处在A处的何方?相距多远?(2)若小虫的爬行速度为,问小虫从开始觅食到找到食物,用了多长时间?23. (15分) (2019八下·赵县期末) “五一”假期某商场某运动品牌服装专卖店,准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元售价280元(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,购进甲、乙两种服装各多少件?(2)该专卖店为使甲、乙两种服装共200件的总利润利润=售价-进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?(3)在(2)的条件下,该专卖店准备在5月1日当天对甲种服装进行优惠促销活动决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变,那么该专卖店要获得最大利润应如何进货?参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共7题;共7分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共8题;共90分)答案:16-1、答案:16-2、答案:16-3、答案:16-4、答案:16-5、答案:16-6、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。

【浙教版】七年级数学上期末试卷含答案(1)

【浙教版】七年级数学上期末试卷含答案(1)

一、选择题1.育才学校学生来自甲、乙、丙三个地区,其人数比为7:3:2,如图所示的扇形图表示其分布情况.如果来自丙地区的学生为180人,则这个学校学生的总人数和表示乙地区扇形的圆心角度数分别为( )A .1080人、90B .900人、210C .630人、90D .270人、60 2.下列说法正确..的是( ) A .一个数,如果不是正数,必定是负数B .所有有理数都能用数轴上的点表示C .调查某种灯泡的使用寿命采用普查D .两点之间直线最短3.为响应习总书记“绿水青山,就是金山银山”的号召,某校今年3月开展了植树活动.按班级顺序领取树苗,七(1)班先领取全部的110,七(2)班领取100棵后,再领取余下部分的110,且两班领取的树苗相等,则树苗总棵数为( ) A .6400B .8100C .9000D .4900 4.3x =-是下列哪个方程的解( )A .35210x x -+=+B .123x x -=C .()32x x x +=-D .2633x -+= 5.某商店在某一时间以200元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店在这次交易中( )A .亏了10元钱B .亏了20元钱C .盈利20元钱D .不盈不亏 6.有下列调查:①了解地里西瓜的成熟程度;②了解某班学生完成20道素质测评选择题的通过率;③了解一批导弹的杀伤范围;④了解成都市中学生睡眠情况.其中不适合普查而适合抽样调查的是( )A .①②B .①②④C .①③④D .②③④ 7.已知点A ,B ,C 在同一条直线上,线段10AB =,线段8BC =,点M 是线段AB 的中点.则MC 等于( )A .3B .13C .3或者13D .2或者18 8.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条9.如图,点C 、D 是线段AB 上任意两点,点M 是AC 的中点,点N 是DB 的中点,若AB a ,MN b =,则线段CD 的长是( )A .2b a -B .()2a b -C .-a bD .1()2a b + 10.如图,用火柴棍分别搭一排三角形组成的图形和一排正方形组成的图形,三角形、正方形的每一边用一根火柴棒.如果搭这两个图案一共用了2030根火柴棒,且正方形的个数比三角形的个数的少4个,则搭成的三角形的个数是( )A .429B .409C .408D .40411.5的相反数的倒数是( )A .5-B .5C .15- D .1512.若一个几何体的表面展开图如图所示,则这个几何体是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥二、填空题13.某中学七年级甲、乙、丙三个班中,每班的学生人数都为40名.某次数学考试的成绩统计如下:(如图,每组分数含最小值,不含最大值)根据图、表提供的信息,则80~90分这一组人数最多的班是_____班.14.如今,中学生睡眠不足的问题正愈演愈烈,“缺觉”已是全国中学生们的老大难问题.教育部规定,初中生每天的睡眠时间应为9个小时.鹏鹏记录了他一周的睡眠时间,并将统计结果绘制成如图所示的折线统计图,则鹏鹏这一周的睡眠够9个小时的有______天.15.有四个大小完全相同的小长方形和两个大小完全相同的大长方形按如图所示的位置摆放,按照图中所示尺寸,小长方形的长与宽的差是__________.(用含m ,n 的式子表示)16.若0a b =≠,则下列式子中正确的是(填序号)______①22a b -=-,②1132a b =,③3344a b -=-,④551a b =-. 17.已知线段AC 和线段BC 在同一直线上,若12cm AC =,8cm BC =,线段AC 的中点为M ,线段BC 的中点为N ,试求M 、N 两点之间的距离.18.在新冠疫情某隔离区域,张护士负责A ,B ,C ,D 四个区域隔离病人的身体状况的观察与日常生活的联络服务,每天张护士都按照A B C D C B A B C →→→→→→→→→⋅⋅⋅的路线来回巡察,从A 隔离区域开始数连续的正整数1,2,3,…当张护士第()21n -次在C 隔离区域巡察时(n 为正整数),恰好数到的数是______(用含n 的代数式表示).19.如果收入80元记作80+元,那么支出90元记作______元.20.一张长50cm ,宽40cm 的长方形纸板,在其四个角上分别剪去一个小正方形(边长相等且为整厘米数)后,折成一个无盖的长方体形盒子,这个长方体形盒子的容积最大为_____cm 3.三、解答题21.为了了解某中学学生的身高情况,随机对该校男、女生的身高进行抽样调查.抽取的样本中,男、女生的人数相同,根据所得数据绘制成如图所示的统计图表.组别男女生身高(cm)A150155x<B155160x<C160165x<D165170x<E170175x<根据图表中提供的信息,回答下列问题:(1)在样本中,组距是__________,女生身高在B组的有__________人;(2)在样本中,身高在170175x<之间的共有__________人,人数最多的是__________组(填组别序号);(3)已知该校共有男生500人,女生480人,请估计身高在160170x<之间的学生有多少人?22.解方程:(1)5+3x=8+2x;(2)12x-=1﹣325x+.23.如图,线段AB的中点为M,C点将线段MB分成MC,CB两段,且:1:3MC CB=,若20AC=,求AB的长.24.用火柴棒按下面的方式搭图形(1)把下表填完整:图形编号①②③火柴棒根数7s=n的代数式表示)(3)是否存在一个图形共有117根火柴棒?若存在,求出是第几个图形,如不存在,请说明理由.25.计算:(1)2151 ()() 32624+-÷-;(2)(﹣2)3×(﹣2+6)﹣|﹣4|.26.下面是由些棱长1cm的正方体小木块搭建成的几何体的主视图、俯视图和左视图,①请你观察它是由多少块小木块组成的;②在俯视图中标出相应位置立方体的个数;③求出该几何体的表面积(包含底面).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】用丙地区的人数除以该地区人数所占的比即可求出总人数,用360°去乘乙地区人数所占的比即可得出相应的圆心角度数,【详解】解:180÷2732++=1080人,360°×3732++=90°, 故选:A .【点睛】 本题考查了扇形统计图,理解各个部分所占整体的百分比,以及各个扇形的圆心角度数实际是这一部分所占周角的百分比即可.2.B解析:B【分析】根据有理数的定义,数轴、普查、线段的定义进行解答即可.【详解】解:A 、一个数,如果不是正数,可能是负数,也可能是0,故A 选项错误;B 、所有的有理数都能用数轴上的点表示,故B 正确;C 、调查某种灯泡的使用寿命,利用普查破坏性较强,应采用抽样调查,故此选项错误; D、两点之间,线段最短,故原题说法错误.故选B.【点睛】本题考查了有理数的定义、数轴、普查、线段的定义,掌握相关知识是解题的关键. 3.C解析:C【分析】设树苗总数为x 棵,根据各班的树苗数都相等,可得出七(1)班和七(2)班领取的树苗数相等,由此可得出方程.【详解】解:设树苗总数x 棵,根据题意得:111100(100)101010x x x =+--, 解得:x=9000,∴树苗总数是9000棵.故选:C .【点睛】本题考查了一元一次方程的应用,解答本题的关键是得出各班的树苗数都相等,这个等量关系,因为七(1),七(2)班领取数量好表示,所以我们就选取这两班建立等量关系. 4.B解析:B【分析】根据方程的解的定义,把x =-3代入方程进行检验即可.【详解】x=-代入方程,左边=14,右边=4,左边≠右边,故不符合题意;解:A、把3x=-代入方程,左边=-3,右边=-3,左边=右边,故符合题意;B、把3x=-代入方程,左边=0,右边=6,左边≠右边,故不符合题意;C、把3x=-代入方程,左边=4,右边=3,左边≠右边,故不符合题意.D、把3故选:B.【点睛】本题主要考查了方程解的定义,解题关键是将x的值代入方程左右两边进行验证.5.A解析:A【分析】设盈利服装的进价为x元,亏损服装的进价为y元,根据利润=售价﹣进价,即可得出关于x(y)的一元一次方程,解之即可求出x(y)的值,再利用总利润=总售价﹣总进价即可得出结论.【详解】解:设盈利服装的进价为x元,亏损服装的进价为y元,依题意得:200﹣x=25%x,200﹣y=﹣20%y,解得:x=160,y=250,∴200+200﹣160﹣250=﹣10(元),即商店在这次交易中亏了10元钱.故选择:A.【点睛】本题考查销售问题,掌握利润=售价﹣进价,抓住售价﹣进价=进价×利润率(盈利为正,亏损为负)构造方程是解题关键.6.C解析:C【分析】根据普查适用的范围小,具有适用性,抽样调查具有代表性,机会均等的原则,不具破坏性的特点依次判断即可.【详解】①了解地里西瓜的成熟程度,不适合普查而适合抽样调查;②了解某班学生完成20道素质测评选择题的通过率,适合普查;③了解一批导弹的杀伤范围,不适合普查而适合抽样调查;④了解成都市中学生睡眠情况,不适合普查而适合抽样调查;故选:C.【点睛】此题考查普查与抽样调查的定义,正确理解两者的关系及各自的特点是解题的关键. 7.C解析:C【分析】由于点C的位置不能确定,故应分点C在线段AB外和点C在线段AB之间两种情况进行解答.【详解】解:当A、B、C的位置如图1所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC=BM+BC=5+8=13;当A、B、C的位置如图2所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC= BC-BM =8-5=3.综上所述,线段MC的长为3或13.故选:C【点睛】本题考查的是两点间的距离,在解答此题时要注意进行分类讨论,不要漏解.8.D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A、射线AB和射线BA是不同的射线,故本选项不符合题意;B、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C、两点之间,线段最短,故本选项不符合题意;D 、七边形的对角线一共有7(73)142条,正确故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.9.A解析:A先由AB MN a b -=-,得AM BN a b +=-,再根据中点的性质得22AC BD a b +=-,最后由()CD AB AC BD =-+即可求出结果.【详解】解:∵AB a ,MN b =,∴AB MN a b -=-,∴AM BN a b +=-,∵点M 是AC 的中点,点N 是DB 的中点,∴AM MC =,BN DN =,∴()()2222AC BD AM MC BN DN AM BN a b a b +=+++=+=-=-, ∴()()222CD AB AC BD a a b b a =-+=--=-.故选:A .【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.10.C解析:C【分析】根据搭建三角形和正方形一共用了2030根火柴,且三角形的个数比正方形的个数多4个,即可得搭建三角形的个数.【详解】解:∵搭建三角形和正方形一共用了2030根火柴,且三角形的个数比正方形的个数多4个,观察图形的变化可知:搭建n 个三角形需要(2n+1)根火柴棍,n 个正方形需要(3n+1)根火柴棍,所以2n+1+3(n-4)+1=2030,解得n=408.故选:C .【点睛】本题考查了规律型-图形的变化类,解决本题的关键是根据图形的变化寻找规律. 11.C解析:C【分析】只有符号不同的两个数互为相反数,两数相乘为1的数互为倒数.【详解】解:5的相反数为5-,5-的倒数为15-,故5的相反数的倒数是15-.故答案为:C .本题考查倒数和相反数.熟练掌握倒数和相反数的求法是解题的关键.12.A解析:A【分析】由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.【详解】解:由图得,这个几何体为三棱柱.故选:A.【点睛】本题考查了几何体的展开图,有两个底面的为柱体,有一个底面的为锥体.二、填空题13.甲【分析】根据题意和统计图表中的信息可以得到甲乙丙三个班中80~90分这一组人数然后比较大小即可解答本题【详解】解:甲班80~90分这一组有40﹣2﹣5﹣8﹣12=13(人)乙班80~90分这一组有解析:甲【分析】根据题意和统计图表中的信息,可以得到甲、乙、丙三个班中80~90分这一组人数,然后比较大小,即可解答本题.【详解】解:甲班80~90分这一组有40﹣2﹣5﹣8﹣12=13(人),乙班80~90分这一组有40×(1﹣5%﹣10%﹣35%﹣20%)=12(人),丙班80~90分这一组有11人,∵13>12>11,∴80~90分这一组人数最多的是甲班,故答案为:甲.【点睛】本题考查频数分布直方图、扇形统计图、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答.14.2【分析】根据折线统计图可以得到鹏鹏这一周的睡眠够9个小时的有2天【详解】由统计图可知周五周六两天的睡眠够9个小时故答案为:2【点睛】本题考查折线统计图解题的关键是明确题意利用数形结合的思想解答问题解析:2【分析】根据折线统计图可以得到鹏鹏这一周的睡眠够9个小时的有2天.【详解】由统计图可知,周五、周六两天的睡眠够9个小时,故答案为:2.【点睛】本题考查折线统计图,解题的关键是明确题意,利用数形结合的思想解答问题. 15.【分析】设小长方形的长为x 宽为y 根据图形列得m+y-x=n+x-y 整理即可得到答案【详解】设小长方形的长为x 宽为y 根据题意得:m+y-x=n+x-y ∴x-y=故答案为:【点睛】此题考查图形类列代数式 解析:2m n - 【分析】设小长方形的长为x ,宽为y ,根据图形列得m+y-x=n+x-y ,整理即可得到答案.【详解】设小长方形的长为x ,宽为y ,根据题意得:m+y-x=n+x-y ,∴x-y=2m n -, 故答案为:2m n -. 【点睛】此题考查图形类列代数式,正确理解图形中的数量关系是解题的关键.16.①③【分析】根据等式的性质进行逐一判断即可【详解】解:①若根据等式基本性质1则故①正确;②若根据等式基本性质2则故②错误;③若根据等式基本性质2则故③正确;④若根据等式基本性质2则故④错误故答案为:解析:①③【分析】根据等式的性质进行逐一判断即可.【详解】解:①若0a b =≠,根据等式基本性质1,则22a b -=-,故①正确;②若0a b =≠,根据等式基本性质2,则111332a b b =≠,故②错误; ③若0a b =≠,根据等式基本性质2,则3344a b -=-,故③正确; ④若0a b =≠,根据等式基本性质2,则5551a b b =-≠,故④错误.故答案为:①③.【点睛】本题考查了等式的性质,解决本题的关键是掌握等式的性质.17.或【分析】分两种情况解答:当点B 位于AC 的延长线上当点B 位于AC 之间根据线段中点把线段分成相等的两部分以及线段的和差关系即可解答【详解】解:∵点M 是线段的中点∴同理(1)当点B 位于AC 外如图1所示( 解析:10cm 或2cm【分析】分两种情况解答:当点B 位于AC 的延长线上,当点B 位于AC 之间,根据线段中点把线段分成相等的两部分,以及线段的和差关系即可解答【详解】解:∵点M 是线段AC 的中点,∴12MC AC =,同理12NC BC =. (1)当点B 位于AC 外,如图1所示,1122MN MC NC AC BC =+=+ ()()()1112810cm 22AC BC =+=+=.(2)当点B 位于AC 之间,如图2所示,1122MN MC NC AC BC =-=- ()()()111282cm 22AC BC =-=⨯-=. 综上,M 、N 两点间的距离为10cm 或2cm .【点睛】本题考查了线段中点的定义,解题关键是分情况确定点B 的位置,进行解答. 18.6n-3【分析】根据题意可以发现六个为一个循环每个循环中字母C 出现两次从而可以解答本题【详解】解:按照A→B→C→D→C→B→A→B→C→…的方式进行每6个字母ABCDCB 一循环每一循环里字母C 出现解析:6n-3【分析】根据题意可以发现六个为一个循环,每个循环中字母C 出现两次,从而可以解答本题.【详解】解:按照A→B→C→D→C→B→A→B→C→…的方式进行,每6个字母ABCDCB 一循环,每一循环里字母C 出现2次,当循环n 次时,字母C 第2n 次出现时(n 为正整数),此时数到最后一个数为6n ,当字母C 第(2n-1)次出现时(n 为正整数),再数3个数恰好一个循环,∴恰好数到的数是6n-3.故答案为:6n-3.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.19.【分析】根据正负数的含义可得:收入记住+则支出记作-据此判断即可【详解】解:如果收入80元记作+80元那么支出90元记作:-90元故答案为:-90【点睛】本题考查了正负数在实际生活中的应用要熟练掌握解析:90-【分析】根据正负数的含义,可得:收入记住“+”,则支出记作“-”,据此判断即可.【详解】解:如果收入80元记作+80元,那么支出90元记作:-90元.故答案为:-90.【点睛】本题考查了正负数在实际生活中的应用,要熟练掌握,解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.6552三、解答题21.(1)5、12;(2)10、C;(3)541人【分析】(1)根据组距的定义结合表格可得组距,求出男生总人数,再用女生总人数乘以B组的百分比可得;(2)将位于这一小组内的频数相加,分别计算出各组人数之和即可求得结果;(3)分别用男、女生的人数乘以对应的百分比,相加即可得解.【详解】解:(1)在样本中,组距是5,男生共有2+4+8+12+14=40人,∵男、女生的人数相同,女生身高在B组的人数有40×(1-35%-20%-15%-5%)=12人,故答案为:5、12;(2)在样本中,身高在170≤x<175之间的人数共有8+40×5%=10人,∵A组人数为2+40×20%=10人,B组人数为4+12=16人,C组人数为12+40×35%=26人,D 组人数为14+40×10%=18人,E组人数为8+40×5%=10人,∴C组人数最多,故答案为:10、C;(3)500×121440++480×(35%+10%)=541(人),故估计身高在160≤x<170之间的学生约有541人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(1)x =3;(2)x =1【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)移项,可得:3x ﹣2x =8﹣5,合并同类项,可得:x =3.(2)去分母,可得:5(x ﹣1)=10﹣2(3x +2),去括号,可得:5x ﹣5=10﹣6x ﹣4,移项,可得:5x +6x =10﹣4+5,合并同类项,可得:11x =11,系数化为1,可得:x =1.【点睛】本题考查一元一次方程的求解,熟练掌握一元一次方程的解法是解题关键.23.32【分析】本题需先设MC x =,根据已知条件C 点将线段MB 分成:1:3MC CB =的两段,求出MB=4x ,利用M 为AB 的中点,列方程求出x 的长,即可求出AB 的长;【详解】解:∵ :1:3MC CB =,设MC x =,则3CB x =,∴4AM MB MC CB x ==+=,∴4520AC AM MC x x x =+=+==,解得4x =.∵M 为AB 的中点∴832AB x ==.【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,求出线段的长是解本题的关键;24.(1)见解析;(2)52s n =+;(3)存在,见解析,第23个图形【分析】(1)观察图形与表格发现,后一个图形比前一个图形多用5根火柴棒,由此得出第三个图形比第二个图形多用5根火柴棒,第四个图形比第三个图形多用5根火柴棒;(2)由后一个图形比前一个图形多用5根火柴棒,而第一个图形用了7根火柴;即7=5×1+2,即可求出第n 个图形需要(5n+2)根小棒;(3)将s=117代入计算,即可求出答案.【详解】解:(1)根据题意,把下表填完整:7=5×1+2;第二个图形用了12根火柴;即12=5×2+2;第三个图形用了17根火柴;即17=5×3+2;…∴第n 个图形需要(5n+2)根小棒;∴52s n =+;故答案为:52s n =+. (3)根据题意,当117s =时,则52117n +=,解得:23n =,第23个图形共有117根火柴棒.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出发生变化的位置,并且观察变化规律,进而用式子表示一般规律.25.(1)-8;(2)-36【分析】(1)除法转化为乘法,再利用乘法分配律展开,进一步计算即可;(2)先计算乘方和绝对值、括号内的减法,再计算乘法,最后计算减法即可.【详解】解:(1)原式=215()(24)326+-⨯- =﹣16﹣12+20=﹣8;(2)(﹣2)3×(﹣2+6)﹣|﹣4|=(﹣8)×4﹣4=﹣32﹣4=﹣36.【点睛】本题考查了有理数的混合运算,解题关键是熟练的运用有理数的运算法则进行计算. 26.①共有10个正方体小木块组成;②详见解析;③240cm .【解析】【分析】①由俯视图可得该组合几何体最底层的小木块的个数,由主视图和左视图可得第二层和第三层小木块的个数,相加即可;②根据上题得到的正方体的个数在俯视图上标出来即可;③将几何体的暴露面(包括底面)的面积相加即可得到其表面积.【详解】解:①∵俯视图中有6个正方形,∴最底层有6个正方体小木块,由主视图和左视图可得第二层有3个正方体小木块,第三层有1个正方体小木块,∴共有10个正方体小木块组成.②根据①得:③表面积为:2+++++++=.6665563340cm【点睛】本题考查了由三视图判断几何体的知识,解决本类题目不但有丰富的数学知识,而且还应有一定的空间想象能力.。

