热压烧结Ti_3AIC_2材料在空气中的恒温氧化行为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国科学E辑技术科学 2006, 36(5): 483~490 483 热压烧结T i3 AIC2材料在空气中的
恒温氧化行为*
徐学文①②李养贤①**梅炳初②朱教群②刘何燕①曲静萍①
(①河北工业大学材料科学与工程学院, 天津 300130; ②武汉理工大学材料复合新技术国家重点实验室,
武汉 430070)
摘要研究了热压烧结的Ti3AlC2(含有2.8%(质量分数)的TiC)在900~1300℃空气中的恒温氧化行为. 结果表明, 该材料具有良好的抗高温氧化性能, 其氧化行为遵循抛物线规律. 随着温度升高, 氧化抛物线速率常数k p从900℃的1.39×10−10增大到1300℃的5.56×10−9 kg2·m−4·s−1,计算得到的氧化活化能为136.45 kJ/mol. 在900~1100℃时, 氧化产物为α-Al2O3和TiO2; 当温度达到1200℃时, TiO2开始部分地转变为Al2TiO5; 氧化温度升高到1300℃, Ti在氧化层中完全以Al2TiO5的形式存在. 氧化过程由Al3+和Ti4+的向外扩散和O2−的向内扩散控制. Al3+和Ti4+的快速向外扩散在基体与氧化层界面处导致大量的缺陷的形成.
关键词铝碳化钛氧化性能动力学
近年来, 一类三元层状化合物M n+1AX n吸引了研究者异乎寻常的关注[1~5], 其中, M是过渡族金属元素, A是IIIA或IV A族元素, X是C和/或N, n = 1, 2, 3. Ti3AlC2是M n+1AX n相中具有代表性的一种材料. Ti3AlC2属六方晶系, 空间群为D46h-P63/mmc, 其晶格参数为a=0.30753 nm和c=1.8578 nm, 理论密度为4.25 g·cm−3 [5]. 与其他M n+1AX n一样, Ti3AlC2兼具有金属和陶瓷的性能. 但作为一种高温结构材料, 还需要具备良好的抗高温氧化性能. Wang和Zhou研究了含有部分TiC的Ti3AlC2材料在500~1400 ºC空气中的氧化行为[6~8]. 研究发现, Ti3AlC2具有良好的抗高温氧化能力, 并且其氧化基本上符合抛物线规律. Barsoum以实验结果为依据建立了Ti3AlC2的分层氧化模型[9,10].
从Ti3AlC2以及Ti3SiC2的氧化研究结果来看, 不同的制备条件和试样的杂质
收稿日期: 2005-09-14; 接受日期: 2005-12-23
*国家自然科学基金(批准号: 50172037)和教育部科学研究重点项目(批准号: 02052)资助
** E-mail: nextnest@
484 中国科学 E 辑 技术科学 第36卷
与缺陷对材料的氧化性能有很大的影响[6~10]. 在作者等人的研究中, 通过热压法制备了高纯的Ti 3AlC 2材料[11,12]. 本文研究了制备材料在900~1300℃的恒温氧化行为, 分析了氧化规律.
1 实验方法
根据作者等人前期的研究工作, 以Si 为掺杂剂, 通过热压法合成了氧化实验用的Ti 3AlC 2试样[11,12]. 配制原始摩尔比为n (TiC)︰n (Ti)︰n (Al)︰n (Si) = 2.0︰1.0︰1.0︰0.2的混合粉料, 装入尺寸为40 mm × 40 mm, 表面涂有BN 的石墨模具内热压烧结. 工艺条件如下, 烧结温度: 1350℃, 升温速度: 50℃/min, 热压压力: 30 MPa, 保温时间: 2 h, Ar 保护. 烧结试样厚度约为10 mm. 采用Archimede 法测得试样的密度为4.18 g ·cm −3, k 值法测定试样中Ti 3AlC 2的质量百分数量为97.2 %, 杂质相为TiC. 氧化实验中采用的试样是用线切割方法得到的4 mm × 4 mm × 10 mm 的长条. 试样用1200目的SiC 砂纸磨平抛光至表面有金属光泽.
恒温氧化增重实验在空气气氛的氧化炉中进行, 氧化温度为900~1300℃, 氧化总时间20 h. 试样置于炉中保温至要求的时间, 然后冷却至室温, 用精确度为±10−4 g 的分析天平称重, 并进一步分析试样的氧化动力学. 对氧化试样表面进行X 射线衍射(X-ray diffraction, XRD, Model D/MAX-RB, RIGAKU Corporation, Japan)分析, 以确定其相组成. 同时用扫描电子显微镜(scanning electron microscopy, SEM, Model JSM-5610LV , JEOL Ltd, Japan)观察氧化层的微观结构. 氧化层的化学成分用以上扫描电子显微镜自带的能谱仪(energy spectrometer, EDS, Model Phoenix, EDAX, USA)确定.