浙教版七年级数学第一学期期末试题及答案

浙教版七年级数学第一学期期末试题及答案

浙教版七年级数学第一学期期末试题及答案亲爱的同学,一转眼初中第一学期已经进入尾声,准备好接受考验了吗?加油哦! 温馨提醒:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2.答题时,请先在答题卷指定位置内写明校名、姓名、班级等信息.3.所有答案都必须做在答题卷标定的位置上,要注意试题序号和答题序号相对应哦!4.考试结束后,只需上交答题卷.试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请在答题纸上把正确选项的字母涂黑,可以用多种不同的方法来选取正确答案哦. 1.2的相反数是( )(A )21 (B )2- (C )21- (D )2 2. 下列计算正确的是( )(A )22=-x x (B )222532ab ba ab =+(C )yz x yz x yz x 2222-=- (D )n m n m 2243=+3.81的平方根是( )(A )9 (B )9± (C )3 (D )3±4. 如图,若OC 是AOB ∠内部的一条射线,则下列式子中,不能表示“OC 是AOB ∠的角平分线”的是( )(A )BOC AOC ∠=∠ (B )BOC AOB ∠=∠2(C )AOB AOC ∠=∠21(D )AOB BOC AOC ∠=∠+∠ 5. 解方程1423312=+--x x 时,去分母正确的是( ) (A )122312=+--x x (B )126948=+--x x (C )16948=---x x (D )126948=---x x6. “全民行动,共同节约”,我国13亿人口如果都响应国家号召每人每年节约1度电,一年可节约电1 300 000 000度,1 300 000 000用科学记数法表示为( )第4题图(A )81030.1⨯ (B )9103.1⨯ (C )101013.0⨯ (D )10103.1⨯ 7. 将图(1)中的图形绕虚线旋转一周,能得到( )(A ) (B ) (C ) (D ) 8. 绝对值大于1.2且不超过3的整数有( ) (A )1个 (B )2个 (C )3个 (D )4个 9. 比较数2π,722,22,43的共同点,它们都是( )(A )分数 (B )有理数 (C )无理数 (D )正数10. 从起始站A 市坐火车到终点站G 市中途共停靠5次,各站点到A 市距离如下:站点B C D E F G 到A 市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价( )种 (A )14 (B )15 (C ) 17 (D )21二、认真填一填(本题有6个小题,每小题4分,共24分, 把答案直接填在答题纸的相应横线上)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案吧. 11. 如果5+表示盈利5元,那么3-表示____________________.12. 03097.0精确到千分位,结果是__________,将03097.0保留三个有效数字,结果是_______.13. 计算:='''︒+'''︒0455********_______°_______′_______″.14. 已知一个角的补角是这个角的余角的4倍,则这个角的度数为___________________°. 15. 已知 3a -4(b -1)=6,则6a -8b+5= .16. 已知A 、B 、C 三点在同一条直线上,且线段cm AB 4=,cm BC 6=,点D 、E 分别是线段AB 、BC 的中点,点F 是线段DE 的中点,则=BF ____________________cm .三、全面答一答(本题有8个小题,共66分)第7题 图(1)解答要写出必要的文字说明、证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17. (本题满分6分)计算: (1)⎪⎭⎫⎝⎛+-⨯41312112 (2)2644-36418. (本题满分6分)解下列方程:(1)213-=+x (2)12235=--x x19. (本题满分6分)已知x x A 322-=,12+-=x x B ,求当1-=x 时代数式BA 3-的值.20. (本题满分8分)如图,直线AB ,CD 相交于点O ,射线OE 平分COB ∠,已知︒=∠60EOC ,求AOD ∠与BOD ∠的度数.21. (本题满分8分)某工作甲单独做需15小时完成,乙单独做需12小时完成,若甲先单独做1小时,之后乙再单独做4小时,剩下的工作由甲乙两人合作,请问再做几小时可完成全部工作的十分之七?第20题 图22. (本题满分10分)西湖区政府准备更新一批行道树,为此,对部分居民喜爱的树种进行了调查,并将结果绘制成如下扇形统计图,其中“小叶榕”的圆心角为126︒.部分居民喜爱的树种调查结果扇形统计图 部分居民喜爱的树种调查结果条形统计图请根据扇形统计图,完成下列问题:(1)本次调查了多少名居民?其中喜爱柳树的居民有多少人? (2)请你补全右边的条形统计图;(3)根据此项调查,请你对西湖区种植行道树的树种提出一条合理建议.23.(本题满分10分,说明:本题有两个小题,请任选一小题.....做,若两题均做,以高分计) (1)已知b a ,为常数, 且三个单项式234,,3bxy axyxy -相加得到的和仍然是单项式. 那么b a +的值可能是多少? 请你说明理由.(2)已知同一平面上以O 为端点有三条射线OC OB OA ,,;① 若20,80=∠=∠BOC AOB ,求AOC ∠的度数;② 若,,AOB BOC αβ∠=∠∠=∠(,αβ∠∠均为锐角),求AOC ∠的度数(用,αβ∠∠ 表示).24.(本题满分12分)某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:(1) 某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2) 某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制? (3) 若某用户的月用水量为m 吨,请用含m 的代数式表示该用户月所缴水费.恭喜你,亲爱的同学,你已经顺利完成了这份试卷,不过还要记得仔细检查哦!祝你考出好成绩!数学答案及评分标准一.仔细选一选(本题有10个小题,每小题3分,共30分)二.认真填一填(本题有6个小题,每小题4分,共24分;其中第12空2分; 第13题错1空扣1分,错2空3分;第16题每个答案2分,多答或者错答整题得0分) 11. 亏损3元 12. 0.031 , 0.0310 13. 110° 31′ 7″ 14. 60 15. 9 16.12或52三.全面答一答(本题有8个小题,共66分) 17. (本题满分6分)()⎪⎭⎫⎝⎛+-⨯413121121 ()36446422-411231122112⨯+⨯-⨯=…………1分 4482⨯-⨯=…………1分 346+-=…………………………1分 1616-=………………1分 5=…………………………………1分 0=……………………1分………………每小题过程2分,结果1分 18. (本题满分6分)()2131-=+x ()122352=--x x33-=x ………………1分 ()102352=--x x ………………1分 1-=x ………………2分 1010152=+-x x ………………1分2512=x 1225=x ………………1分 19. (本题满分6分)()313323222--=+---=-x x x x x B A ………………………………3分当1-=x 时,原式43)1(2-=---= ………………………………3分 20. (本题满分8分)︒=∠120AOD ,︒=∠60BOD …………………各4分 21. (本题满分8分)设再做x 小时可完成全部工作的十分之七…………1分10712115141211151=⎪⎭⎫ ⎝⎛++⨯+⨯x …………………………………………3分 解得:2=x ……………………………………………………………………3分答:再做2小时可完成全部工作的十分之七………………………………1分 22. (本题满分10分)(1)“小叶榕”百分比:35.0360126=÷共调查:80035.0280=÷(人) ……………………………………2分 喜爱柳树:()40%5800%40%10%1035.01800=⨯=----⨯(人)……2分 (2)……………………4分 (一个长方形画对,且标注数字正确得1分)(3)答案不唯一(如:建议多种香樟等) …………………2分 23. (本题满分10分)(1)因为24xy 和3xy 不是同类项, 要使它们的和是单项式, 只有24xy 与baxy -3的和为零或者3xy 与baxy -3的和是零. (4)分 应该有 ⎩⎨⎧=--=234b a 或者 331a b =-⎧⎨-=⎩, ………………4分所以 3-=+b a 或 1a b +=- ………………2分 (2)① 若OC 在AOB ∠外部时, 08020100AOC ∠=+=; ………………2分若OC 在AOB ∠内部时, 0802060AOC ∠=-=; ………………2分0100=∠∴AOC 或060 ………………1分② 若αβ∠≥∠时, 当OC 在AOB ∠外部时,,AOC αβ∠=∠+∠ ………………1分若αβ∠≥∠时, 若OC 在AOB ∠内部时,,AOC αβ∠=∠-∠ ………………1分若αβ∠<∠时, 当OC 均在AOB ∠外部时,,AOC αβ∠=∠+∠或AOC βα∠=∠-∠ ……………2分βα∠+∠=∠∴AOC 或βα∠-∠ ………………1分24.(本题满分12分)(1)设该用户5月份的用水量为x 吨,根据题意得:12×2+6×2.5+3(x -18)= 45 ………………2分 解得x =20∴该用户5月份的用水量为20吨。

【浙教版】初一数学上期末试卷(附答案)(1)

【浙教版】初一数学上期末试卷(附答案)(1)

一、选择题1.某校七年级(1)班体育委员对本班60名同学参加球类项目的情况做了统计(每人选一种),绘制成如图所示统计图,已知“羽毛球”所在扇形的圆心角度数为72°,则该班参加乒乓球和羽毛球项目的人数总和为( )A .20人B .25人C .30人D .35人2.下列调查活动中,适合采用全面调查的是( )A .某种品牌插座的使用寿命B .为防控冠状病毒,对从境外来的旅客逐个进行体温检测和隔离C .了解某校学生课外阅读经典文学著作的情况D .调查“厉害了,我的国”大型记录电影在线收视率3.下列调查中,适合采用全面调查的是( )A .对某校诺如病毒传染情况的调查B .对全市学生每天睡眠时间的调查C .对钱塘江水质的调查D .对某品牌日光灯质量情况的调查4.一个密封的长方体容器内装有部分水,液体部分的截面恰好是一个正方形(如图1),液面到容器顶端的距离是6cm .若把该容器横放(如图2),液面到容器顶端的距离是4cm .则这个容器的截面面积是( )A .2112cmB .2160cmC .2216cmD .2280cm 5.已知关于x 的一元一次方程()3220a x x a --+-=的解是1x =-,则a 的值为( )A .0B .-1C .1D .26.已知关于x 的方程3412a x -=,马小虎同学在解这个方程时误将4x -看成4x +,得到方程的解为2x =,则原方程的解为( )A .3x =-B .0x =C .2x =-D .1x = 7.己知A 、B 、C 三点,6cm AB =,2cm BC =,则AC =( )A .8cmB .4cmC .8cm 或4cmD .无法确定 8.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ = 9.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个10.携带着2公斤珍贵月壤的嫦娥五号返回器于2020年12月17日凌晨1时32分,降落在内蒙古市四子王旗,实现了中国版的“空间跳跃”.在科幻电影《银河护卫队》中,星际之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成,如图所示,两个星球之间的路径只有一条,三个星际之间的路径有3条,四个星际之间的路径有6条,...,按此规律,则10个星际之间的路径有( )A .45条B .21条C .42条D .38条11.辽宁男篮夺冠后,从4月21日至24日各类媒体关于“辽篮CBA 夺冠”的相关文章达到810000篇,将数据810000用科学记数法表示为( )A .40.8110⨯B .50.8110⨯C .48.110⨯D .58.110⨯ 12.如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表面展开图可能是( )A.B.C.D.二、填空题13.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制成如下不完整的统计图表.根据图表信息,那么扇形图中表示C的圆心角的度数为_____度.成绩等级频数分布表成绩等级频数A24B10C xD214.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。

浙教版七年级(上)期末数学试卷(含解析)2

浙教版七年级(上)期末数学试卷(含解析)2

浙教版七年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.下列有理数中,最小的数是()A.﹣3B.2C.0D.﹣1.52.第四届“世界互联网大会•乌镇峰会”于2017年12月3日﹣5日在浙江省乌镇举行.百度数据显示,共有2608337人为互联网大会点赞,数2608337用科学记数法表示为()A.260.8337×104B.26.08337×105C.2.608337×106D.0.2608337×1073.下列属于一元一次方程的是()A.x+1B.3x+2y=2C.x2﹣6x+5=0D.3x﹣3=4x﹣44.近似数27.3万是精确到()A.千位B.万位C.十万位D.十分位5.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=12AB6.若关于x的一元一次方程ax=3x﹣2的解是x=2,则a的值是()A.﹣1B.﹣2C.1D.27.将一副三角板按如图方式摆放在一起,若∠1=30°10′,则∠2的度数等于()A.30°10′B.60°10′C.59°50′D.60°50′8.如图,∠AOB是直角,∠COD也是直角,若∠AOC=α,则∠BOD等于()A.90°+αB.90°﹣αC.180°+αD.180°﹣α9.已知a,b是不为0的实数,且|a|=﹣a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是()A.B.C.D.10.在数1,2,3,4,5,6,7,8请添加“+”,“﹣”并依次计算,所得结果可能的最小非负数是0,算式可以列为:+1﹣2﹣3+4+5﹣6﹣7+8=0.若在数1.2.3……,n前添加“+”,“﹣”并依次运算,使所得结果可能的最小非负数使0,则数n不可能是()A.2016B.2017C.2019D.2020二、填空题(本题有6小题,每小题2分,共12分)11.我市某日的气温是﹣2℃~6℃,则该日的温差是℃.12.比较大小:−√3﹣2.13.已知x﹣3y=2,则代数式5﹣3x+9y的值为.14.如图,P是线段AB的中点,点C,D把线段AB三等分.已知线段AB的长为9cm,则线段CP的长为cm.15.在如图所示的运算流程中,若输出的数y=7,则输入的数x=.16.如图,已知正方形ABCD的边长为24厘米.甲、乙两动点同时从顶点A出发,甲以2厘米/秒的速度沿正方形的边按顺时针方向移动,乙以4厘米/秒的速度沿正方形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动,则第四次相遇时甲与最近顶点的距离是厘米.三、解答题(本题有8小题,共58分)17.计算:(1)﹣3+4﹣5(2)(﹣3)×√25−48÷|﹣6|18.先化简,再求值:(5xy﹣8x2)﹣(﹣12x2+4xy),其中x=﹣0.5,y=2.19.解方程:(1)2(x+1)=﹣2(2)x−1−x3=x+26−120.如图,直线AB,CD相交于点O,∠BOC=80°,OE是∠BOC的角平分线,OF⊥OE.(1)求∠COF的度数;(2)说明OF平分∠AOC.21.已知x,y为有理数,现规定一种新运算*,满足x*y=xy﹣5(1)求(4*2)*(﹣3)的值;(2)任意选择两个有理数,分别填入下列□和○中,并比较它们的运算结果:多次重复以上过程,你发现:□*○○*□(用“>”“<”或“=”填空);(3)记M=a*(b﹣c),N=a*b﹣a*c,请探究M与N的关系,用等式表达出来.22.已知C,D为线段AB上的两点,点M,N分别为AC与BD的中点,若AB=13,CD=5,求线段MN的长.23.一辆最大载重48吨的大型货车,货车的货箱是长14m,宽2.5m,高3m的长方体,现有甲种货物18吨,乙种货物70m3,而甲种货物每吨的体积为2.5m3,乙种货物每立方米0.5吨.问:(1)甲、乙两种货物是否都能装上车?请说明理由.(2)为了最大地利用车的载重量和货箱的容积,两种货物应各装多少吨?24.如图1,在长方形ABCD中,AB=12厘米,BC=6厘米,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)如图1,当点P到达点B,或点Q到达点A时,两点都停止运动.①当t=3时,分别求AQ和BP的长;②当t为何值时,线段AQ与线段AP相等?(2)如图2,若P,Q到达B,A后速度不变继续运动,点Q开始向点B移动,P点返回向点A移动,其中一点到达目标点后就停止运动.问当t为何值时,线段PQ的长度等于线段BC长度的一半.参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.下列有理数中,最小的数是()A.﹣3B.2C.0D.﹣1.5【解答】解:∵﹣3<﹣1.5<0<2,∴最小的数是﹣3;故选:A.2.第四届“世界互联网大会•乌镇峰会”于2017年12月3日﹣5日在浙江省乌镇举行.百度数据显示,共有2608337人为互联网大会点赞,数2608337用科学记数法表示为()A.260.8337×104B.26.08337×105C.2.608337×106D.0.2608337×107【解答】解:2608337=2.608337×106.故选:C.3.下列属于一元一次方程的是()A.x+1B.3x+2y=2C.x2﹣6x+5=0D.3x﹣3=4x﹣4【解答】解:A、x+1,是多项式,故此选项错误;B、3x+2y=2是二元一次方程,故此选项错误;C、x2﹣6x+5=0是一元二次方程,故此选项错误;D、3x﹣3=4x﹣4是一元一次方程,故此选项正确;故选:D.4.近似数27.3万是精确到()A.千位B.万位C.十万位D.十分位【解答】解:近似数27.3万是精确到0.1万,即精确到千位,故选:A.5.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=12AB【解答】解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=12AB,则点C是线段AB中点.故选:B.6.若关于x的一元一次方程ax=3x﹣2的解是x=2,则a的值是()A.﹣1B.﹣2C.1D.2【解答】解:将x=2代入方程ax=3x﹣2,得:2a=4,解得:a=2,故选:D.7.将一副三角板按如图方式摆放在一起,若∠1=30°10′,则∠2的度数等于()A.30°10′B.60°10′C.59°50′D.60°50′【解答】解:∵∠1=30°10′,∴∠2=180°﹣∠1﹣90°=180°﹣30°10′﹣90°=59°50′,故选:C.8.如图,∠AOB是直角,∠COD也是直角,若∠AOC=α,则∠BOD等于()A.90°+αB.90°﹣αC.180°+αD.180°﹣α【解答】解:根据∠AOB是直角,∠COD也是直角,若∠AOC=α,那么∠BOC=90°﹣α,∴∠BOD=∠BOC+∠COD=90°﹣α+90°,=180°﹣α.故选:D.9.已知a,b是不为0的实数,且|a|=﹣a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是()A.B.C.D.【解答】解:∵|a|=﹣a,|b|=b,∴a≤0,b≥0,∵|a|>|b|,∴表示数a的点到原点的距离比b到原点的距离大,故选:C.10.在数1,2,3,4,5,6,7,8请添加“+”,“﹣”并依次计算,所得结果可能的最小非负数是0,算式可以列为:+1﹣2﹣3+4+5﹣6﹣7+8=0.若在数1.2.3……,n前添加“+”,“﹣”并依次运算,使所得结果可能的最小非负数使0,则数n不可能是()A.2016B.2017C.2019D.2020【解答】解:由题意知,当n是4的倍数时,结果可能的最小非负数为0;当n除以4余1时,结果可能的最小非负数为1;当n除以4余2时,结果可能的最小非负数为1;当n除以4余3时,结果可能的最小非负数为0.∵2016、2020均能被4整除、2019除以4余数为3,2017除4余数为1,∴数n不可能是2017,故选:B.二、填空题(本题有6小题,每小题2分,共12分)11.我市某日的气温是﹣2℃~6℃,则该日的温差是8℃.【解答】解:依题意,温差=6﹣(﹣2)=6+2=8℃,∴该日的温差是8℃.12.比较大小:−√3>﹣2.【解答】解:∵|−√3|=√3,|﹣2|=2,√3<2;∴−√3>−2.故答案为>.13.已知x﹣3y=2,则代数式5﹣3x+9y的值为﹣1.【解答】解:∵x﹣3y=2,∴5﹣3x+9y=5﹣3(x﹣3y)=5﹣3×2=5﹣6=﹣1,故答案为:﹣1.14.如图,P是线段AB的中点,点C,D把线段AB三等分.已知线段AB的长为9cm,则线段CP的长为 1.5cm.【解答】解:∵AB=9cm,点P是AB的中点,∴AP=12AB=12×9cm=4.5cm,∵点C,D是AB的三等分点,∴AC=CD=DB=13AB=3cm,∴CP=AP﹣AC=4.5﹣3=1.5cm,故答案为:1.5.15.在如图所示的运算流程中,若输出的数y=7,则输入的数x=28或27.【解答】解:当x是偶数时,有x÷4=7,解得:x=28,当x是奇数时,有(x+1)÷4=7.解得:x=27.故答案为:28或27.16.如图,已知正方形ABCD的边长为24厘米.甲、乙两动点同时从顶点A出发,甲以2厘米/秒的速度沿正方形的边按顺时针方向移动,乙以4厘米/秒的速度沿正方形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动,则第四次相遇时甲与最近顶点的距离是 5.6厘米.【解答】解:设第1次相遇的时间为x秒,依题意有(2+4)x=24×4,解得x=16;设第2次相遇的时间为y秒,依题意有(2+1+4+1)y=24×4,解得y=12;设第3次相遇的时间为z秒,依题意有(2+1+1+4+1+1)z=24×4,设第4次相遇的时间为t秒,依题意有(2+1+1+1+4+1+1+1)t=24×4,解得y=8;2×16﹣(2+1)×12+(2+1+1)×9.6﹣(2+1+1+1)×8=32﹣36+38.4﹣40=﹣5.6,故第四次相遇时甲与最近顶点的距离是5.6厘米.故答案为:5.6.三、解答题(本题有8小题,共58分)17.计算:(1)﹣3+4﹣5(2)(﹣3)×√25−48÷|﹣6|【解答】解:(1)﹣3+4﹣5=(﹣3)+4+(﹣5)=﹣4;(2)(﹣3)×√25−48÷|﹣6|=(﹣3)×5﹣48÷6=(﹣15)﹣8=﹣23.18.先化简,再求值:(5xy﹣8x2)﹣(﹣12x2+4xy),其中x=﹣0.5,y=2.【解答】解:原式=5xy﹣8x2+12x2﹣4xy=4x2+xy,当x=﹣0.5、y=2时,原式=4×0.52+0.5×2=1+1=2.19.解方程:(1)2(x+1)=﹣2(2)x−1−x3=x+26−1【解答】解:(1)去括号得:2x+2=﹣2,移项合并得:2x=﹣4,(2)去分母得:6x﹣2+2x=x+2﹣6,移项合并得:7x=﹣2,解得:x=−2 7.20.如图,直线AB,CD相交于点O,∠BOC=80°,OE是∠BOC的角平分线,OF⊥OE.(1)求∠COF的度数;(2)说明OF平分∠AOC.【解答】解:(1)∵∠BOC=80°,OE是∠BOC的角平分线,∴∠COE=12∠BOC=40°,又∵OF⊥OE,∴∠COF=90°﹣∠COE=50°;(2)∵∠BOC=80°,∴∠AOC=100°,又∵∠COF=50°,∴∠COF=12∠AOC,∴OF平分∠AOC.21.已知x,y为有理数,现规定一种新运算*,满足x*y=xy﹣5(1)求(4*2)*(﹣3)的值;(2)任意选择两个有理数,分别填入下列□和○中,并比较它们的运算结果:多次重复以上过程,你发现:□*○=○*□(用“>”“<”或“=”填空);(3)记M=a*(b﹣c),N=a*b﹣a*c,请探究M与N的关系,用等式表达出来.【解答】解:(1)∵4*2=4×2﹣5=3,∴(4*2)*(﹣3)=3*(﹣3)=3×(﹣3)﹣5=﹣9﹣5=﹣14;(2)1*2=1×2﹣5=﹣3,2*1=2×1﹣5=﹣3;(﹣3)*4=﹣3×4﹣5=﹣17,4*(﹣3)=4×(﹣3)﹣5=﹣17;∴□*○=○*□,故答案为:=;(3)因为M=a*(b﹣c)=a×(b﹣c)﹣5=ab﹣ac﹣5,N=a*b﹣a*c=ab﹣5﹣ac+5=ab﹣ac,所以M=N﹣5.22.已知C,D为线段AB上的两点,点M,N分别为AC与BD的中点,若AB=13,CD=5,求线段MN的长.【解答】解:分两种情况:①如图1,∵AB=13,CD=5,∴AC+BD=AB﹣CD=13﹣5=8.∵M、N分别为AC与BD的中点,∴MC=12AC,ND=12BD,∴MC+ND=12(AC+BD)=12×8=4,∴MN=MC+ND+CD=4+5=9.②如图2,∵AB=13,CD=5,∴AC+BD=AC+BC+CD=AB+CD=13+5=18.∵M、N分别为AC与BD的中点,∴AM=12AC,BN=12BD,∴MN=AB﹣(AM+BN)=AB−12(AC+BD)=13−12×18=4.故线段MN的长为9或4.23.一辆最大载重48吨的大型货车,货车的货箱是长14m,宽2.5m,高3m的长方体,现有甲种货物18吨,乙种货物70m3,而甲种货物每吨的体积为2.5m3,乙种货物每立方米0.5吨.问:(1)甲、乙两种货物是否都能装上车?请说明理由.(2)为了最大地利用车的载重量和货箱的容积,两种货物应各装多少吨?【解答】解:(1)由于18+700.5=158>48,故不能全部装上船.(2)设装甲种货物质量为x吨,装乙种货物质量为(48﹣x)吨.根据题意,得2.5x+48−x0.5=14×2.5×3,解得x=18.则48﹣x=48﹣18=30(吨)答:装甲种货物为18吨,装乙种货物为30吨.24.如图1,在长方形ABCD中,AB=12厘米,BC=6厘米,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)如图1,当点P到达点B,或点Q到达点A时,两点都停止运动.①当t=3时,分别求AQ和BP的长;②当t为何值时,线段AQ与线段AP相等?(2)如图2,若P,Q到达B,A后速度不变继续运动,点Q开始向点B移动,P点返回向点A移动,其中一点到达目标点后就停止运动.问当t为何值时,线段PQ的长度等于线段BC长度的一半.【解答】解:(1)①当t=3时,AQ=AD﹣DQ=6﹣3=3cm,PB=AB﹣AP=12﹣6=6cm.②当AQ=AP时,6﹣t=12﹣2t,解得t=2s.∴t=2s时,AQ=AP.(2)相遇前,由题意可得:12﹣t﹣2t=12×6,解得t=3.相遇后,由题意:3t﹣12=12×6,解得t=5,综上所述,当t=3s或5s时,线段PQ的长度等于线段BC长度的一半.。

【浙教版】七年级数学上期末试卷附答案(1)

【浙教版】七年级数学上期末试卷附答案(1)

一、选择题1.下列说法正确..的是( ) A .一个数,如果不是正数,必定是负数 B .所有有理数都能用数轴上的点表示 C .调查某种灯泡的使用寿命采用普查 D .两点之间直线最短2.下列调查中,最适宜采用全面调查(普查)的是( )A .调查一批袋装食品是否含有防腐剂B .对一批导弹的杀伤半径的调查C .了解某校学生的身高情况D .对重庆市居民生活垃圾分类情况的调查3.某超市有线上和线下两种销售方式,去年10月份该超市线下销售额比线上销售额多a 元,与去年相比,该超市今年10月份线上销售额增长35%,线下销售额减少10%,若该超市今年10月份的销售总额比去年10月份的销售总额增加了10%,则今年10月份线上销售额与当月销售总额的比为( )A .12B .611C .59D .474.下列变形错误的是( )A .由x y =得:88x y -=-B .由32x =得:23x =C .由23x -=得:32x =-D .由342x x -=得:324x x =+5.下列等式变形正确的是( ) A .若25x -=,则25x =-B .若()2134x x +-=,则2134x x +-=C .若7235x x -=--,则7352x x +=+D .若1132x x -+=,则()2316x x +-= 6.老师布置10道题作为课堂练习,学习委员将全班同学的答题情况绘制成右图,问答对8道题同学频率是( )A .0.8B .0.4C .0.25D .0.087.若线段122A A =,在线段12A A 的延长线上取一点3A ,使2A 是13A A 的中点;在线段13A A 的延长线上取一点4A ,使3A 是41A A 的中点;在线段41A A 的延长线上取一点5A ,使4A 是15A A 的中点……,按这样操作下去,线段2021A A 的长度为( )A .182B .192C .202D .2128.已知点C 在线段AB 上,点D 在线段AB 的延长线上,若5AC =,3BC =,14BD AB =,则CD 的长为( )A .2B .5C .7D .5或1 9.已知∠'α21=,∠β0.36=︒,则∠α和∠β的大小关系是( ) A .∠α=∠β B .∠α>∠βC .∠α<∠βD .无法确定10.下列运算正确的是( )A .2347a a a +=B .44a a -=C .32523a a a +=D .10.2504ab ab -+= 11.5的相反数的倒数是( ) A .5-B .5C .15-D .1512.如图所示的几何体从正面看,得到的图形是( )A .B .C .D .二、填空题13.甲、乙两家汽车销售公司根据近几年的销售量分别制作如下统计图:从2009-2013年,这两家公司中销售量增长较快的是__________公司.14.为了调查某校中学生对3月12日“植树节”是否了解,从该校全体学生1000名中,随机抽查了40名学生,结果显示有1名学生不了解,由此,估计该校全体学生中对“植树节”不了解的约有________名学生.15.若|2||3|9x x ++-=,则x 的值为________.16.如图在长方形ABCD 的边上有P 、Q 两个动点速度分别为2cm /s ,1cm/s ,两个点同时出发,运动过程中,一个点停止运动时另一个点继续向终点运动,运动时间为t 秒.动点P 从A 点出发沿折线A D C --向终点C 运动,动点Q 从C 点出发,沿折线C D A--向终点A 运动.若8cm AB =,6cm AD =,当APC △和AQC 的面积之和为8平方厘米时,t 的值为_________.17.如图,已知线段AB m =,CD n =,线段CD 在直线AB 上运动(点A 在点B 的左侧,点C 在点D 的左侧),若()21260m n -+-=. (1)求线段AB ,CD 的长;(2)若点M ,N 分别为线段AC ,BD 的中点,4BC =,求线段MN 的长; (3)当CD 运动到某一时刻时,点D 与点B 重合,点P 是线段AB 的延长线上任意一点,下列两个结论:①PA PB PC-是定值,②PA PBPC +是定值,请选择你认为正确的一个并加以说明.18.单项式21315x a b +与38x y a b +-的差仍是单项式,则x y -=______. 19.如图,数轴上点A ,B ,C 对应的有理数分别是a ,b ,c ,2OA OC OB ==,且24a b c ++=-,则a b b c -+-=______.20.如图,用一个平面从正方体的三个顶点处截去正方体的一角变成一个新的多面体,这个多面体共有________ 条棱.三、解答题21.为宣传普及新冠肺炎防控知识,引导学生做好防控,某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为 20道判断题,每道题5分,满分 100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩,已知抽取得到的八年级的数据如下(单位:分):80,95,75,75,90,75,80,65, 80.85.75,65,70,65,85,70,95,80,75.80.为了便于分析数据,统计员对八年级数据进行了整理,得到表1表1:等级分数(单位:分)学生数D60<x≤705C70<x≤80aB80<x≤90bA90<x≤1002年级平均分中位数优秀率八年级78分c分m%九年级76分82.5分50%22.国庆期间,七(1)班的明明、丽丽等同学随家长一同到吉水进士文化园游玩,下面是购买门票时,明明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)明明他们一共去了几个成人,几个学生?(2)请你帮助明明算一算,用哪种方式购票更省钱?说明理由;(3)购完票后,明明发现七(2)班的张小涛等7名同学和他们的9名家长共16人也来购票,请你为他们设计出最省的购票方案,并求出此时的购票费用.23.如图,已知点C在线段AB上,点D、E分别在线段AC、BC上,AB=,则DE=_______;(1)观察发现:若D、E分别是线段AC、BC的中点,且12(2)拓展探究;若2AD DC =,2BE CE =,且10AB =,求线段DE 的长;(3)数学思考:若AD kDC =,BE kCE =(k 为正数),则线段DE 与AB 的数量关系是________. 24.计算(1)()()664 2.50.1-⨯--÷- (2)()()322524-⨯--÷ (3)()()225214382a a a a +---+(4)22135322x x x x ⎡⎤⎛⎫---+⎪⎢⎥⎝⎭⎣⎦25.计算:()2020313121468⎛⎫-+-⨯+- ⎪⎝⎭. 26.如图,用一张长为2π米、宽为2米的铁皮制作一个圆柱形管道,如果制作中不考虑材料损耗,试求可围成管道的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据有理数的定义,数轴、普查、线段的定义进行解答即可. 【详解】解:A 、一个数,如果不是正数,可能是负数,也可能是0,故A 选项错误; B 、所有的有理数都能用数轴上的点表示,故B 正确;C 、调查某种灯泡的使用寿命,利用普查破坏性较强,应采用抽样调查,故此选项错误; D、两点之间,线段最短,故原题说法错误. 故选B. 【点睛】本题考查了有理数的定义、数轴、普查、线段的定义,掌握相关知识是解题的关键.2.C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似. 【详解】解:A 、调查一批袋装食品是否含有防腐剂,最适宜采用抽样调查,故本选项不合题意; B 、对一批导弹的杀伤半径的调查,最适宜采用抽样调查,故本选项不合题意; C 、了解某校学生的身高情况,最适宜采用全面调查(普查);D 、对重庆市居民生活垃圾分类情况的调查,最适宜采用抽样调查,故本选项不合题意; 故选:C . 【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B解析:B 【分析】设去年10月线上销售额为x 元,则去年总销售额为2x a +()元,今年10月线上销售额为(135%)x +元,线下销售额为(110%)()x a -+元,今年10月份总销售额:135%90%()x x a ++元,根据“今年10月份的销售总额比去年10月份的销售总额增加了10%”列出方程,解方程求出4x a =,从而得出今年10月份线上销售额与当月销售总额,即可求解. 【详解】解:设去年10月线上销售额为x 元,线下销售额为(x +a )元,去年总销售额为2x a +()元,则今年10月线上销售额为(135%)x +元,线下销售额为(110%)()x a -+元,今年10月份总销售额:135%90%()x x a ++元根据题意得:(2)(110%)135%90%()x a x x a ++=++, 解得:4x a =,今年10月线上销售额为4135% 5.4a a ⋅=元, 今年10月总销售额为135%490%(4)9.9a a a a ⋅++=元故5.469.911a a =. 故选B .【点睛】本题考查一元一次方程的应用,根据题意找准等量关系,正确列出一元一次方程是解题的关键.4.C解析:C利用等式的性质将各式进行变形,即可做出判断. 【详解】解:A 、由x y =可以得到88x y -=-,故此选项不符合题意;B 、由32x =得:23x =,故选项不符合题意; C 、由23x -=得:3+2x =-,故选项变形错误,符合题意;D 、由342x x -=得:324x x =+,故选项不符合题意. 故选:C . 【点睛】此题考查了等式的性质运用,灵活掌握等式的性质是解答此题的关键.5.D解析:D 【分析】各项利用等式的性质判断即可. 【详解】解:A 、若25x -=,则52x =-,所以选项A 变形错误,故选项A 不符合题意; B 、若()2134x x +-=,则2234x x +-=,所以选项B 变形错误,故选项B 不符合题意;C 、若7235x x -=--,则7352x x +=-+,所以选项C 变形错误,故选项C 不符合题意;D 、若1132x x -+=,则()2316x x +-=,正确,故选项D 符合题意. 故选:D . 【点睛】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.6.B解析:B 【分析】根据条形统计图,求出答对题的总人数,再求出答对8道题的同学人数,然后利用答对8道题的同学人数÷答对题的总人数即可得出答案. 【详解】解:答对题的总人数:4+20+18+8=50(人) 答对8道题的人数: 20人∴答对8道题的同学的频率:20÷50=0.4 故选:B 【点睛】本题主要考查了条形统计图的应用,利用条形统计图得出答对题的总人数与答对8道题的人数是解题的关键.7.B解析:B【分析】根据线段中点的定义,和两点之间的距离,找出题目中的规律,即可得到结论.【详解】由题意可知:如图写出线段的长,A1A2=2,A2是 A1A3的中点得A1A2=A2A3=2,A1A3=4,A3是 A1A4的中点得A1A3=A3A4=4,A1A4=8,A4是 A1A5的中点得A1A4=A4A5=8,……根据线段的长,找出规律,∵A1A2=2,A2A3=2=21,A3A4=4=22,A4A5=8=23,A5A6=16=24,A7A8=……,总结通项公式,∴线段 A n A n+1=2n-1(n为正整数)∴线段 A20A21=219故此题选:B【点睛】本题考查了两点间的距离,线段中点的定义,找出题目中的规律是解题的关键.8.B解析:B【分析】根据线段的和差关系可求AB,再根据14BD AB=,可求BD,再根据线段的和差关系可求CD的长.【详解】解:如图,∵点C在线段AB上,AC=5,BC=3,∴AB=AC+BC=5+3=8,∴14BD AB==2,∵点D在线段AB的延长线上,∴CD=BC+BD=3+2=5.故选B【点睛】本题考查了线段的和差,根据题意,画出正确图形,是解题关键.9.C解析:C 【分析】一度等于60′,知道分与度之间的转化,统一单位后比较大小即可求解. 【详解】解:∵∠α=21′,∠β=0.36︒=21.6′, ∴∠α<∠β. 故选:C . 【点睛】考查了度分秒的换算,熟练掌握角的比较与运算,能够在度与分之间进行转化.10.D解析:D 【分析】根据合并同类项得法则计算即可. 【详解】解:A.347a a a +=,故A 选项错误; B.43a a a -=,故B 选项错误;C.3a 与22a 不是同类项,不能合并,故C 选项错误;D.10.2504ab ab -+=,故D 选项正确; 故选:D . 【点睛】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.11.C解析:C 【分析】只有符号不同的两个数互为相反数,两数相乘为1的数互为倒数. 【详解】解:5的相反数为5-,5-的倒数为15-,故5的相反数的倒数是15-. 故答案为:C . 【点睛】本题考查倒数和相反数.熟练掌握倒数和相反数的求法是解题的关键.12.A解析:A 【解析】 【分析】根据从正面看得到的图形是主视图和主视图的特点,可得答案.【详解】解:从正面看最下面一层是三个小正方形,上面一层有1个正方形,且位于最右侧,故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.二、填空题13.甲【分析】结合折线统计图求出甲乙各自的增长量即可求出答案【详解】解:从折线统计图中可以看出:甲公司2009年的销售量约为100辆2013年约为500多辆则从2009~2013年甲公司增长了400多辆解析:甲【分析】结合折线统计图,求出甲、乙各自的增长量即可求出答案.【详解】解:从折线统计图中可以看出:甲公司2009年的销售量约为100辆,2013年约为500多辆,则从2009~2013年甲公司增长了400多辆;乙公司2009年的销售量为100辆,2013年的销售量为400辆,则从2009~2013年,乙公司中销售量增长了400-100=300辆;∴甲公司销售量增长的较快.故答案为:甲.【点睛】本题主要考查了折线图,从折线的陡峭情况来判断,很易错选乙公司;但是两幅图中横轴的组距选择不一样,所以就没法比较了,因此还要抓住关键.14.【分析】先通过样本计算对植树节不了解的所占比例然后估计整体中对植树节不了解的人数【详解】解:随机抽查了40名学生中不了解人数占的百分比为×100=25则估计该校全体学生中对植树节不了解的学生人数为1解析:25【分析】先通过样本计算对“植树节”不了解的所占比例,然后估计整体中对“植树节”不了解的人数.【详解】解:随机抽查了40名学生中“不了解”人数占的百分比为140×100%=2.5%,则估计该校全体学生中对“植树节”不了解的学生人数为1000×2.5%=25人.故答案是:25.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.15.或5【分析】根据绝对值的意义及数轴上两点间的距离分析求解【详解】解:表示数轴上x 表示的点到-2的距离;表示数轴上x 表示的点到3的距离∵3-(-2)=5且∴x <-2或x >3当x <-2时解得:当x >3时解析:4-或5【分析】根据绝对值的意义及数轴上两点间的距离分析求解.【详解】解:|2|x +表示数轴上x 表示的点到-2的距离;|3|x -表示数轴上x 表示的点到3的距离 ∵3-(-2)=5且|2||3|9x x ++-=∴x <-2或x >3当x <-2时,|2||3|9x x ++-=239x x ---+=,解得:4x =-当x >3时,|2||3|9x x ++-=239x x ++-=,解得:5x =综上,x 的值为-4或5故答案为:-4或5.【点睛】本题考查一元一次方程的应用,根据数轴上两点间的距离数形结合思想解题是关键. 16.s 或12s 【分析】分四种情况求解即可:点P 在AD 上运动点Q 在CD 上运动时;点P 在CD 上运动时点Q 在CD 上运动时;点P 与点C 重合点Q 在CD 上运动时;点P 与点C 重合点Q 在AD 上运动时【详解】解:①6÷2 解析:811s 或12s 【分析】 分四种情况求解即可:点P 在AD 上运动,点Q 在CD 上运动时;点P 在CD 上运动时,点Q 在CD 上运动时;点P 与点C 重合,点Q 在CD 上运动时;点P 与点C 重合,点Q 在AD 上运动时.【详解】解:①6÷2=3秒,当0<t≤3时,即当点P 在AD 上运动,点Q 在CD 上运动时,如图1, ∵四边形ABCD 是长方形,∴CD=8cm AB =,∵S △APC +S △AQC =1122AP CD CQ AD ⋅+⋅=1128622t t ⨯⨯+⨯⨯ =8t+3t=8, ∴t=811;②(6+8)÷2=7秒,当3<t<7时,即当点P 在DC 上运动时,点Q 在CD 上运动时,如图2,∵S △APC +S △AQC =1122PC AD CQ AD ⋅+⋅ =()111426622t t ⨯-⨯+⨯⨯ =42-3t=8, ∴t=343(舍去);③8÷1=8秒,当7<t≤8时,即当点P 与点C 重合,点Q 在CD 上运动时,如图3, ∵S △APC +S △AQC =102CQ AD +⋅ =162t ⨯⨯ =3t=8, ∴t=83(舍去);④14÷1=14秒,当7<t<14时,即当点P 与点C 重合,点Q 在AD 上运动时,如图4, ∵S △APC +S △AQC =102AQ CD +⋅ =()11482t ⨯-⨯ =56-4t=8,∴t=12;综上可知:t 的值为811s 或12s . 【点睛】 本题考查了一元一次方程的应用,以及分类讨论的数学思想,分类讨论是解答本题的关键.17.(1);(2)9;(3)②正确见解析【分析】(1)利用两个非负数和为0可得每个非负数为0可求即可;(2)分类考虑当点在点的右侧和点在点的左侧时利用中点可求AMDN 利用线段和差求AD 可求MN=AD-A解析:(1)12AB =,6CD =;(2)9;(3)②正确,2PA PB PC +=,见解析 【分析】(1)利用两个非负数和为0,可得每个非负数为0,可求12m =,6n =即可; (2)分类考虑当点C 在点B 的右侧和点C 在点B 的左侧时,利用中点可求AM ,DN ,利用线段和差求AD ,可求MN=AD-AM-DN 即可;(3)利用PA=PC+AC ,PB=PC-BC ,求出PA+PB=2PC 即可.【详解】解:(1)由()21260m n -+-=,()212600m n ≥--≥,,12=06=0m n --,,得12m =,6n =,所以12AB =,6CD =;(2)当点C 在点B 的右侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,4BC =, 所以()()1124118222AM AC AB BC ==+⨯+==,()()111645222DN BD CD BC ===++=, 又因为124622AD AB BC CD =++=++=,所以22859MN AD AM DN =--=--=, 当点C 在点B 的左侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,所以()()1111244222AM MC AC AB BC ===--==,()()111641222BN ND BD CD BC ===--==, 所以126414AD AB CD BC =+-=+-=所以14419MN AD AM DN =--=--=. 综上,线段MN 的长为9;(3)②正确,且2PA PB PC+=.理由如下: 因为点D 与点B 重合,所以BC DC =, 所以6AC AB BC AB DC =-=-=,所以AC BC =,所以()()222PC AC PC BC PA PB PC AC BC PC PC PC PC PC++-++-====.【点睛】本题考查非负数的性质,线段中点,线段和差,线段的比问题,掌握非负数的性质,线段中点,线段和差,线段的比,关键是利用线段和差PA=PC+AC ,PB=PC-BC ,求出PA+PB=2PC .18.-1【分析】根据同类项的定义列方程计算即可;【详解】∵单项式与的差仍是单项式∴单项式与是同类项∴解得:∴;故答案是-1【点睛】本题主要考查了同类项的定义解析:-1【分析】根据同类项的定义列方程计算即可;【详解】∵单项式21315x a b +与38x y a b +-的差仍是单项式, ∴单项式21315x a b +与38x y a b +-是同类项, ∴2133x x y +=+⎧⎨=⎩, 解得:23x y =⎧⎨=⎩, ∴231x y -=-=-;故答案是-1.【点睛】本题主要考查了同类项的定义.19.8【分析】根据得代入即可求出a 和c 的值再根据绝对值的性质化简即可求出结果【详解】解:∵∴∵∴即∴∴故答案是:8【点睛】本题考查数轴的性质和绝对值的性质解题的关键是掌握数轴上的点表示有理数的性质和化简 解析:8【分析】根据2OA OC OB ==得2c a b =-=-,代入24a b c ++=-即可求出a 和c 的值,再根据绝对值的性质化简a b b c -+-,即可求出结果.【详解】解:∵2OA OC OB ==,∴2c a b =-=-,∵24a b c ++=-,∴4a c c -+=-,即4a =-,∴4c =, ∴()448a b b c b a c b c a -+-=-+-=-=--=.故答案是:8.【点睛】本题考查数轴的性质和绝对值的性质,解题的关键是掌握数轴上的点表示有理数的性质和化简绝对值的方法.20.12三、解答题21.无22.(1)明明他们一共去了6个成人,4个学生;(2)买团体票更省钱;(3)购买13张团体票,3张学生票更省钱,购票总费用为372元.【分析】(1)根据题意,可以找出题目中的等量关系,列出相应的方程,从而可以解答本题;(2)根据题意可以算出团购的费用,然后与(1)中320比较大小,即可解答本题;(3)根据题意,可以知道学生按照学生票购买,成人按团体票购买最省钱,然后求出相应的费用即可解答本题.【详解】解:(1)设一共去了x个成人,则学生(10-x)人,40x+0.5×40×(10-x)=320,解得,x=6.∴10-x=10-6=4,答:明明他们一共去了6个成人,4个学生;(2)买团体票更省钱,理由:∵购买团体票时,花费为:40×0.6×13=312(元),∵312<320,∴买团体票更省钱;(3)购买13张团体票,3张学生票更省钱,费用为:40×0.6×13+3×0.5×40=312+60=372(元),答:购票总费用为372元.【点睛】本题考查一元一次方程的应用,解答此类问题的关键是明确题意,找出所题目中的等量关系,列出相应的方程.23.(1)6;(2)103;(3)()1AB k DE=+【分析】(1)根据中点的定义,结合线段的和、差计算即可(2)利用线段之间的和、差关系倍数关系计算即可(3)结合(2)的求解,再利用线段之间的和、差关系倍数关系计算即可【详解】(1)D、E为线段AC,BC的中点11,22DC AC CE BC ∴== ()12DC CE AC BC ∴+=+ ,DE DC CE AB AC BC =+=+12DE AB ∴= 1211262AB DE =∴=⨯= (2)2,2AD DC BE CE == AB AD DC CE BE =+++,()223AB DC DC CE CE DC CE ∴=+++=+10,AB DE DC CE ==+3310103DE ABDE DE ∴=∴=∴=(3),AD kDC BE kCE == AB AD DC CE BE =+++,DE DC CE =+()()1AB kDC DC CE kCE k DC CE ∴=+++=++()1k DE AB ∴+=【点睛】本题考查了线段n 等分点的有关计算,掌握线段之间和、差倍数关系是解题关键. 24.(1)-289;(2)22;(3)23a 3413a -+-;(4)29x 32x -- 【分析】(1)先算乘除,再算加减即可;(2)先算乘方,再算乘除,后算加减即可;(3)去括号合并同类项即可;(4)先去小括号,再去中括号,然后合并同类项即可;【详解】(1)原式=26425--=-289;(2)原式=()4584⨯--÷=()202--=22;(3)原式=2252112328a a a a +--+-=233413a a -+-;(4)原式=22135322x x x x ⎛⎫--++ ⎪⎝⎭=22135322x x x x -+-- =2932x x --. 【点睛】本题考查了有理数的混合运算,整式的加减,熟练掌握运算法则是解答本题的关键.25.1102-. 【分析】 原式利用乘法分配律以及乘方的意义计算即可得到结果.【详解】 解:()2020313121468⎛⎫-+-⨯+- ⎪⎝⎭ =3131212121468-⨯+⨯-⨯+ =99212-+-+ =1102-. 【点睛】 此题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.26.2π【解析】【分析】由2πr =2π,求出r =1,再根据:体积=底面积×高,即可求解.【详解】设围城管道后底面的半径为r ,由题意得:2πr =2π,则r =1,管道的最大体积=底面积×高=πr 2×2=2π.【点睛】本题是一个简单的体积计算问题.。