2 实验结果与讨论
2.1 氧化动力学
图1(a)和1(b)所示分别为Ti 3AlC 2在900~1300℃空气中氧化时, 单位表面增重和单位表面增重的平方与氧化时间的关系. 由图可知, 在900~1300℃温度范围内, 随着氧化温度的升高和时间的延长, 试样的氧化增重缓慢增加. 在1300℃氧化20 h 后试样的单位表面增重也仅有1.98 × 10−2 kg/m 2. 研究者对M n AX n +1化合物中, 另一种典型的材料Ti 3SiC 2的高温氧化行为作了研究[12], 结果表明, 在1300℃氧化20 h 后, 试样的单位表面增重为 2.48 × 10−2 kg/m 2. 这表明Ti 3AlC 2具有比Ti 3SiC 2更优良的抗高温氧化性能. 由图1可知, 在900~1300℃, 单位表面氧化增重随时间抛物线上升, 而单位表面增重的平方与时间呈线性关系. 因此, Ti 3AlC 2在900~1300℃的恒温氧化动力学行为符合抛物线规律, 可以用以下公式表示: 2p ()W S k t c ∆=+, (1)
第5期 徐学文等: 热压烧结Ti 3AlC 2材料在空气中的恒温氧化行为 485
图1 900~1300℃氧化时, 单位表面增重(a)和单位表面增重的平方(b)与时间的关系
其中, ∆W/S 是单位表面增重, k p 是抛物线速率常数, c 是常数.
根据图1(b)计算的各温度下氧化抛物线速率常数k p 列于表 1. 随着氧化温度升高, k p 值随之升高. 为了更进一步研究Ti 3AlC 2的氧化动力学, 引入Arrhenius- type 公式来计算氧化反应的活化能. 方程如下:
p 0exp()k k Q RT =−, (2)
其中, k 0是指数前因子; Q 是活化能; R 是摩尔气体常数, 单位是J·mol -1·K -1; T 是绝对温度. 图2是根据Arrhenius 公式确定的ln k p -(1/T )曲线. 由此计算的平均氧化反 表1 抛物线速率常数列表
氧化温度/℃
抛物线速率常数k p /kg ·m ·s 900
1.39×10−101000
2.78×10−101100
8.33×10−101200
1.39×10−91300
5.56×10−9
486 中国科学 E 辑 技术科学 第36卷
图2 氧化温度与抛物线速率常数确定的Arrhenius 曲线
应活化能Q eff 为136.45 kJ/mol. 计算值与其他研究者的结果175 kJ/mol 相近[7].
2.2 氧化层相组成与微观结构分析
为了进一步了解Ti 3AlC 2的氧化机制, 对氧化试样表面的氧化层进行了相组成和微观结构分析. 图3所示为900~1300℃时, 经过20 h 氧化后得到试样的XRD 图谱. 在900~1200℃, 试样的主晶相仍然是Ti 3AlC 2, 随着氧化温度升高, Ti 3AlC 2衍射峰强度逐步下降. 当氧化温度升高到1300℃后, 试样的主晶相转变为α- Al 2O 3, 但其中还存在大量的Ti 3AlC 2. 这种实验现象表明, 各温度下经过20 h 氧化后, 产生的氧化层极薄, 从另一方面证明了具有良好的抗高温氧化能力. 在900℃时, 氧化产物主要是TiO 2和α-Al 2O 3, 随着温度升高, α-Al 2O 3的衍射峰强度显著上升, 而TiO 2的衍射峰强度则下降; 至1200℃时, 出现Al 2TiO 5的衍射峰, 当氧化温度达到1300℃后, TiO 2完全转变为Al 2TiO 5, 发生的反应如下:
23225Al O TiO Al TiO +→ (3)
一般认为, 几种致密的氧化膜, 诸如Al 2O 3, Cr 2O 3, TiO 2和SiO 2等, 能明显提高材料的抗高温氧化能力. 在Ti 3AlC 2试样表面形成的组分为α-Al 2O 3和TiO 2的氧化膜, 使材料具有良好的耐高温氧化能力.
图4所示分别为Ti 3AlC 2在900和1300℃恒温氧化20 h 后, 试样抛光面的扫描照片. 由图可知, 在900℃时, 氧化层极薄, 并与基体紧密结合, 界面几乎不可分辨. 至1300℃时, 氧化层厚度急剧增大, 约为12~15 µm, 于界面处可以观察到孔洞存在, 表明在1300℃时开始剧烈氧化, 这与以上的动力学结果吻合. EDS 研究表明, 1200和1300℃的氧化层成分以α-Al 2O 3为主, 同时有极少量的Ti 的氧化物TiO 2和/或Al 2TiO 5. 假定氧化层中Ti 以Al 2TiO 5的形式存在, 则1200℃时, 氧
第5期 徐学文等: 热压烧结Ti 3AlC 2材料在空气中的恒温氧化行为 487
图3 不同温度下氧化20 h 后, 试样的XRD 图谱
化层中α-Al 2O 3和Al 2TiO 5的含量分别为77.69%和22.31%(质量分数), 1300℃时两者的含量分别为96.54%和3.46%(质量分数).
2.3 讨论
以上实验部分说明了Ti 3AlC 2具有良好的抗高温氧化性能. 下面就其氧化机制作初步探讨.