浙教版七年级上册数学期末考试试卷含答案

浙教版七年级上册数学期末考试试卷含答案

浙教版七年级上册数学期末考试试题一、单选题1.-2的绝对值是()A .2B .12C .12-D .2-2.把54300这个数据可以用科学记数法表示为()A .55.4310⨯B .45.4310⨯C .354.310⨯D .50.54310⨯3.下列图形旋转一周,能得到如图几何体的是()A .B .C .D .4.在1-,13,0这四个实数中,属于无理数的是()A .1-B C .13D .05.在一个峡谷中,测得A 地的海拔为-11米,B 地比A 地高15米,则B 地的海拔为()A .4米B .-4米C .26米D .-26米6.如图,点A 在点O 的南偏东20︒方向上,且射线OA 与OB 的夹角是110︒,则射线OB 的方向是()A .北偏东70︒B .北偏东60︒C .北偏东50︒D .北偏东40︒7.若20x y +-=,则代数式8x y --+的值是()A .10B .8C .6D .48.如图,点B 是线段AD 的中点,点C 在线段BD 上,且AB a =,CD b =,则下列结论中错.误.的是()A .2AD a =B .BC a b =-C .2AC a b=-D .13BC b=9.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改为林地,则可列方程为()A .5420%108x -=⨯B .5420%(108)x x -=⨯+C .10820%(54)x x +=⨯-D .5420%(108)x x +=⨯-10.把五张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个大长方形(长为m ,宽为n )内(如图②),大长方形未被卡片覆盖的部分用阴影表示.当m 不变,n 变长时,阴影部分的面积差总保持不变,则a ,b 应满足的关系为()A .a =5bB .a =3bC .a =2bD .32a b=二、填空题11.﹣1的相反数是_____.12.已知50A ∠=︒,则A ∠的余角等于______°.13.比较大小:1-________(填“<”,“>”或“=”)14.已知关于x 的方程(1)332a x a x -+=-的解为2x =,则=a ________.15.若实数a ,b 满足2=a ,41b a -=-||,则a b +=________.16.数轴上A ,B 两点表示的数分别为4-,2,C 是射线BA 上的一个动点,以C 为折点,将数轴向左对折,点B 的对应点落在数轴上的B '处.(1)当点C 是线段AB 的中点时,线段AC =________.(2)若3B C AC '=,则点C 表示的数是________.17.已知代数式x ﹣2y 的值是5,则代数式﹣3x+6y+1的值是_____.18.关于x 的一元一次方程224a x m +﹣=的解为x =1,则a+m 的值为_____.19.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠AEF =23∠DEF ,则∠NEA =_____.三、解答题20.计算(1)3(2)(3)+---;(2)3124⨯.21.解方程(1)5236x x -=+.(2)3252x x x --=.22.先化简,再求值:222(2)(23)1a a a a ---+,其中3a =-.23.如图,将1,2,3,…,40这40个数按照下表进行排列,现用一个Z 字框(图中阴影部分)框住表中的4个数,移动该框,设框中最小的数为x .(1)请用含x 的代数式表示框中4个数的和.(2)框中4个数的和可能是132吗?若能,请求出最小的数.24.如图,44⨯方格中每个小正方形的边长都为1.(1)求图①中正方形ABCD 的面积.(2)25.如图,已知直线AB ,CD 相交于点O ,OE ,OF 为射线,OE 平分AOC ∠,且25AOE ∠=︒.(1)求BOD ∠的度数.(2)若90DOF AOE ∠-∠=︒,试说明OF OE ⊥.26.甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,定价相同,乒乓球拍60元/副,乒乓球20元/盒,两家商店的优惠方案如下表所示:商店优惠方案甲商店每买一副球拍赠一盒乒乓球乙商店全部按定价的8折优惠某班现需买球拍5副,乒乓球若干盒(不少于5盒).(1)当购买乒乓球8盒时,请通过计算说明去哪家商店购买更合算?(2)当购买乒乓球多少盒时,在甲、乙两店所需支付的费用相同?(3)若该班有500元的购买经费,请你帮忙设计出最佳的购买方案,使购买到的乒乓球的盒数最多.27.如图,20cm AB =,点O 在AB 上,点P 在以O 为圆心,OA 长为半径的圆上,且60AOP ∠=︒.点O 从点A 出发沿直线AB 向点B 运动,速度为1cm/s ,同时线段OP 绕点O 以30/s ︒的速度按顺时针旋转,点Q 也同时从点B 出发沿折线B O P --运动,设运动时间为()t s .(1)若点Q 的运动速度为2cm/s ,当2t =时,求OQ 的长.(2)在线段OP 旋转一周的过程中,当30POB ∠=︒时.①求运动时间t .②若此时点Q 恰好在OB 中点处,求点Q 的运动速度.(3)若点Q 在BO 上运动时,速度是2cm/s ,在OP 上运动时,速度是5cm/s ,当点Q 到达点P 时,所有运动同时停止,求运动停止时AOP ∠的度数.参考答案1.A【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.【详解】解:在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,故选:A .2.B【分析】根据科学记数法的定义即可得.【详解】解:454300 5.4310=⨯,故选:B .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.3.A【分析】根据面动成体,判断出各个选项旋转得到的立体图,即可得出结论.【详解】A .旋转一周可得本题的几何体,故选项正确,符合题意;B .旋转一周为两个圆锥结合体,故选项错误,不符合题意;C .旋转一周为圆锥和圆柱的结合体,故选项错误,不符合题意;D .旋转一周为两个圆锥和一个圆柱的结合体,故选项错误,不符合题意;故选:A .【点睛】此题考查了面动成体,解题的关键是要有空间想象能力,熟悉并判断出旋转后的立体图形.4.B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:﹣1、013是分数,属于有理数.故选:B .【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.A【分析】根据有理数的加法运算法则直接列式进行计算即可得出答案.【详解】解:∵A地的海拔为-11米,B地比A地高15米,∴B地的海拔是:-11+15=4(米),故答案为:A.【点睛】本题主要考查了有理数的加法的应用,熟练掌握有理数的加法运算法则是解题的关键.6.C【分析】利用平角180°减去20°与110°的和进行计算即可解答.【详解】解:由题意得:180°-(20°+110°)=180°-130°=50°,∴射线OB的方向是北偏东50°,故选:C.【点睛】本题考查了方向角,根据题目的已知条件并结合图形分析是解题的关键.7.C【分析】由题意得x+y=2,将代数式﹣x﹣y+8变形为﹣(x+y)+8,再将x+y=2整体代入进行计算即可.【详解】解:∵x+y﹣2=0,∴x+y=2,∴﹣x﹣y+8=﹣(x+y)+8=﹣2+8=6,故选:C.【点睛】本题考查了运用整体思想求代数式的值的能力,关键是能通过观察、变形,运用整体思想进行代入求值.8.D【分析】根据线段中点的定义与线段的和差逐项分析可得答案.【详解】解:∵点B是线段AD的中点,AB=a,∴AD =2AB =2a ,故A 正确,不符合题意;∵BD =AB =a ,∴BC =BD ﹣CD =a ﹣b ,故B 正确,不符合题意;∵AC =2AB =2a ,CD =b ,∴AC =AD ﹣CD =2a ﹣b ,故C 正确,不符合题意;∵点C 不是CD 的四等分点,∴BC≠13b ,故D 错误,符合题意.故选:D .【点睛】本题考查线段中点的定义与线段的和与差,熟练掌握线段中点的定义与线段的和差是解题关键.9.B【分析】设把x 公顷旱地改为林地,根据旱地面积占林地面积的20%列出方程即可.【详解】解:设把x 公顷旱地改为林地,根据题意可得方程:54-x=20%(108+x ).故选:B .【点睛】本题考查一元一次方程的应用,关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.10.B【分析】先用字母a 、b 、m 、n 表示出阴影部分的面积差,再由阴影部分面积不随n 的变化而变化可知n 的系数为0,即可求解.【详解】解:阴影部分的面积差为:(3)(2)()()m b n b m a n a -----22236()mn bm bn b mn na ma a =--+---+22236mn bm bn b mn na ma a =--+-++-22(2)(3)6a b m a b n b a =-+-+-,∵阴影部分面积差不随n 的变化而变化∴n 的系数为0,即30a b -=,即3a b =,故选:B .【点睛】本题考查了整式的混合运算,正确列出代数式是解答本题的关键.11.1【分析】根据相反数的定义可得出答案.【详解】根据相反数的定义,得﹣1的相反数是1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12.40【分析】利用90°减去∠A 即可直接求解.【详解】解:∠A 的余角为:90°-50°=40°.故答案是:40.【点睛】本题考查了余角的定义,如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角,理解定义是关键.13.>【分析】首先求出两数的绝对值,进而利用实数比较大小的方法得出答案.【详解】解:∵|﹣1|=1,=1,∴﹣1>故答案为:>.【点睛】本题主要考查了实数比较大小,正确掌握实数比较大小的法则是解题关键.14.5【分析】把x=2代入原方程得到关于a 的方程,解得即可.【详解】把x=2代入方程(1)332a x a x -+=-得:2(a-1)+3=3a-4,解得a=5,故答案为:5.【点睛】本题考查了解一元一次方程,能得到关于a 的一元一次方程是解题的关键.15.−1或5【分析】根据绝对值的定义求出a 、b 的值,再代入计算即可.【详解】解:∵|a|=2,∴a =±2,当a =2时,|4−b|=1−2=−1,此时b 不存在;当a =−2时,|4−b|=3,∴4−b =3或4−b =−3,即b =1或b =7,当a =−2,b =1时,a +b =−1;当a =−2,b =7时,a +b =5.故答案为:−1或5.【点睛】本题考查绝对值的意义,理解绝对值的意义是正确解答的前提,求出a 、b 的值是正确解答的关键.16.32.5-或7-【分析】(1)先根据数轴的性质求出点C 所表示的有理数,再计算有理数的减法即可得;(2)设点C 表示的数是x ,则2,4BC x AC x =-=--,再根据折叠的性质可得2B C BC x '==-,然后根据3B C AC '=建立方程,解方程即可得.【详解】解:(1)当点C 是线段AB 的中点时,则点C 所表示的有理数为4212-+=-,所以线段1(4)3AC =---=,故答案为:3.(2)设点C 表示的数是x ,点C 是射线BA 上的一个动点,2x ∴≤,则2,4BC x AC x =-=--,由折叠的性质得:2B C BC x '==-,3B C AC '= ,234x x ∴-=--,即23(4)x x -=+或23(4)x x -=+,解得 2.5x =-或7x =-,均符合题意,则点C 表示的数是 2.5-或7-,故答案为: 2.5-或7-.【点睛】本题考查了数轴、一元一次方程的应用、有理数加减法的应用、折叠,熟练掌握数轴的性质是解题关键.17.-14.【分析】将x ﹣2y =5整体代入﹣3x+6y+1=﹣3(x ﹣2y )+1可得答案.【详解】∵x ﹣2y =5,∴﹣3x+6y+1=﹣3(x ﹣2y )+1=﹣3×5+1=﹣14.故答案为:﹣14.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.18.5.【分析】先根据一元一次方程的定义得出a ﹣2=1,求出a ,再把x =1代入方程2x+m =4得出2+m =4,求出方程的解即可.【详解】∵方程224a x m ﹣=是关于x 的一元一次方程,∴a ﹣2=1,解得:a =3,把x =1代入一元一次方程2x+m =4得:2+m =4,解得:m =2,∴a+m =3+2=5,故答案为:5.【点睛】本题考查了一元一次方程的定义,解一元一次方程和一元一次方程的解,能求出a 、m 的值是解此题的关键.19.36°.【分析】由于∠AEF =23∠DEF ,根据平角的定义,可求∠DEF ,由折叠的性质可得∠FEN =∠DEF ,再根据角的和差,即可求得答案.【详解】∵∠AEF =23∠DEF ,∠AEF+∠DEF =180°,∴∠DEF =108°,由折叠可得∠FEN =∠DEF =108°,∴∠NEA =108°+108°﹣180°=36°.故答案为:36°.【点睛】此题考查了折叠的性质、矩形的性质及平角的定义,解题的关键是注意数形结合思想的应用,难度一般.20.(1)4(2)-1【分析】(1)根据有理数加减混合运算法则进行计算即可;(2)先根据算术平方根的定义和乘方的运算法则进行计算,然后根据实数混合运算法则进行计算即可.(1)解:3(2)(3)+---323=-+13=+4=(2)解:3124⨯1834=⨯-23=-1=-【点睛】本题主要考查了实数混合运算和有理数的加减混合运算,熟练掌握有理数加减混合运算法则、算术平方根的定义和乘方的运算法则是解题的关键.21.(1)4x =;(2)152x =【分析】(1)按照移项、合并同类项、系数化为1的步骤解一元一次方程即可得;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可得.【详解】解:(1)5236x x -=+,移项,得5326x x -=+,合并同类项,得28x =,系数化为1,得4x =;(2)3252x x x --=,方程两边同乘以10去分母,得25(32)10x x x --=,去括号,得2151010x x x -+=,移项,得2101015x x x +-=,合并同类项,得215x =,系数化为1,得152x =.【点睛】本题考查了解一元一次方程,熟练掌握方程的解法是解题关键.22.1a -+;4【分析】直接去括号,进而合并同类项,再把已知数据代入求出答案.【详解】解:原式=2a 2﹣4a ﹣2a 2+3a+1=﹣a+1,当a =﹣3时,原式=﹣a+1=﹣(﹣3)+1=4.【点睛】本题主要考查了整式的加减——化简求值,注意括号前是“﹣”时,去括号后括号内各项要变号是解题关键.23.(1)4x+24(2)能,最小的数为27【分析】(1)若框中最小的一个数为x ,则其它四个数分别是x+1、x+11、x+12.然后求和即可;(2)根据所给的数的和列方程计算,如果结果不是整数,则应舍去.(1)解:设框中最小的数为x ,则x+x+1+x+11+x+12=4x+24;∴框中4个数的和为x+24.(2)解:根据题意,得4x+24=132.解得x=27.观察表格中的数据知,x=27符合题意.答:能,最小的数是27.【点睛】此题考查了一元一次方程的应用,列代数式和数字的变化规律,关键是根据所给的数的和列方程计算解答.24.(1)10(2)图见解析【分析】(1)利用勾股定理求出2BC 的值,再根据正方形的面积公式即可得;(2=(1)解:2221310BC =+= ,∴图①中正方形ABCD 的面积210BC =.(2)解:如图②,正方形EFGH 即为所求.【点睛】本题考查了勾股定理与网格问题,熟练掌握勾股定理是解题关键.25.(1)50︒(2)见解析【分析】(1)先根据角平分线的定义可得50AOC ∠=︒,再根据对顶角相等即可得;(2)先根据角平分线的定义可得25COE AOE ∠=∠=︒,再根据邻补角的定义可得65COF ∠=︒,从而可得90COE COF ∠+∠=︒,由此即可得.(1)解:OE 平分AOC ∠,且25AOE ∠=︒,250AOC AOE ∴∠=∠=︒,由对顶角相等得:50BOD AOC ∠=∠=︒.(2)解:OE 平分AOC ∠,且25AOE ∠=︒,25COE AOE ∴∠=∠=︒,90DOF AOE -∠=︒∠ ,90115∴∠︒,=︒+∠=DOF AOE-∠︒,∴∠=︒=18065OF OC D F∴∠+∠=︒,90COE COF∴⊥.OF OE26.(1)去甲商店购买更合算(2)10盒(3)在甲商店购买5副球拍获赠5盒乒乓球,再在乙商店购买12盒乒乓球.【分析】(1)利用总价=单价×数量,结合两家商店给出的优惠方案,即可分别求出去甲、乙两商店购买所需费用,比较后即可得出结论;(2)设当购买乒乓球x盒时,在甲、乙两店所需支付的费用相同,利用总价=单价×数量,结合两家商店给出的优惠方案及在两家商店购买所需费用相同,即可得出关于x的一元一次方程,解之即可得出结论;(3)由甲、乙两家商店的优惠方案可得出最佳的购买方案为:在甲商店购买5副球拍获赠5盒乒乓球,再在乙商店购买12盒乒乓球.(1)解:去甲商店购买所需费用为60×5+20×(8-5)=360(元);去乙商店购买所需费用为(60×5+20×8)×80%=368(元).∵360<368,∴去甲商店购买更合算.(2)解:设当购买乒乓球x盒时,在甲、乙两店所需支付的费用相同,依题意得:60×5+20(x-5)=(60×5+20x)×80%,解得:x=10.(3)解:甲店购买5副球拍时赠送5盒乒乓球,再次购买乒乓球需要按原价购买,而乙商店所有商品均按定价的8折优惠,∴在甲商店购买5副球拍,赠送5盒乒乓球,剩余的钱再取乙商店购买乒乓球.(500-60×5)÷(20×80%)=200÷16=12.5(盒).∴最佳的购买方案为:在甲商店购买5副球拍获赠5盒乒乓球,再在乙商店购买12盒乒乓球.【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:(1)利用总价=单价×数量,结合两家商店给出的优惠方案,分别求出在甲、乙两家商店购买所需费用;(2)找准等量关系,正确列出一元一次方程;(3)根据两家商店给出的优惠方案,找出最佳的购买方案.27.(1)14cm(2)①3或5;②17cm/s 6或3cm/s 2(3)50︒【分析】(1)分别表示出,OA BQ ,再根据线段和差即可得;(2)①分点P 在AB 上方和点P 在AB 下方两种情况,分别求出OP 旋转的角度,由此即可得;②在①的两种情况的基础上,分别求出,OA OB 的长,再根据线段中点的定义求出BQ 的长,由此即可得;(3)先求出点Q 在BO 上的运动时间,再根据OP 的长度随OA 的变化建立方程,解方程可得点Q 在OP 上的运动时间,然后根据总运动时间求出旋转的角度数,由此即可得.(1)解:由题意,当2t =时,122(cm),224(cm)OA BQ =⨯==⨯=,20cm AB =Q ,14cm OQ AB OA BQ ∴=--=.(2)解:①由题意,分以下两种情况:当点P 在AB 上方时,OP 旋转的角度为180603090︒-︒-︒=︒,此时90303(s)t =︒÷︒=,当点P 在AB 下方时,OP 旋转的角度为1806030150︒-︒+︒=︒,此时150305(s)t =︒÷︒=,综上,运动时间t 的值为3或5;②当3t =时,133(cm)OA =⨯=,17cm OB AB OA ∴=-=, 点Q 恰好在OB 中点,117cm 22BQ OB ∴==,则此时点Q 的运动速度为17173(cm/s)26÷=,当5t =时,155(cm)OA =⨯=,15cm OB AB OA ∴=-=, 点Q 恰好在OB 中点,115cm 22BQ OB ∴==,则此时点Q 的运动速度为1535(cm/s)22÷=,综上,点Q 的运动速度为17cm/s 6或3cm/s 2.(3)解:当点O 与点Q 重合时,运动时间为2020(12)(s)3÷+=,此时20201(cm)33OP OA ==⨯=,设点Q 从点O 运动到点P 所用时间为s x ,则2053x x +=,解得53x =,所以整个运动过程所用时间为20525(s)333+=, 线段OP 绕点O 以30/s ︒的速度按顺时针旋转,∴旋转的度数为25302503︒⨯=︒, 运动开始时60AOP∠=︒,∴运动停止时3606025050 AOP∠=︒-︒-︒=︒.。

浙教版七年级上册数学期末考试试卷及答案

浙教版七年级上册数学期末考试试卷及答案

浙教版七年级上册数学期末考试试卷一、单选题1.2a a -=( )A .3aB .aC .a -D .-22.将3350000000用科学记数法表示为( )A .733510⨯B .833.510⨯C .93.3510⨯D .100.33510⨯3.下列运算,结果最小的是( )A .1234-+-B .()1234⨯-+-C .()1234--⨯-D .()1234⨯-⨯- 4.如图,直线AC 、DE 交于点B ,则下列结论中一定成立的是( )A .180ABE DBC ∠+∠=︒B .ABE DBC ∠=∠C .ABD ABE ∠=∠ D .2ABD DBC ∠=∠5.4的平方根是( )A .±2B .2C .﹣2D .166.已知等式143ax a =,则下列等式中不一定成立的是( ) A .1403ax a -= B .143ax b a b -=- C .12ax a = D .143x = 7.已知,当2x =时,3ax bx c ++的值是2022;当2x =-时,3ax bx c +-的值是() A .-2022 B .-2018 C .2018 D .20228.古代数学问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁,意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分一个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31001003x x --=B .()31001003x x +-= C .10031003x x --= D .10031003x x -+=9.如图,∠AOB ,以OA 为边作∠AOC ,使∠BOC=12∠AOB ,则下列结论成立的是()A .AOC BOC ∠=∠B .AOC AOB ∠<∠C .AOC BOC ∠=∠或2AOC BOC ∠=∠D .AOC BOC ∠=∠或3AOC BOC ∠=∠ 10.图中的长方形ABCD 由1号、2号、3号、4号四个正方形和5号长方形组成,若1号正方形的边长为a ,3号正方形的边长为b ,则长方形ABCD 的周长为( )A .16aB .8bC .46a b +D .84a b +二、填空题11.单项式23x y -的次数是____.12.如果一个角的补角是120︒,那么这个角的度数是________.13.请用符号“<”将下面实数23-3-连接起来_______.14.已知6x =,=2y -,且x y x y -=-,则x y -=_______.15.定义一种新运算:222a b a ab b ⊕=-+,如2212121221⊕=-⨯⨯+=,若()13x x ⊕-=⊕,则x =____.16.如图,点A ,B 是直线l 上的两点,点C ,D 在直线l 上且点C 在点D 的左侧,点D 在点B 的右侧,:2:1AC CB =,:3:2BD AB =.若11CD =,则AB =____.17.若单项式12m a b -与212n a b 是同类项,则n m 的值是______. 18.如图,已知直线AB 、CD 、EF 相交于点O ,∠1=95°,∠2=32°,则∠BOE=_______.三、解答题19.计算: (1)()()12182011--+--(2)15623⎛⎫-⨯-+ ⎪⎝⎭20.解方程:(1)738x x -=+ (2)23211105x x -+=+ 21.已知()21482M ab a ab =--,124N a a b ⎛⎫=- ⎪⎝⎭,求M N +的值,其中1a =-,13b =. 22.如图,直线CD ,AB 相交于点O ,BOD ∠和AON ∠互余,AON COM ∠=∠.(1)求MOB ∠的度数;(2)若15COM BOC ∠=∠,求BOD ∠的度数. 23.甲、乙两人分别从A ,B 两地出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经4小时两人在C 地相遇,相遇后经1小时乙到达A 地.(1)乙的行驶速度是甲的几倍?(2)若已知相遇时乙比甲多行驶了120公里,求甲、乙行驶的速度分别是多少?24.在数学课上,老师给出了一道题目:“先化简再求值:()22113243x x x x ⎛⎫+---+ ⎪⎝⎭□,其中=1x -”,中的数据被污染,无法解答,只记得中是一个实数,于是老师即兴出题,请同学们回答.(1)化简后的代数式中常数项是多少? (2)若点点同学把“=1x -”看成了“1x =”,化简求值的结果仍不变,求此时中数的值;(3)若圆圆同学把“=1x -”看成了“1x =”,化简求值的结果为-3,求当=1x -时,正确的代数式的值.25.阅读材料:材料1:如果一个四位数为abcd (表示千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d 的四位数,其中a 为1~9的自然数,b 、c 、d 为0~9的自然数),我们可以将其表示为:100010010abcd a b c d =+++;材料2:把一个自然数(个位不为0)各位数字从个位到最高位倒序排列,得到一个新的数,我们称该数为原数的兄弟数,如数“123”的兄弟数为“321”.(1)四位数53x y =__________;(用含x ,y 的代数式表示)(2)设有一个两位数xy ,它的兄弟数与原数的差是45,请求出所有可能的数xy ;(3)设有一个四位数abcd 存在兄弟数,且a d b c +=+,记该四位数与它的兄弟数的和为S ,问S 能否被1111整除?试说明理由.26.如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图:(1)画射线CA ,画直线BC ;(2)画点A 到直线l 的垂线段,垂足为D ;(3)在直线l 上确定点E ,使得AE BE +最小,并说明理由.27.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.参考答案1.C2.C3.D4.B5.A6.D7.A8.D9.D10.B11.312.60°13.23-<3-14.815.116.6或22【分析】根据两点间的距离,分情况讨论C点的位置即可求解.AC CB=,【详解】解:∠:2:1∠点C不可能在A的左侧,如图1,当C 点在A 、B 之间时,设BC=k ,∠AC :CB=2:1,BD :AB=3:2,则AC=2k ,AB=3k ,BD=92k , ∠CD=k+92k=112k ,∠CD=11, ∠112k=11,∠k=2,∠AB=6;如图2,当C 点在点B 的右侧时,设BC=k ,∠AC :CB=2:1,BD :AB=3:2,则AC=2k ,AB=k ,BD=32k , ∠CD=32k -k=12k ,∠CD=11, ∠12k=11,∠k=22,∠AB=22;∠综上所述,AB=6或22.17.9【分析】由同类项的含义可得:122m n -=⎧⎨=⎩,从而可得答案.【详解】解: 单项式12m a b -与212n a b 是同类项,2n ∴⎨=⎩ 解得:32m n =⎧⎨=⎩, 239.n m ∴==故答案为:9.18.53°【分析】先求出∠COE 的度数,再根据∠1+∠COE+∠BOE=180°即可求出∠BOE 的度数.【详解】解:∠∠COE 与∠2是对顶角,∠∠COE=∠2=32°,又∠∠AOB 是平角,∠∠1+∠COE+∠BOE=180°,∠∠1=95°,∠∠BOE=180°-95°-32°=53°;故答案为:53°.19.(1)1-(2)5【分析】(1)利用有理数的加减运算法则计算得出答案;(2)利用乘法分配律结合立方根的性质分别化简,进而利用有理数的加减运算法则计算得出答案.(1)()()12182011--+--,12182011=+-- ,1=- ;(2)15623⎛⎫-⨯-+ ⎪⎝⎭1566223⎛⎫=-⨯-⨯-- ⎪⎝⎭, 3102=-+- ,【点睛】本题考查乘法分配律、立方根的性质、有理数的加减运算,正确化简各数是解题关键.20.(1)14x =- (2)152x =- 【解析】(1)解:738x x -=+,移项,得,-x -3x=8-7,合并同类项,得,-4x=1,系数化为1,得14x =-; (2) 解:23211105x x -+=+, 去分母,得,2x -3=10+2(2x+1),去括号,得,2x -3=10+4x+2,移项,得,2x -4x=10+2+3,合并同类项,得,-2x=15,系数化为1,得152x =-. 【点睛】本题主要考查了解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.21.83【分析】先化简M+N ,然后把1a =-,13b =代入计算. 【详解】解:∠()21482M ab a ab =--,124N a a b ⎛⎫=- ⎪⎝⎭, ∠M+N=()21482ab a ab --+124a a b ⎛⎫- ⎪⎝⎭=21282ab a ab --+2122a ab - =-8ab ,当1a =-,13b =时, M+N =()188133-⨯-⨯=. 【点睛】本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.22.(1)90°(2)67.5°【分析】(1)根据余角的定义可得∠BOD+∠COM=90°,再根据平角的定义可求解;(2)设∠OM=x ,则∠BOC=5x ,∠BOM=4x ,结合∠BOM=90°可求解x 值,进而可求解∠BOD 的度数.(1)解:∠∠BOD 和∠AON 互余,∠∠BOD+∠AON=90°,∠∠AON=∠COM ,∠∠BOD+∠COM=90°,∠∠MOB=180°-(∠BOD+∠COM )=90°;(2)解:设∠COM=x ,则∠BOC=5x ,∠∠BOM=4x ,∠∠BOM=90°,∠4x=90°,解得x=22.5°,∠∠BOD=90°-22.5°=67.5°.【点睛】本题考查了余角和补角,角的计算,关键是掌握余角定义,理清图形中角的关系.23.(1)4(2)甲的行驶速度是10公里/小时,乙的行驶速度是40公里/小时【分析】(1)设甲的行驶速度是x 公里/小时,乙的行驶的速度是y 公里/小时,根据甲4小时行驶的路程与乙1小时行驶的路程相同得y=4x,可知乙的行驶速度是甲的4倍;(2)设甲的行驶速度是n 公里/小时,则乙的行驶的速度是4n 公里/小时,根据相遇时乙比甲多行驶了120公里列方程求出n 的值即得到甲的行驶速度,再求出乙的行驶速度即可.(1)设甲的行驶速度是x 公里/小时,乙的行驶的速度是y 公里/小时,因为甲从A 地到C 地用4小时,乙从C 地到A 地用1小时,所以y=4x ,所以乙的行驶速度是甲的4倍.(2)设甲的行驶速度是n 公里/小时,则乙的行驶的速度是4n 公里/小时,根据题意得4(4n -n)=120,解得n=10,所以4n=4x10=40,答:甲的行驶速度是10公里/小时,乙的行驶速度是40公里/小时.24.(1)-13(2)-6(3)-23【分析】(1)设中的数据为a ,然后进行计算即可解答;(2)根据化简求值的结果仍不变,可得a+6=0,然后进行计算即可解答;(3)先把x=1代入进行计算求出a 的值,最后再把x=-1,a=4的值代入进行计算即可.【详解】(1)设中的数据为a ,()22113243x ax x x ⎛⎫+---+ ⎪⎝⎭,=x 2+ax -1-x 2+6x -12,=(a+6)x -13,化简后的代数式中常数项是:-13;(2)∠化简求值的结果不变,∠整式的值与x 的值无关,∠a+6=0,∠a=-6,∠此时中数的值为:-6;(3)由题意得:当x=1时,(a+6)x-13=-3,∠a+6-13=-3,∠a=4,∠当x=-1时,(a+6)x-13,=-4-6-13=-23,∠当x=-1时,正确的代数式的值为:-23.【点睛】本题考查了整式的加减一化简求值,准确熟练地进行计算是解题的关键.25.(1)1000x+10y+503(2)16或27或38或49(3)能,理由见解析【分析】(1)直接合并同类项即可得出答案;(2)利用两位数的兄弟数与原数的差为45得出y-x=5,即可写出结果;(3)先写成四位数的兄弟数,再表示出S,最后用a+d=b+c代换,整理,即可得出结论.(1)解:53x y 1000x+5×100+10y+3=1000x+10y+503,故答案为1000x+10y+503;(2)解:由题意得,xy的兄弟数为yx,∠两位数xy的兄弟数与原数的差为45,∠yx-xy=45,∠10y+x-(10x-y)=45,∠y-x=5,∠x,y均为1~9的自然数,∠xy可能的数为16或27或38或49.(3)解:S能被1111整除,理由如下:∠abcd=1000a+100b+10c+d,∠它的兄弟数为dcba=1000d+100c+10b+a,∠a+d=b+c,∠S=abcd+dcba=1000a+100b+10c+d+1000d+100c+10b+a=1001a+110b+110c+1001a=10001a+110(b+c)+1001d=10001a+110(a+d)+1001d=1111a+1111d=1111(a+d),∠a,d为1~9的自然数,∠1111(a+d)能被1111整除,即S能被1111整除.【点睛】此题主要考查了新定义,二元一次方程的应用,以及因式分解得应用,理解新定义是解本题的关键.26.(1)详见解析;(2)详见解析;(3)图详见解析;两点之间,线段最短【分析】(1)根据直线和射线求解即可;(2)过点A作l的垂线即可;(3)根据两点之间线段最短即可;【详解】(1)以C为顶点做射线即可,连接BC,延长两点做直线即可,如图所示;,如图所示;(2)过A作AD l(3)连接AB,交l与点E即可;【点睛】本题主要考查了直线、射线、线段的性质及作图,准确画图是解题的关键.27.(1)甲超市实付款352元,乙超市实付款360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.【分析】(1)根据两超市的促销方案,即可分别求出:当一次性购物标价总额是400元时,甲、乙两超市实付款;(2)设当标价总额是x元时,甲、乙超市实付款一样.根据两超市的促销方案结合两超市实付款相等,即可得出关于x的一元一次方程,解之即可得出结论;(3)设购物总额是x元,根据题意列方程求出购物总额,然后计算若在甲超市购物应付款,比较即可得出结论.【详解】(1)甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元;(2)设购物总额是x元,由题意知x>500,列方程:0.88x=500×0.9+0.8(x-500)∠x=625∠购物总额是625元时,甲、乙两家超市实付款相同.(3)设购物总额是x元,购物总额刚好500元时,在乙超市应付款为:500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:500×0.9+0.8(x-500)=482∠x=540∠0.88x=475.2<482∠该顾客选择不划算.。

【浙教版】七年级数学上期末试卷(带答案)(1)

【浙教版】七年级数学上期末试卷(带答案)(1)

一、选择题1.为了解某市九年级男生的身高情况,随机抽取了该市100名九年级男生,他们的身高()cm x 统计如下: 组别()cm 160x ≤160170x <≤170180x <≤ 180x > 人数1542385( ) A .28500B .17100C .10800D .15002.以下问题,不适合采用全面调查方式的是( ) A .调查全班同学对“郑万高铁”的了解程度 B .了解我市中学生的近视率C .疫情期间对国外入境人员的健康状况检查D .旅客上飞机前的安检3.已知10个数据:63,65,67,69,66,64,65,67,66,68,对这些数据编制频数分布表,那么数据在64.5~67.5之间的频率为:( ) A .0.5 B .0.6 C .5 D .6 4.已知x =3是关于x 的一元一次方程mx +3=0的解,则m 的值为( ) A .-1B .0C .1D .25.下列说法中,其中正确的个数有( ) ①两点之间的所有连线中,线段最短; ②倒数等于它本身的数是1-、0、1; ③不能作射线OA 的延长线;④单项式3222a b -的系数是2-,次数是7; ⑤若a b =,则a b =±;⑥方程||2(3)40m m x --+=是关于x 的一元一次方程,则3m =±. A .1个B .2个C .3个D .4个6.下列等式变形不正确的是( ) A .如果3x=6y ,则x=2y B .如果2x-1=3y+2,则2x=3y+3 C .如果x-2y=1,则2x-4y=2D .如果4x=9y 则x=32y 7.如图,在线段AD 上有两点B ,C ,则图中共有_____条线段,若在车站A 、D 之间的线路中再设两个站点B 、C ,则应该共印刷_____种车票.A .3, 3B .3, 6C .6, 6D .6, 128.永定河,“北京的母亲河”.近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A ,B 两地间的河道改直后大大缩短了河道的长度.这一做法的主要依据是( )A .两点确定一条直线B .垂线段最短C .过一点有且只有一条直线与已知直线垂直D .两点之间,线段最短 9.已知∠'α21=,∠β0.36=︒,则∠α和∠β的大小关系是( ) A .∠α=∠β B .∠α>∠βC .∠α<∠βD .无法确定10.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:第1行 1 第2行 -2 3 第3行 -4 5 -6 第4行 7 -8 9 -10 第5行 11 -12 13 -14 15 ……按照上述规律排下去,那么第100行从左边数第4个数是( ) A .-4954B .4954C .-4953D .495311.在一个有盖的正方体玻璃容器内装了一些水(约占一半),把容器按不同方式倾斜,容器内水面的形状不可能是( )A .B .C .D .12.5-的相反数是( ) A .15-B .5-C .5D .15二、填空题13.小明对某班级同学参加课外活动内容进行问卷调查后(每人必选且只选一种),绘制成如图所示的统计图,已知参加踢毽子的人数比参加打篮球的人数少6人,则参加“其他”活动的人数为__________人.14.2019年5月1日至10日我市空气质量指数(AQI )分别为77,52,46,57,58,78,75,34,47,43,将数据进行分组,落在53.5~59.5这一组的频数是__________.15.A 、B 、C 三地依次在同一直线上,B ,C 两地相距560千米,甲、乙两车分别从B ,C 两地同时出发,相向匀速行驶,行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达地A ,则A ,B 两地相距___________千米.16.已知关于x 的方程ax b c +=的解为1x =-,则3a b c -+-的值为____. 17.如图,已知线段AB m =,CD n =,线段CD 在直线AB 上运动(点A 在点B 的左侧,点C 在点D 的左侧),若()21260m n -+-=. (1)求线段AB ,CD 的长;(2)若点M ,N 分别为线段AC ,BD 的中点,4BC =,求线段MN 的长; (3)当CD 运动到某一时刻时,点D 与点B 重合,点P 是线段AB 的延长线上任意一点,下列两个结论:①PA PB PC-是定值,②PA PBPC +是定值,请选择你认为正确的一个并加以说明.18.如图是一个娱乐场,其中半圆形休息区和长方形游泳池以外的地方都是绿地,已知娱乐场的长为3a ,宽为2a ,游泳池的长、宽分别是娱乐场长、宽的一半,且半圆形休息区的直径是娱乐场宽的一半,则绿地的面积为______.(用含a 的代数式表示,将结果化为最简)19.比较大小:227-______3-(填“>”“<”或“=”). 20.如图是正方体的展开图,则正方体中与数字5所在面相对的面上的数字为________ .三、解答题21.某市为提高学生参与体育活动的积极性,2019年5月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一学生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2018年约有初一学生20000,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人. 22.解方程(1)()()345678x x x --=-- (2)1213412x x x -+-=-+ 23.如图:已知直线AB 、CD 相于点O ,90COE ∠=︒.(1)若32AOC ∠=︒,求∠BOE 的度数; (2)若:2:7BOD BOC ∠∠=,求BOD ∠的度数. 24.观察下面的三行单项式 x ,2x 2,4x 3,8x 4,16x 5…① 2x ,﹣4x 2,8x 3,﹣16x 4,32x 5…② 3x ,5x 2,9x 3,17x 4,33x 5…③ 根据你发现的规律,完成以下各题:(1)第①行第7个单项式为 ;第②行第7个单项式为 . (2)第③行第n 个单项式为 .(3)取每行的第10个单项式,令这三个单项式的和为A .计算当x =12时,256[3A ﹣2(A+14)]的值. 25.若a ,b ,c 为三个不相等的有理数,且a 是最大的负整数,b 的相反数等于它本身,c 的平方等于它本身.(1)a = ,b = ,c = ; (2)求b +c 2﹣a 3的值.26.某种包装盒的形状及相关尺寸如图所示(单位:cm).(1)请你画出沿长为3 cm 的棱将这个包装盒剪开的平面展开图,并标出相应的尺寸(接头处忽略不计);(2)计算这个包装盒的表面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】利用样本估计总体的思想解决问题即可.解:全市男生的身高不高于180cm的人数=1005 3000028500100-⨯=,故选:A.【点睛】本题考查频数分布表,样本估计总体等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2.B解析:B【分析】在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.调查全班同学对“郑万高铁”的了解程度适合全面调查;B.了解我市中学生的近视率适合抽样调查,不适合采用全面调查;C.疫情期间对国外入境人员的健康状况检查适合全面调查;D.旅客上飞机前的安检适合合全面调查.故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B解析:B【分析】首先正确数出在64.5~67.5这组的数据;再根据频率、频数的关系:频率=频数数据总和,进行计算.【详解】解:其中在64.5~67.5组的有65,67,66,65,67,66共6个,则64.5~67.5这组的频率是:60.6 10=.故选择:B.【点睛】本题考查频率、频数的关系,解题的关键是熟记求频率的公式.4.A【分析】把x =3代入方程计算即可求出m 的值. 【详解】解:把x =3代入方程得:3m +3=0, 解得:m =-1, 故选:A . 【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.C解析:C 【分析】根据线段的性质,倒数的性质,射线的性质,单项式的定义,绝对值的性质,一元一次方程的定义依次判断. 【详解】①两点之间的所有连线中,线段最短,故正确;②倒数等于它本身的数是1-、1,0没有倒数,故该项错误; ③不能作射线OA 的延长线,故正确;④单项式3222a b -的系数是2-3,次数是4,故该项错误; ⑤若a b =,则a b =±,故正确;⑥方程||2(3)40m m x --+=是关于x 的一元一次方程,则m=-3,故该项错误; 故正确的有:①③⑤, 故选:C . 【点睛】此题考查线段的性质,倒数的性质,射线的性质,单项式的定义,绝对值的性质,一元一次方程的定义,熟练掌握各部分知识是解题的关键.6.D解析:D 【分析】直接用等式的性质进行判断即可,等式左右两边同时加上减去乘以或除以(不为0)的一个数,等式不变; 【详解】A 、如果3x=6y ,则x=2y ,故此选项不符合题意;B 、如果2x-1=3y+2,则2x=3y+3,故此选项不符合题意;C 、如果x-2y=1,则2x-4y=2,故此选项不符合题意;D 、如果4x=9y ,则94x y =,故此选项符合题意; 故选:D .本题考查了等式的性质,熟练掌握等式的性质是解题的关键;7.D解析:D【分析】从左到右的顺序依次确定线段,车票有方向性,是线段条数的2倍.【详解】从A开始的线段有AB,AC,AD三条;从B开始的线段有BC,BD二条;从C开始的线段有CD一条;所以共有6条线段;车票从A到B和从B到A是不同的,所以车票数恰好是线段条数的2倍,所以需要12种车票,故选D.【点睛】本题考查了线段的定义,数线段,以及线段与生活中的车票的关系,熟练数线段,理解车票数是线段数的2倍是解题的关键.8.D解析:D【分析】根据线段的性质分析得出答案.【详解】由题意中改直后A,B两地间的河道改直后大大缩短了河道的长度,其注意依据是:两点之间,线段最短,故选:D.【点睛】此题考查线段的性质:两点之间线段最短,掌握题中的改直的结果是大大缩短了河道的长度的含义是解题的关键.9.C解析:C【分析】一度等于60′,知道分与度之间的转化,统一单位后比较大小即可求解.【详解】解:∵∠α=21′,∠β=0.36︒=21.6′,∴∠α<∠β.故选:C.【点睛】考查了度分秒的换算,熟练掌握角的比较与运算,能够在度与分之间进行转化.10.A解析:A分析可得:第n 行有n 个数,此行最后一个数的绝对值为(1)2n n +;且奇数为正,偶数为负;先求出99行最后一个数,然后可求出100行从左边数第4个数. 【详解】解:第1行有1个数,最后一个数的绝对值是:1;第2行有2个数,最后一个数的绝对值是:3=1+2=2(21)2⨯+; 第3行有3个数,最后一个数的绝对值是:6=1+2+3=3(31)2⨯+; 第4行有4个数,最后一个数的绝对值是:10=1+2+3+4=4(41)2⨯+; 第5行有5个数,最后一个数的绝对值是:15=1+2+3+4+5=5(51)2⨯+; ……;∴第n 行有n 个数,最后一个数的绝对值是:(1)2n n +; ∴第99行有99个数,此行最后一个数的绝对值为:99(991)49502⨯+=; ∴第100行从左边数第4个数的绝对值为4954, ∵奇数为正,偶数为负,∴第100行从左边数第4个数为-4954, 故选:A . 【点睛】本题考查规律型:数字的变化类以及学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.本题的关键是得到规律:第n 行有n 个数,此行最后一个数的绝对值为(1)2n n +;且奇数为正,偶数为负. 11.D解析:D 【分析】结合题意,相当于把正方体一个面,即正方形截去一个角,可得到四角形、五边形、六边形. 【详解】解:根据题意,结合实际,容器内水面的形状不可能是七边形. 故选:D . 【点睛】本题考查了认识立体图形,此类问题也可以亲自动手操作一下,培养空间想象力.12.C【分析】直接利用只有符号不同的两个数叫做互为相反数,进而得出答案.【详解】由相反数的定义可知,−5的相反数为5.故选:C.【点睛】此题主要考查了相反数,正确掌握定义是解题关键.二、填空题13.10【分析】先由扇形统计图得出参加踢毽子与打篮球的人数所占的百分比结合参加踢毽子的人数比参加打篮球的人数少6人求出参加课外活动一共的人数进一步可求参加其他活动的人数【详解】解:6÷(30-15)=4解析:10【分析】先由扇形统计图得出参加踢毽子与打篮球的人数所占的百分比,结合参加踢毽子的人数比参加打篮球的人数少6人,求出参加课外活动一共的人数,进一步可求参加“其他”活动的人数.【详解】解:6÷(30%-15%)=40(人),40×25%=10(人).答:参加“其他”活动的人数为10人.故答案为:10.【点睛】本题考查的是扇形统计图.在扇形统计图中,各部分占总体的百分比之和为1,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.14.【分析】数出在之间的数据个数即可【详解】在之间的数据为故这一组的频数是2故填:2【点睛】此题主要考查频数的个数解题的关键是熟知频数的定义解析:2【分析】数出在53.5~59.5之间的数据个数即可.【详解】在53.5~59.5之间的数据为57,58,故这一组的频数是2,故填:2.【点睛】此题主要考查频数的个数,解题的关键是熟知频数的定义.15.760【分析】设乙车的平均速度是x千米/时根据4(甲的平均速度+乙的平均速度)=560列出方程并求得乙车的行驶平均速度;设甲车从C 地到A 地需要t 小时则乙车从C 地到A 地需要(t+7)小时根据它们行驶路解析:760【分析】设乙车的平均速度是x 千米/时,根据4(甲的平均速度+乙的平均速度)=560列出方程并求得乙车的行驶平均速度;设甲车从C 地到A 地需要t 小时,则乙车从C 地到A 地需要(t +7)小时,根据它们行驶路程相等列出方程并求得t 的值;然后由路程=时间×速度解答.【详解】解:设乙车的平均速度是x 千米/时,则4(5607+x )=560. 解得x =60 即乙车的平均速度是60千米/时.设甲车从C 地到A 地需要t 小时,则乙车从C 地到A 地需要(t +7)小时,则 80(1+10%)t =60(7+t )解得t =15.所以60(7+t )-560=760(千米)故答案是:760.【点睛】此题考查了一元一次方程的应用,读懂题意,找到等量关系,列出方程是解题的关键. 16.3【分析】把x =-1代入方程整理即可求得a-b+c 的值然后整体代入所求的式子中进行求解即可【详解】解:根据题意得:-a +b =c 即a-b+c =0∴|a−b+c−3|=|0−3|=3故答案为:3【点睛】解析:3【分析】把x =-1代入方程整理即可求得a-b+c 的值,然后整体代入所求的式子中进行求解即可.【详解】解:根据题意得:-a +b =c ,即a-b+c =0,∴|a−b+c−3|=|0−3|=3.故答案为:3.【点睛】本题主要考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值. 17.(1);(2)9;(3)②正确见解析【分析】(1)利用两个非负数和为0可得每个非负数为0可求即可;(2)分类考虑当点在点的右侧和点在点的左侧时利用中点可求AMDN 利用线段和差求AD 可求MN=AD-A解析:(1)12AB =,6CD =;(2)9;(3)②正确,2PA PB PC+=,见解析【分析】(1)利用两个非负数和为0,可得每个非负数为0,可求12m =,6n =即可; (2)分类考虑当点C 在点B 的右侧和点C 在点B 的左侧时,利用中点可求AM ,DN ,利用线段和差求AD ,可求MN=AD-AM-DN 即可;(3)利用PA=PC+AC ,PB=PC-BC ,求出PA+PB=2PC 即可.【详解】解:(1)由()21260m n -+-=,()212600m n ≥--≥,, 12=06=0m n --,,得12m =,6n =, 所以12AB =,6CD =;(2)当点C 在点B 的右侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,4BC =,所以()()1124118222AM AC AB BC ==+⨯+==,()()111645222DN BD CD BC ===++=, 又因为124622AD AB BC CD =++=++=,所以22859MN AD AM DN =--=--=, 当点C 在点B 的左侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,所以()()1111244222AM MC AC AB BC ===--==,()()111641222BN ND BD CD BC ===--==, 所以126414AD AB CD BC =+-=+-=所以14419MN AD AM DN =--=--=. 综上,线段MN 的长为9;(3)②正确,且2PA PB PC+=.理由如下: 因为点D 与点B 重合,所以BC DC =, 所以6AC AB BC AB DC =-=-=,所以AC BC =,所以()()222PC AC PC BC PA PB PC AC BC PC PC PC PC PC++-++-====.【点睛】本题考查非负数的性质,线段中点,线段和差,线段的比问题,掌握非负数的性质,线段中点,线段和差,线段的比,关键是利用线段和差PA=PC+AC ,PB=PC-BC ,求出PA+PB=2PC .18.【分析】先求出游泳池的长宽及半圆形休息区的直径再根据绿地的面积是:总面积-游泳区的面积-休息区的面积求解即可【详解】解:休息区的直径是:=a 游泳池的长宽分别是=a ∴绿地的面积是:3a·2a-·a-= 解析:229128a a π- 【分析】先求出游泳池的长、宽及半圆形休息区的直径,再根据绿地的面积是:总面积-游泳区的面积-休息区的面积,求解即可.【详解】解:休息区的直径是:22a =a ,游泳池的长、宽分别是32a ,22a =a , ∴绿地的面积是:3a·2a-32a ·a-21()22a π=6a²-232a -28a π=229128a a π-, 故答案为229128a a π-. 【点睛】 本题考查了列代数式,解题的关键是掌握:绿地的面积是=总面积-游泳区的面积-休息区的面积.19.<【分析】根据两个负数绝对值大的反而小进行判断【详解】解:∵||=|-3|=3>3∴<-3故答案为:<【点睛】此题考查了有理数的大小比较的方法注意:两个负数比较绝对值大的反而小解析:<【分析】根据两个负数,绝对值大的反而小,进行判断.【详解】解:∵|227-|=227,|-3|=3, 227>3∴227<-3故答案为:<【点睛】此题考查了有理数的大小比较的方法,注意:两个负数比较,绝对值大的反而小.20.4三、解答题21.(1)500;(2)43.2°;(3)见解析;(4)2400人【分析】(1)用喜欢健身操的学生数除以其所占的百分比即可求得样本容量;(2)用周角乘以最喜欢足球运动的学生所占的百分比即可求得其圆心角的度数;(3)求得喜欢篮球的人数后补全统计图即可;(4)用总人数乘以喜欢足球的人数占总人数的百分比即可求解.【详解】解:(1)100÷20%=500,∴本次抽样调查的样本容量是500;(2)∵360°×60500=43.2°,∴扇形统计图中“最喜欢足球运动”的学生数所对应的扇形圆心角度数为43.2°;(3)喜爱篮球的有:500×(1-20%-18%-20%-60500×100%)=150人,补全统计图如下:(4)20000×60500=2400(人)全市本届学生中“最喜欢足球运动”的学生约有2400人.【点睛】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.22.(1)x=417;(2)x=72.【分析】(1)根据去括号、移项、合并同类项、系数化为1,求出方程的解各是多少即可;(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求出每个方程的解各是多少即可.【详解】解:(1)()()345678x x x --=--去括号,得3x ﹣20+4x =6﹣7x+56移项,得3x+4x+7x =6+56+20合并同类项,得14x =82系数化为1,得x =417; (2)1213412x x x -+-=-+ 去分母,得4x ﹣3(x-1)=-(x+2)+12去括号,得4x-3x+3=-x-2+12移项,得4x ﹣3x+x =12﹣2﹣3合并同类项,得2x =7系数化为1,得x =72. 【点睛】此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.23.(1)58°;(2)40°【分析】(1)根据平角的定义,结合角的和差进行计算;(2)根据平角的定义,结合角的比进行求解计算.【详解】解:(1)直线AB 、CD 相交于点O 180AOC COE BOE ∴∠+∠+∠=︒180BOE AOC COE ∴∠=︒-∠-∠90,32COE AOC ∠=︒∠=︒BOE 180329058∴∠=︒-︒-︒=︒(2)180COD ∠=︒,:2:7BOD BOC ∠∠=2180409BOD ∴∠=︒⨯=︒. 【点睛】 本题考查几何图形中角度的和差计算,理解题意,列出角的和差关系,正确计算是解题关键.24.(1)26x7,27x7;(2)(2n+1)x n;(3)1 4【分析】(1)观察所给的①与②式子可得①的特点,第n个数是2n﹣1x n,②的特点,第n个数是(﹣1)n﹣1(2x)n;(2)观察③式子的特点,可得第n个数是(2n+1)x n,即可求出解;(3)先求出A=29x10﹣210x10+(210+1)x10,再将x=12代入求出A,最后再求256[3A﹣2(A+14)]即可.【详解】解:(1)①的特点,第n个数是2n﹣1x n,∴第7个单项式是26x7;②的特点,第n个数是(﹣1)n﹣1(2x)n,∴第7个单项式是27x7;故答案为:26x7,27x7;(2)③的特点,第n个数是(2n+1)x n,故答案为:(2n+1)x n;(3)①的第10个单项式是29x10,②的第10个单项式是﹣210x10,③的第10个单项式是(210+1)x10,∴A=29x10﹣210x10+(210+1)x10=(29+1)x10,当x=12时,A=(29+1)×(12)10,∴256[3A﹣2(A+14)]=256(A﹣12)=256×[(29+1)×(12)10﹣12]=28×(12)10=14.【点睛】本题考查数字的变化规律,能够通过所给例子,找到式子的规律,列出每行第n个式子的代数式是解题的关键.25.(1)﹣1,0,1;(2)2【分析】(1)根据a,b,c为三个不相等的有理数,且a是最大的负整数,b的相反数等于它本身,c的平方等于它本身,可以得到a、b、c的值;(2)将(1)中a、b、c的值代入b+c2﹣a3,计算即可【详解】解:(1)∵a,b,c为三个不相等的有理数,且a是最大的负整数,b的相反数等于它本身,c的平方等于它本身,∴a=﹣1,b=0,c=1,故答案为:﹣1,0,1;(2)由(1)知,a=﹣1,b=0,c=1,∴b+c2﹣a3=0+12﹣(﹣1)3=0+1﹣(﹣1)=0+1+1=2.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.26.(1)详见解析;(2)22.【分析】(1)根据长方体的展开图的特点以及沿长为3厘米的棱剪开这两个知识点画出图形即可;(2)根据上面画出的展开图求出每个长方形的面积,再加起来计算出结果即可.【详解】(1)如图所示(只要画出一个正确的即可).(2)包装盒的表面积:2×(2×1+2×3+1×3)=22(cm2).【点睛】本题考查的是几何体的展开图,解决此类问题要知道长方体的展开图的特点.。

2017-2018学年浙江省温州市平阳县七年级(上)期末数学试卷

2017-2018学年浙江省温州市平阳县七年级(上)期末数学试卷

2017-2018学年浙江省温州市平阳县七年级(上)期末数学试卷一.选择题(共10小题,每小题3分,共30分)1.(3分)﹣2的相反数是()A.﹣B.C.﹣2D.22.(3分)下列一组数:﹣8,0,﹣32,﹣(﹣5.7),其中负数的个数有()A.1个B.2个C.3个D.4个3.(3分)已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为()A.3.84×104千米B.3.84×105千米C.3.84×106千米D.38.4×104千米4.(3分)单项式4xy2z3的次数是()A.3B.4C.5D.65.(3分)下列各式运算正确的是()A.2(a﹣1)=2a﹣1B.a2b﹣ab2=0C.2a3﹣3a3=a3D.a2+a2=2a26.(3分)如果3x2m y n+1与﹣x2y m+3是同类项,则m,n的值为()A.m=﹣1,n=3B.m=1,n=3C.m=﹣1,n=﹣3D.m=1,n=﹣3 7.(3分)如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.7B.6C.5D.48.(3分)a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定9.(3分)一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是()A.140元B.135元C.125元D.120元10.(3分)正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2018次后,数轴上数2018所对应的点是()A.点C B.点D C.点A D.点B二.填空题(共10小题,每小题3分,共30分)11.(3分)|﹣4|=.12.(3分)比较大小(用“>,<,=”表示):﹣|﹣2| ﹣(﹣2).13.(3分)的平方根是.14.(3分)一个两位数,十位数字为a,个位数字为b,这个两位数可以表示为.15.(3分)若关于x的方程2x+a=5的解为x=﹣1,则a=.16.(3分)当x=时,代数式4x+2与3x﹣9的值互为相反数.17.(3分)在数轴上,与表示﹣1的点距离为3的点所表示的数是.18.(3分)如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m 的取值是.19.(3分)如果代数式2y2+3y+5的值是6,求代数式4y2+6y﹣3的值是.20.(3分)小明和小慧两位同学在数学活动课中,把长为30cm,宽为10cm的长方形白纸条粘合起来,小明按如图甲所示的方法粘合起来得到长方形ABCD,粘合部分的长度为6cm,小慧按如图乙所示的方法粘合起来得到长方形A1B1C1D1,黏合部分的长度为4cm.若长为30cm,宽为10cm的长方形白纸条共有100张,则小明应分配到张长方形白纸条,才能使小明和小慧按各自要求黏合起来的长方形面积相等(要求100张长方形白纸条全部用完).三.解答题(共5小题,共40分)21.(8分)计算:(1)﹣22÷×(1﹣)2(2)﹣+(﹣+﹣)×(﹣48)22.(8分)解方程:(1)2(2x﹣3)﹣3=2﹣3(x﹣1)(2)﹣1=.23.(6分)先化简,再求值:2(a2+3ab﹣4.5)﹣(a2﹣6ab﹣9),其中a=﹣5,b=.24.(8分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A到B记为:A→B(+1,+4),从D到C记为:D→C (﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),D→(﹣4,﹣2);(2)若这只甲虫从A处去P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.25.(10分)平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?2017-2018学年浙江省温州市平阳县七年级(上)期末数学试卷参考答案与试题解析一.选择题(共10小题,每小题3分,共30分)1.(3分)﹣2的相反数是()A.﹣B.C.﹣2D.2【分析】依据相反数的定义求解即可.【解答】解:﹣2的相反数是2.故选:D.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(3分)下列一组数:﹣8,0,﹣32,﹣(﹣5.7),其中负数的个数有()A.1个B.2个C.3个D.4个【分析】根据题目中的数据可以判断各个数是正数还是负数,从而可以解答本题.【解答】解:∵﹣32=﹣9,﹣(﹣5.7)=5.7,∴在﹣8,0,﹣32,﹣(﹣5.7)中负数是﹣8,﹣32,即负数的个数有2个.故选:B.【点评】本题考查正数和负数,解题的关键是可以判断一个数是正数还是负数.3.(3分)已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为()A.3.84×104千米B.3.84×105千米C.3.84×106千米D.38.4×104千米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384000有6位,所以可以确定n=6﹣1=5,有效数字为:3、8、4.【解答】解:384000千米=3.84×105千米,有三个有效数字为:3、8、4,故选:B.【点评】此题考查科学记数法与有效数字,准确确定n值是关键,且明确有效数字的定义.4.(3分)单项式4xy2z3的次数是()A.3B.4C.5D.6【分析】单项式的次数是指各字母的指数之和【解答】解:该单项式的次数为:1+2+3=6,故选:D.【点评】本题考查单项式的概念,解题的关键是正确理解单项式的次数概念,本题属于基础题型.5.(3分)下列各式运算正确的是()A.2(a﹣1)=2a﹣1B.a2b﹣ab2=0C.2a3﹣3a3=a3D.a2+a2=2a2【分析】直接利用合并同类项法则判断得出答案.【解答】解:A、2(a﹣1)=2a﹣2,故此选项错误;B、a2b﹣ab2,无法合并,故此选项错误;C、2a3﹣3a3=﹣a3,故此选项错误;D、a2+a2=2a2,正确.故选:D.【点评】此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.6.(3分)如果3x2m y n+1与﹣x2y m+3是同类项,则m,n的值为()A.m=﹣1,n=3B.m=1,n=3C.m=﹣1,n=﹣3D.m=1,n=﹣3【分析】依据同类项的定义列出关于m、n的方程组求解即可.【解答】解:∵3x2m y n+1与﹣x2y m+3是同类项,∴2m=2,n+1=m+3,解得m=1,n=3.故选:B.【点评】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.7.(3分)如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.7B.6C.5D.4【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个正方形面积的差.【解答】解:设重叠部分面积为c,a﹣b=(a+c)﹣(b+c)=16﹣9=7,故选:A.【点评】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.8.(3分)a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定【分析】由于a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,则b与c的关系即可求出.【解答】解:由题意得,a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,即b+c=0,b与c互为相反数.故选:A.【点评】本题考查了代数式的换算,比较简单,容易掌握.9.(3分)一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是()A.140元B.135元C.125元D.120元【分析】设这种服装每件的成本价为x元,根据成本价×(1+40%)×0.8﹣成本价=利润列出方程,解方程就可以求出成本价.【解答】解:设这种服装每件的成本价为x元,根据题意得:80%×(1+40%)x﹣x=15,解得:x=125.答:这种服装每件的成本为125元.故选:C.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.(3分)正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2018次后,数轴上数2018所对应的点是()A.点C B.点D C.点A D.点B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一循环,由次可确定出2018所对应的点.【解答】解:当正方形在转动第一周的过程中,1所对应的点是A,2所对应的点是B,3所对应的点是C,4所对应的点是D,∴四次一循环,∵2018÷4=504…2,∴2018所对应的点是B.故选:D.【点评】本题主要考查实数与数轴,确定出点的变化规律是解题的关键.二.填空题(共10小题,每小题3分,共30分)11.(3分)|﹣4|=4.【分析】因为﹣4<0,由绝对值的性质,可得|﹣4|的值.【解答】解:|﹣4|=4.【点评】本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.12.(3分)比较大小(用“>,<,=”表示):﹣|﹣2| <﹣(﹣2).【分析】先求出各数的值,再根据负数小于一切正数即可得出结论.【解答】解:∵﹣|﹣2|=﹣2<0,﹣(﹣2)=2>0,∴﹣|﹣2|<﹣(﹣2).故答案为:<.【点评】本题考查的是有理数的大小比较,熟知负数小于一切正数是解答此题的关键.13.(3分)的平方根是±2.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.(3分)一个两位数,十位数字为a,个位数字为b,这个两位数可以表示为10a+b.【分析】用十位上的数字乘以10,加上个位上的数字,即可列出这个两位数.【解答】解:∵十位数字为a,个位数字为b,∴这个两位数可以表示为10a+b.故答案为:10a+b【点评】此题考查了代数式的列法,以及两位数的表示方法,数字的表示方法要牢记.两位数字的表示方法:十位数字×10+个位数字.15.(3分)若关于x的方程2x+a=5的解为x=﹣1,则a=7.【分析】根据方程的解的意义,把x=﹣1代入原方程得关于a的方程,解方程即可.【解答】解:把x=﹣1代入方程2x+a=5,得:﹣2+a=5,解得:a=7.故答案为:7.【点评】本题考查了一元一次方程的解,本题关键是理解方程解的意义:使方程左右两边相等的未知数的值.16.(3分)当x=1时,代数式4x+2与3x﹣9的值互为相反数.【分析】因为相反数的两个数之和是0,那么(4x+2)+(3x﹣9)=0.【解答】解:根据题意得(4x+2)+(3x﹣9)=0化简得:4x+2+3x﹣9=0解得:x=1.【点评】本题考查相反数的定义,从而推出相反数的两个数之和是0,列出方程解答就可以了.17.(3分)在数轴上,与表示﹣1的点距离为3的点所表示的数是2或﹣4.【分析】此类题注意两种情况:要求的点可以在已知点的左侧或右侧.【解答】解:若点在﹣1的左面,则点为﹣4;若点在﹣1的右面,则点为2.故答案为:2或﹣4.【点评】注意:要求的点在已知点的左侧时,用减法;要求的点在已知点的右侧时,用加法.18.(3分)如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m 的取值是﹣1.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.据此可得出关于m的方程,继而可求出m的值.【解答】解:由一元一次方程的特点得,解得m=﹣1.故填:﹣1.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.19.(3分)如果代数式2y2+3y+5的值是6,求代数式4y2+6y﹣3的值是﹣1.【分析】根据代数式2y2+3y+5的值是6,即可求得2y2+3y的值,4y2+6y﹣3可以变形为:2(2y2+3y)﹣3,代入即可求解.【解答】解:∵代数式2y2+3y+5的值是6,∴2y2+3y+5=6.∴2y2+3y=1.∴4y2+6y﹣3=2(2y2+3y)﹣3=2﹣3=﹣1.故答案是:﹣1.【点评】本题考查了代数式的求值,4y2+6y﹣3可以变形为:2(2y2+3y)﹣3是解题的关键.20.(3分)小明和小慧两位同学在数学活动课中,把长为30cm,宽为10cm的长方形白纸条粘合起来,小明按如图甲所示的方法粘合起来得到长方形ABCD,粘合部分的长度为6cm,小慧按如图乙所示的方法粘合起来得到长方形A1B1C1D1,黏合部分的长度为4cm.若长为30cm,宽为10cm的长方形白纸条共有100张,则小明应分配到43张长方形白纸条,才能使小明和小慧按各自要求黏合起来的长方形面积相等(要求100张长方形白纸条全部用完).【分析】可设小明应分配到x张长方形白纸条,则小慧应分配到(100﹣x)张长方形白纸条,根据等量关系:小明和小慧按各自要求黏合起来的长方形面积相等,列出关于x的一元一次方程,解出方程即是所求.【解答】解:设小明应分配到x张长方形白纸条,则小慧应分配到(100﹣x)张长方形白纸条,依题意有10[30x﹣6(x﹣1)]=30[10(100﹣x)﹣4(100﹣x﹣1)],解得x=43.答:小明应分配到43张长方形白纸条,才能使小明和小慧按各自要求黏合起来的长方形面积相等.故答案为:43.【点评】本题考查了一元一次方程的应用,解题的关键:弄明白粘合n张,重合了(n﹣1)个部分,再结合面积公式列出方程.三.解答题(共5小题,共40分)21.(8分)计算:(1)﹣22÷×(1﹣)2(2)﹣+(﹣+﹣)×(﹣48)【分析】(1)先进行乘方运算,再计算乘除运算;(2)先利用乘法的分配律进行计算,然后把二次根式化简后合并即可.【解答】解:(1)原式=﹣4××=﹣;(2)原式=﹣3+8﹣36+4=﹣27.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.22.(8分)解方程:(1)2(2x﹣3)﹣3=2﹣3(x﹣1)(2)﹣1=.【分析】(1)先去掉括号,再进行移项,合并同类项,然后系数化1,即可得出答案;(2)根据等式的性质先在方程两端同乘各分母的最小公倍数,去掉分母,再去掉括号,然后进行移项,合并同类项,系数化1即可求解.【解答】解:(1)2(2x﹣3)﹣3=2﹣3(x﹣1)4x﹣6﹣3=2﹣3x+3,4x+3x=2+3+9,x=2;(2)﹣1=,2(x﹣3)﹣6=3(﹣2x+4),2x﹣6﹣6=﹣6x+12,8x=24,x=3.【点评】此题考查了解一元一次方程,掌握解方程的步骤是解题的关键,注意:在去分母时,应该将分子用括号括上.切勿漏乘不含有分母的项.23.(6分)先化简,再求值:2(a2+3ab﹣4.5)﹣(a2﹣6ab﹣9),其中a=﹣5,b=.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2a2+6ab﹣9﹣a2+6ab+9=a2+12ab,当a=﹣5,b=时,原式=25﹣45=﹣20.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.(8分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A到B记为:A→B(+1,+4),从D到C记为:D→C (﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(3,4),B→C(2,0),D→A(﹣4,﹣2);(2)若这只甲虫从A处去P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.【分析】(1)根据规定及实例可知A→C记为(3,4)B→C记为(2,0)D→A 记为(﹣4,﹣2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可;(3)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长.【解答】解:(1)规定:向上向右走为正,向下向左走为负∴A→C记为(3,4)B→C记为(2,0)D→A记为(﹣4,﹣2);(2)P点位置如图所示.(3)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);该甲虫走过的路线长为1+4+2+1+2=10.故答案为:(3,4);(2,0);A;【点评】本题主要考查了正数与负数,利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.25.(10分)平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为40元,每件乙种商品利润率为60%.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?【分析】(1)设甲的进价为x元/件,根据甲的利润率为50%,求出x的值;(2)设购进甲种商品x件,则购进乙种商品(50﹣x)件,再由总进价是2100元,列出方程求解即可;(3)分两种情况讨论,①打折前购物金额超过450元,但不超过600元,②打折前购物金额超过600元,分别列方程求解即可.【解答】解:(1)设甲的进价为x元/件,则(60﹣x)÷x=50%,解得:x=40.故甲的进价为40元/件;乙商品的利润率为(80﹣50)÷50=60%.(2)设购进甲种商品x件,则购进乙种商品(50﹣x)件,由题意得,40x+50(50﹣x)=2100,解得:x=40.即购进甲商品40件,乙商品10件.(3)设小华打折前应付款为y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),②打折前购物金额超过600元,600×0.82+(y﹣600)×0.3=504,解得:y=640,640÷80=8(件),综上可得小华在该商场购买乙种商品件7件或8件.【点评】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,找到等量关系,利用方程思想求解.。

温州市七年级上学期期末数学试卷

温州市七年级上学期期末数学试卷

温州市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、仔细选一选 (共12题;共24分)1. (2分)(2016·自贡) 若 +b2﹣4b+4=0,则ab的值等于()A . ﹣2B . 0C . 1D . 22. (2分)下列式子中,﹣(﹣3),﹣|﹣3|,3﹣5,﹣1﹣5是负数的有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2019七下·钦州期末) 下列调查中,适合用全面调查方式的是()A . 了解市场上酸奶的质量情况B . 了解一批签字笔的使用寿命情况C . 了解某条河流的水质情况D . 了解某校七年级甲班学生期中数学考试的成绩4. (2分) (2019七上·大洼月考) 已知等式,则下列等式不一定成立的是()A .B .C .D .5. (2分) (2017七下·滦南期末) 下列运算中,正确的是()A .B .C .D .6. (2分)下列长度的三条线段能组成三角形的是()A . 1,2,3B . 1,, 3C . 3,4,8D . 4,5,67. (2分)若关于x的方程|2x﹣3|+m=0无解,|3x﹣4|+n=0只有一个解,|4x﹣5|+k=0有两个解,则m,n,k的大小关系是()A . m>n>kB . n>k>mC . k>m>nD . m>k>n8. (2分)一个正多边的内角和是外角和的3倍,这个正多边形的边数是()A . 7B . 8C . 9D . 109. (2分)下图中,小于平角的角有()A . 5个B . 6个C . 7个D . 8个10. (2分)为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是()A . 100人B . 200人C . 260人D . 400人11. (2分)下列说法不正确的是()A . 等边三角形只有一条对称轴B . 线段AB只有一条对称轴C . 等腰三角形的对称轴是底边上的中线所在的直线D . 等腰三角形的对称轴是底边上的高所在的直线12. (2分)某城市按以下规定收取每月煤气费:每月所用煤气按整立方米数计算;若每月用煤气不超过60立方米,按每立方米0.8元收费;若超过60立方米,超过部分按每立方米1.2元收费.已知某户人家某月的煤气费平均每立方米0.88元,则这户人家需要交煤气费()A . 60元B . 66元C . 75元D . 78元二、认真填一填 (共4题;共4分)13. (1分)在2013年12月2日,中国成功发射“嫦娥三号”月球发射器.已知地球距离月球表面约为384000千米.这个数据用科学记数法表示为________米.14. (1分)(2019·张家港模拟) 已知直线 //b,将一块含45°角的直角三角板(∠C=90°),按如图所示的位置摆放,若∠1=55°,则∠2的度数为________15. (1分)如图是某几何体的展开图,那么这个几何体是________.16. (1分) (2017七上·鄞州月考) 计算:36÷4×(-)= ________.三、细心算一算 (共3题;共25分)17. (10分)计算(1)﹣42﹣9÷(﹣)+(﹣2)×(﹣1)2015.(2)107°43′÷5+23°53′×3.18. (5分) (2018七上·阜宁期末) 求值:,其中.19. (10分) (2016七上·长兴期末) 计算与解方程(1)计算:﹣22(2)解方程:2(x+8)=3x﹣1.四、用心想一想 (共4题;共45分)20. (15分)(2017·潍坊) 本校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A、B、C 三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?21. (15分) (2019七下·长兴期末) 如图1,直线MN与直线AB,CD分别交于点E,F,∠1与∠2互补(1)试判断直线AB与直线CD的位置关系,并说明理由(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH(3)如图3,在(2)的条件下,连结PH,在GH上取一点K,使得∠PKG=2∠HPK,过点P作PQ平分∠EPK交EF 于点Q,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.(温馨提示:三角形的三个内角和为180°.)22. (5分)(2016·海南) 世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.23. (10分) (2018七上·自贡期末) 若、互为相反数,、互为倒数,的绝对值为2.(1)分别直接写出,,的值;(2)求的值.参考答案一、仔细选一选 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、认真填一填 (共4题;共4分)13-1、14-1、15-1、16-1、三、细心算一算 (共3题;共25分)17-1、17-2、18-1、19-1、19-2、四、用心想一想 (共4题;共45分)20-1、20-2、20-3、21-1、21-2、21-3、22-1、23-1、23-2、。

【浙教版】七年级数学上期末试题带答案(1)

【浙教版】七年级数学上期末试题带答案(1)

一、选择题1.育才学校学生来自甲、乙、丙三个地区,其人数比为7:3:2,如图所示的扇形图表示其分布情况.如果来自丙地区的学生为180人,则这个学校学生的总人数和表示乙地区扇形的圆心角度数分别为( )A .1080人、90B .900人、210C .630人、90D .270人、602.下列调查中,适合用全面调查方式的是( ) A .了解一批iPad 的使用寿命 B .了解电视栏目《朗读者》的收视率 C .疫情期间,了解全体师生入校时的体温情况 D .了解滇池野生小剑鱼的数量3.将50个数据分成5组列出频数分布表,其中第二组的频数为15,则第二组的频率为( ) A .0.28B .0.3C .0.4D .0.24.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,求木头的长为( ) A .2.5尺 B .3.5尺 C .5.5尺 D .6.5尺 5.多项式4a 与27a -互为相反数,则a =( )A .-1B .0C .1D .26.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是( ) A .8天B .7天C .6天D .5天7.在射线AK 上截取线段10,4AB cm BC cm ==,点,M N 分别是,AB BC 的中点,则点M 和点N 之间的距离为( ) A .3cm B .5cm C .7cm D .3cm 或7cm8.如图,甲从点A 出发向北偏东65°方向走到点B ,乙从点A 出发向南偏西20°方向走到点C ,则BAC ∠的度数是( )A .85°B .135°C .105°D .150°9.已知线段AB =8cm ,在直线AB 上画线BC ,使BC=12AB ,则线段AC 等于( ) A .12cmB .4cmC .12cm 或4cmD .8cm 或12cm10.下列计算正确的是( )A .325a b ab +=B .22550ab a b -=C .277a a a +=D .32ab ba ab -+=11.如图,从上向下看几何体,得到的图形是( )A .B .C .D .12.有理数a 在数轴上的对应点的位置如图所示,如果有理数b 满足a b a <<-,那么b 的值可以是( )A .2B .3C .1-D .2-二、填空题13.如图是某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天,气温26C 出现的频率是__________.14.若某校有学生4000名,从中随机抽取了40名学生,调查他们每天做作业的时间,结果如下表: 每天做作业时间t (时) 01t ≤<12t ≤<23t ≤< 34t ≤< 4t > 人数7161421则全校学生每天做作业超过3小时的人数约有___________. 15.已知方程()23250a a x ---=是关于x 的一元一次方程,则此方程的解为__________.16.《算法统宗》是我国明代数学家程大位的主要著作.在这部著作中,许多数学问题都是以歌诀形式呈现的.“甜果苦果”就是其中一首.“九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?请君布算莫迟疑!”大意是说:用999文钱共买了1000个甜果和苦果,其中4文钱可以买苦果7个,11文钱可以买甜果9个,请问甜、苦果各买几个?若设甜果买x 个,这个问题可以列出方程______.17.已知直角三角板ABC 和直角三角板DEF ,∠ACB =∠EDF =90°,∠ABC =45°,∠DEF =60°.(1)如图1,将顶点C 和顶点D 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转,当CF 平分∠ACB 时,求∠BCE 的度数;(2)在(1)的条件下,继续旋转三角板DEF ,猜想∠ACF 与∠BCE 有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C 和顶点E 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转当CA 落在∠DCF 内部时,直接写出∠ACD 与∠BCF 的数量关系.18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为______,第2021个图形的周长为______.19.某地一天的最高气温是12C ︒,最低气温是2C -︒,则该地这天的温差是_________C ︒.20.一个直棱柱有21条棱,那么这个棱柱的底面的形状是_______.三、解答题21.为宣传普及新冠肺炎防控知识,引导学生做好防控,某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为 20道判断题,每道题5分,满分 100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩,已知抽取得到的八年级的数据如下(单位:分):80,95,75,75,90,75,80,65, 80.85.75,65,70,65,85,70,95,80,75.80.为了便于分析数据,统计员对八年级数据进行了整理,得到表1 表1:等级 分数(单位:分) 学生数 D 60<x≤70 5 C 70<x≤80 a B 80<x≤90 b A 90<x≤1002年级平均分 中位数 优秀率八年级 78分 c 分m %九年级 76分82.5分 50%22.解方程(1)3118x 342x -=- (2)0.5x-0.7=6.5-1.3x(3)()123x 6365x -=- (4)1231337x x -+=- 23.已知,∠AOD=120°,若B 是∠AOD 内任意一点,连接OB .(1) 如图①,若OM 平分∠AOB ,ON 平分∠BOD ,求∠MON 的度数.(2) 如图②,OC 是∠BOD 内的射线,且∠BOC=20°,若OM 平分∠AOC ,ON 平分∠BOD ,求∠MON 的大小.24.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将前三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)猜想并写出:()11n n =⨯+ . (2)计算:111112233420202021++++⨯⨯⨯⨯;(3)参照上述解法计算:111124466820182020++++⨯⨯⨯⨯25.计算.(1)32122(3)16293⎛⎫--⨯-÷- ⎪⎝⎭. (2)4211(0.51)5(3)3⎡⎤---÷⨯--⎣⎦. 26.下列物体是由六个棱长相等的正方体组成的几何体(如图所示).请在相应的网格纸上分别画出它的三视图.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】用丙地区的人数除以该地区人数所占的比即可求出总人数,用360°去乘乙地区人数所占的比即可得出相应的圆心角度数,【详解】解:180÷2732++=1080人,360°×3732++=90°,故选:A.【点睛】本题考查了扇形统计图,理解各个部分所占整体的百分比,以及各个扇形的圆心角度数实际是这一部分所占周角的百分比即可.2.C解析:C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】A、了解一批iPad的使用寿命适合用抽样调查,故本选项不符合题意;B、了解电视栏目《朗读者》的收视率适合抽样调查,故本选项不符合题意;C、疫情期间,了解全体师生入校时的体温情况适合用全面调查方式,故本选项符合题意;D、了解滇池野生小剑鱼的数量适合用抽样调查,故本选项不符合题意;故选:C.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B解析:B【分析】根据频率=频数÷数据总数,列式即可求解.【详解】∵将50个数据分成5组列出频数分布表,其中第二组的频数为15,∴第二组的频率为:1550=0.3故选:B.【点睛】本题考查了频数分布表,掌握频率、频数与数据总数的关系是解题的关键.4.D解析:D【分析】设木头长x尺,则绳子长(x+4.5)尺,根据“将绳子对折再量木条,木头剩余1尺”,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】解:设木头长x 尺,则绳子长(x +4.5)尺, 根据题意得:x−12(x +4.5)=1, 解得:x =6.5. 故选D . 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.5.C解析:C 【分析】根据多项式4a 与27a -互为相反数,可得2047a a ,解此方程即可求解.【详解】解:∵多项式4a 与27a -互为相反数, ∴2047a a ,解得1a =. 故选:C . 【点睛】此题考查了解一元一次方程,掌握相反数的性质及解一元一次方程的方法是解题的关键.6.B解析:B 【分析】设甲计划完成此项工作的天数为x ,根据甲先干一天后甲乙合作完成比甲单独完成提前3天,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】解:设甲计划完成此项工作的天数为x , 根据题意得:1(1)32x x --+=, 解得:x=7,所以,甲计划完成此项工作的天数是7天. 故选:B . 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.D解析:D 【分析】分情况讨论,点C 在线段AB 外,点C 在线段AC 上,根据中点的性质计算线段长度. 【详解】解:如图,∵M 是AB 中点,∴152BM AB cm ==, ∵N 是BC 中点,∴122BN BC cm ==, ∴527MN BM BN cm =+=+=; 如图,∵M 是AB 中点,∴152BM AB cm ==, ∵N 是BC 中点,∴122BN BC cm ==, ∴523MN BM BN cm =-=-=. 故选:D . 【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.8.B解析:B 【分析】如图,先求出∠BAD=906525︒-︒=︒,∠CAE=20°,∠EAD=90︒,根据BAC ∠=∠BAD+∠EAD+∠CAE 即可计算得出答案.【详解】如图,∵∠BAD=906525︒-︒=︒,∠CAE=20°,∠EAD=90︒, ∴BAC ∠=∠BAD+∠EAD+∠CAE=135°, 故选:B ..【点睛】此题考查方位角的计算,正确掌握方位角的表示及角度的和差计算是解题的关键.9.C解析:C【分析】分两种情形:①当点C在线段AB上时,②当点C在线段AB的延长线上时,再根据线段的和差即可得出答案【详解】解:∵BC=12AB,AB=8cm,∴BC=4cm①当点C在线段AB上时,如图1,∵AC=AB-BC,又∵AB=8cm,BC=4cm,∴AC=8-4=4cm;②当点C在线段AB的延长线上时,如图2,∵AC=AB+BC,又∵AB=8cm,BC=4cm,∴AC=8+4=12cm.综上可得:AC=4cm或12cm.故选:C.【点睛】本题考查的是两点间的距离,在画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.10.D解析:D【分析】根据合并同类项法则计算并判断.【详解】A 、3a 与2b 不是同类项,不能合并,故该项不符合题意;B 、5ab 2与5a 2b 不是同类项,不能合并,故该项不符合题意;C 、7a+a=8a ,故该项不符合题意;D 、32ab ba ab -+=,故该项符合题意; 故选:D . 【点睛】此题考查合并同类项,掌握同类项的判断方法是解题的关键.11.D解析:D 【解析】 【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【详解】从上面看易得上面一层有2个正方形,中间一层有2个正方形,下面一层有1个正方形. 故选D . 【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.12.C解析:C 【分析】根据a 的取值范围确定出-a 的取值范围,进而确定出b 的范围,判断即可. 【详解】解:根据数轴上的位置得:-2<a<-1,∴1<-a<2,2a ∴<又a b a <<-,∴b 在数轴上的对应点到原点的距离一定小于2,故选:C . 【点睛】本题考查了数轴,属于基础题,熟练并灵活运用数轴的定义是解决本题的关键.二、填空题13.3【分析】用气温26℃出现的天数除以总天数10即可得【详解】由折线统计图知气温26℃出现的天数为3天∴气温26℃出现的频率是3÷10=03故答案为:03【点睛】本题主要考查了频数(率)分布折线图解题解析:3 【分析】用气温26℃出现的天数除以总天数10即可得. 【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】本题主要考查了频数(率)分布折线图,解题的关键是掌握频率的概念,根据折线图得出解题所需的数据.14.300【分析】用总人数乘以样本中做作业超过3小时的人数占被调查人数的比例【详解】全校学生每天做作业超过3小时的人数约有4000×=300(人)故答案为:300人【点睛】本题考查的是用样本估计总体的知解析:300【分析】用总人数乘以样本中做作业超过3小时的人数占被调查人数的比例.【详解】全校学生每天做作业超过3小时的人数约有4000×2+140=300(人), 故答案为:300人.【点睛】本题考查的是用样本估计总体的知识.读懂统计图,从统计表中得到必要的信息是解决问题的关键 15.【分析】根据一元一次方程的定义可得且得出求解一元一次方程即可【详解】解:∵方程是关于的一元一次方程∴且解得∴该方程为解得故答案为:【点睛】本题考查一元一次方程的定义解一元一次方程掌握一元一次方程的定 解析:5x =-【分析】根据一元一次方程的定义可得20a -≠且231a -=,得出1a =,求解一元一次方程即可.【详解】解:∵方程()23250a a x ---=是关于x 的一元一次方程,∴20a -≠且231a -=,解得1a =,∴该方程为50x --=,解得5x =-,故答案为:5x =-.【点睛】本题考查一元一次方程的定义、解一元一次方程,掌握一元一次方程的定义是解题的关键.16.【分析】设甜果买个则买苦果(1000-x )个根据甜果花的钱+苦果花的钱=999列方程即可【详解】设甜果买个则买苦果(1000-x )个根据题意得:故答案为:【点睛】此题考查一元一次方程的实际应用正确理解析:114(1000)999 97x x-+=【分析】设甜果买x个,则买苦果(1000-x)个,根据甜果花的钱+苦果花的钱=999列方程即可.【详解】设甜果买x个,则买苦果(1000-x)个,根据题意得:114(1000)999 97x x-+=,故答案为:114(1000)999 97x x-+=.【点睛】此题考查一元一次方程的实际应用,正确理解题意是解题的关键.17.(1)45°;(2)∠ACF=∠BCE理由见解析;(3)∠ACD=∠BCF﹣30°【分析】(1)利用角平分线的性质求出然后利用余角的性质求解(2)依据同角的余角相等即可求解(3)分别用∠ACD与∠B解析:(1)45°;(2)∠ACF=∠BCE,理由见解析;(3)∠ACD=∠BCF﹣30°【分析】(1)利用角平分线的性质求出,然后利用余角的性质求解.(2)依据同角的余角相等即可求解.(3)分别用∠ACD与∠BCF表示出∠ACF,即可求解.【详解】解:(1)∵CF是∠ACB的平分线,∠ACB=90°∴∠BCF=90°÷2=45°又∵∠FCE=90°,∴∠BCE=∠FCE﹣∠BCF=90°﹣45°=45°;(2)∵∠BCF+∠ACF=90°,∠BCE+∠BCF=90°,∴∠ACF=∠BCE;(3)∵∠FCA=∠FCD﹣∠ACD=60°﹣∠ACD,∠FCA=∠ACB﹣∠BCF=90°﹣∠BCF,∴60°﹣∠ACD=90°﹣∠BCF,∠ACD=∠BCF﹣30°.【点睛】本题考查了角平分线的性质,角与角之间的关系,同角的余角相等的性质.要善于观察顶点相同的角之间关系.18.86065【分析】把图形的周长分解成上下边和左右边之和注意表达式中数字个数与序号的关系找到规律求解即可【详解】第1个图形的周长为:1+1+2+1;第2个图形的周长为:1+1+1+2+2+1;第3个图解析:8, 6065.【分析】把图形的周长分解成上下边和左右边之和,注意表达式中数字个数与序号的关系,找到规律求解即可.【详解】第1个图形的周长为:1+1+2+1;第2个图形的周长为:1+1+1+2+2+1;第3个图形的周长为:1+1+1+1+2+2+2+1;由此得到第n个图形的周长为:1111+222+1 n n+++++++个个=3n+2,当n=2时,3n+2=8;当n=2021时,3n+2=3×2021+2=6065;故答案为:8,6065.【点睛】本题考查了图形中数字的规律探索,创新思维视角,探寻合理的解题方法找规律是解题的关键.19.14【分析】根据题意用最高气温12℃减去最低气温-2℃根据减去一个负数等于加上这个数的相反数即可得到答案;【详解】℃故答案为:14【点睛】本题主要考查有理数的减法运算关键在于正确的列式计算解析:14【分析】根据题意用最高气温12℃减去最低气温-2℃,根据减去一个负数等于加上这个数的相反数即可得到答案;【详解】()122=14--℃,故答案为:14.【点睛】本题主要考查有理数的减法运算,关键在于正确的列式计算.20.七边形三、解答题21.无22.(1)910x =-;(2)x=4;(3)x=-20;(4)67x 23= 【分析】(1)根据去分母、移项、合并同类项、未知数的系数化为1的步骤求解即可 (2)根据移项、合并同类项、未知数的系数化为1的步骤求解即可(3)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可 (4)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可【详解】 (1)3118x 342x -=-, 去分母,得3-32x=12-22x ,移项,得-32x+22x=12-3,合并同类项,得-10x=9,系数化为1,得 910x =-; (2)0.5x-0.7=6.5-1.3x ,移项,得0.5x+1.3x=6.5+0.7,合并同类项,得1.8x=7.2,系数化为1,得x=4;(3)()123x 6365x -=-, 去分母,得 ()53x 61290x -=-,去括号,得15x-30=12x-90,移项,得15x-12x=-90+30,合并同类项,得3x=-60,系数化为1,得x=-20;(4)12313 37x x-+=-,去分母,得7(1-2x)=3(3x+1)-63,去括号,得7-14x=9x+3-63,移项,得-14x-9x=3-63-7,合并同类项,得-23x=-67,系数化为1,得67x23=.【点睛】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a形式转化.23.(1)60°;(2)50°【分析】(1)根据角平分线的定义求出∠MOB和∠BON,然后根据∠MON=∠MOB+∠BON代入数据进行计算即可得解;(2)由图②可知,∠MON=∠MOC+∠BON-∠BOC,根据角平分线的定义求出∠MOC=12∠AOC,和∠BON=12∠BOD,将其代入到∠MON=∠MOC+∠BON-∠BOC中,然后进行角度的等量转换,即可求得.【详解】(1)∵OM平分∠AOB,∴∠MOB=12∠AOB,又∵ ON平分∠BOD,∴∠BON=12∠BOD,∴∠MON=∠MOB+∠BON,=12∠AOB+12∠BOD,=12∠AOD,=12×120°,=60°;(2) ∵OM 平分∠AOC ,∴ ∠MOC=12∠AOC , 又∵ ON 平分∠BOD , ∴ ∠BON=12∠BOD , ∴∠MON=∠MOC+∠BON-∠BOC , =12∠AOC+12∠BOD-∠BOC , =12×(∠AOC+∠BOD)-∠BOC , =12×(∠AOD+∠BOC)-∠BOC , =12(120°+20°)-20°, =50°.【点睛】本题考查了角的计算、角平分线的定义,准确识图是解题的关键,难点在于要注意整体思想的利用.24.(1)111n n -+;(2)20202021;(3)10094040 【分析】(1)根据11111111112223233434=-=-=-⨯⨯⨯,,归纳可得; (2)套用111122334++⨯⨯⨯的计算方法可以得解; (3)每项都提出14,再应用与(2)相同的方法计算可得解答 . 【详解】解:(1)由题中11111111112223233434=-=-=-⨯⨯⨯,,可得:两个连续正整数积的倒数等于较小数倒数减去较大数倒数的差, ∴ 111(1)1n n n n =-++; (2)11111111111120201112233420202021223342020202120212021++++=-+-+-++-=-=⨯⨯⨯⨯(3)111124466820182020++++⨯⨯⨯⨯11111412233410091010⎛⎫=⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111111142233410091010⎛⎫=⨯-+-+-++- ⎪⎝⎭11110091009141010410104040⎛⎫=⨯-=⨯= ⎪⎝⎭; 【点睛】本题考查与实数运算相关的规律探索,通过观察题中所给运算规律,然后应用归纳和类比的方法对所给算式进行运算是解题关键.25.(1)34-;(2)7- 【分析】(1)先计算乘方和绝对值,再算乘除,最后算加减即可解答 (2)先算乘方,再算乘除,有括号先算括号里面的即可解答【详解】(1)原式272296893=-⨯-÷ 399434=--=-(2)原式()1115923⎛⎫=---÷⨯- ⎪⎝⎭ ()11342167⎛⎫=---⨯⨯- ⎪⎝⎭=--=- 【点睛】本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题关键.26.见解析.【解析】【分析】从正面看有3列,每列小正方形数目分别为2,2,1;从左面看有2列,每列小正方形数目分别为2,1;从上面看有3列,每行小正方形数目分别为1,2,1.【详解】解:三视图为:【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.解题关键是画几何体的三视图时应注意小正方形的数目及位置.。

浙江省温州市七年级上学期数学期末考试试卷

浙江省温州市七年级上学期数学期末考试试卷

浙江省温州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下面有理数中,最大的数是()A . -B . 0C . -1D . -32. (2分) (2016七上·永登期中) 若代数式6axb6与a5by是同类项,则x﹣y的值是()A . 11B . ﹣11C . 1D . ﹣13. (2分) (2020七下·南宁月考) 下列运用等式的性质变形不一定成立的是()A . 若 a=b,则 a - 6 = b - 6B . 若- 2x = -2 y ,则 x=yC . 若 n+1=m+1,则 n=mD . 若 a=b,则4. (2分)如图,从A到B有①,②,③三条路线,最短的路线是①,其理由是()A . 因为它最直B . 两点确定一条直线C . 两点间的距离的概念D . 两点之间,线段最短5. (2分) (2016七上·蓟县期中) 下列计算正确的是()A . (﹣1)3=1B . ﹣(﹣2)2=4C . (﹣3)2=6D . ﹣22=﹣46. (2分) (2018七下·桐梓月考) 若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线l的距离()A . 等于3 cmB . 大于3 cm而小于4 cm ;C . 不大于3 cmD . 小于3 cm7. (2分)(2017·恩施) 中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A . 羊B . 马C . 鸡D . 狗8. (2分)为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012 ,则2S=2+22+23+24+…+22012+22013 ,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A . 52013﹣1B . 52013+1C .D .二、填空题 (共10题;共11分)9. (2分)(2020·镇江) 倒数是________.10. (1分) (2019七上·长汀期中) 据国家统计局网站2018年12月14日发布消息,2018年福建省粮食总产量约为49900000吨,将49900000用科学记数法表示为________.11. (1分) (2019七上·碑林期中) 比较大小: ________ .12. (1分) (2018七上·汉阳期中) 已知a,b为常数,且三个单项式4xy2 , axyb ,﹣5xy相加得到的和仍然是单项式.那么a+b的值可以是________.(写出所有可能值)13. (1分)(2020·盘龙模拟) 关于x的一元一次方程的解为x=1,则a+m的值为________.14. (1分) (2016七下·砚山期中) 如图是一把剪刀,其中∠1=40°,则∠2=________,其理由是________.15. (1分) (2016七上·南京期末) 一个几何体的表面展开图如图所示,则这个几何体是________.16. (1分)某商场将一件商品在进价的基础上加价80%标价,再八折出售,售价为l44元,则这件商品的进价为________元.17. (1分) (2020七上·兴化期末) 如图,已知∠AOB=75°,∠COD=35°,∠COD在∠AOB的内部绕着点O 旋转(OC与OA不重合,OD与OB不重合),若OE为∠AOC的角平分线.则2∠BOE-∠BOD的值为________.18. (1分)将﹣1,,π,0,﹣,﹣3.1415926,+1按要求分别填入相应的集合中.(1)负数集合:________,(2)非负数集合:________,(3)有理数集合:________.三、解答题 (共9题;共57分)19. (10分) (2018七上·大丰期中) 计算:(1) ( -)÷1 ÷(2)20. (5分) (2019七上·海安期末) 计算或化简求值:(1)(﹣2)2×5﹣(﹣2)3÷4;(2)(﹣10)3+[(﹣4)2﹣(1﹣32)×2];(3)求代数式3a+abc﹣(9a﹣c2)的值,其中a=﹣,b=2,c=﹣3.(4)先化简再求值:,其中x=﹣2,y= .21. (10分) (2019七上·台安月考) 解方程x﹣=﹣122. (5分)如图,已知C是线段AB的中点,D是线段AC的中点,图中所有线段的长度的和为13,求线段AC的长.23. (2分) (2019七上·陕西月考) 如图所示,这是一个由小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请画出主视图与左视图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档