在氧化的初始阶段, 当试样在较低的温度下和较短的时间内暴露于空气中时, 试样表面直接发生氧化反应, 其反应方程如下:
32222324Ti AlC 23O 12TiO 2Al O 8CO (g)+=++. (4) 从热力学角度来看, Al 比Ti 更加容易氧化, 因此在试样表面会形成更多的Al 2O 3晶核. 但由于Al 2O 3晶体的生长速度比TiO 2小得多, 所以最初的氧化层以TiO 2为主, 其中夹杂有部分Al 2O 3. 这一点图3给出了明显的证明, 在900℃时, 即使氧
488中国科学E辑技术科学第36卷
图4 不同温度恒温氧化20 h得到的试样截面形貌
(a) 900℃, (b) 1300℃
化了20 h, 所得的产物仍然以TiO2为主, 而α-Al2O3的衍射峰极弱.
当表层的氧化膜达到一定的厚度之后, 氧化过程将由扩散控制. 根据以上的分析, 在扩散开始阶段, 扩散介质主要由TiO2组成. 一般地, O或O2−在TiO2中的本征扩散系数很小, 几乎是不可测定的[13,14]. 研究者发现, O2−在TiO2中的扩散速度D O与氧分压p O无关, 而主要是由其中存在的100~200 ppm的Al2O3杂质产生的外在空位浓度决定的[15]. 因此, 在氧化的最初始阶段溶解在TiO2中的极少量的Al3+离子使氧空位浓度上升, 促进了O2−向内扩散. 同时, 氧化试样中存在的制备缺陷, 如气孔等, 也会加速扩散. 因此, 氧化的扩散过程包括Al3+和Ti4+的向外扩散及O2−的向内扩散, 但Al3+的扩散速度远远高于O2−或Ti4+的扩散速度[13]. 因此, 在这一过程中Al3+从低氧分压向高氧分压处的扩散是主导的扩散过程, 氧化较长时间后, 所得的氧化产物以Al2O3为主, 仅有极少量的TiO2. 在2.2节中, 对1300℃氧化20 h所得氧化层的EDS分析结果也证明了以上的讨论.
Al3+和Ti4+的向外快速扩散, 以及材料自身存在的少量缺陷, 会使氧化反应界面处产生由裂纹和气孔等组成的缺陷层. 图5中粗箭头所示为氧化层与基体界
第5期 徐学文等: 热压烧结Ti3AlC2材料在空气中的恒温氧化行为 489
图5 氧化层与基体交界处的缺陷层
面的缺陷, 小箭头所示为烧结时产生的气孔等缺陷.
3结论
Ti3AlC2在900~1300℃的空气中氧化20 h符合抛物线规律, 氧化抛物线速率常数分别为 1.39×10−10, 2.78×10−10, 8.33×10−10, 1.39×10−9和 5.56×10−9 kg2·m−4·s−1. 计算的氧化活化能Q eff为136.45 kJ/mol. 在900~1100℃时, 氧化产物为α-Al2O3和TiO2; 当温度达到1200℃时, TiO2开始部分地转变为Al2TiO5; 氧化温度升高到1300℃, Ti在氧化层中完全以Al2TiO5的形式存在. 氧化过程由Al3+和Ti4+的向外扩散及O2−的向内扩散控制. Al3+和Ti4+的快速扩散, 会使氧化层与基体交界处形成由气孔和裂纹等组成的缺陷层.
参考文献
1 Barsoum M W, El-Raghy T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J Am Ceram
Soc, 1996, 79(7): 1953―1956
2 Barsoum M W, Yaroschuck G, Tyagi S. Fabrication and characterization of M2SnC (M=Ti, Zr, Hf and Nb).
490中国科学E辑技术科学第36卷
Scr Mater, 1997, 10: 1583―1591
3 Procopio A T, Barsoum M W, El-Raghy T. Characterization of Ti4AlN3. Matall Mater Trans, 2000, 31A(12):
333―337
4 Sun Z M, Yan S L, Hashimoto H. Ti3SiC2 powder synthesis. Ceram Inter, 2004, 30: 1873―1877
5 Barsoum M W. The M N+1AX N phases: a new class of solids; thermodynamically stable nanolaminates. Prog
Solid St Chem, 2000, 28: 201―281
6 Wang X H, Zhou Y C. Oxidation behavior of TiC-containing Ti3AlC2 based material at 500~900 °C in air.
Mat Res Innovat, 2003, 7: 381―390
7 Wang X H, Zhou Y C. Oxidation behavior of Ti3AlC2 at 1000-1400 °C in air. Corrosion Science, 2003, 45:
891―907
8 Wang X H, Zhou Y C. Oxidation behavior of Ti3AlC2 powders in flowing air. J Mate Chem, 2002, 12 (9):
2781―2785
9 Barsoum M W. Oxidation of Ti n+1AlX n where n=1~3 and X is C, N, part I: Model. J Electrochem Soc, 2001,
148(8): 544―550
10 Barsoum M W. Oxidation of Ti n+1AlX n where n=1~3 and X is C, N, part II: Experimental results. J
Electrochem Soc, 2001, 148(8): 551―562
11 Zhu J Q, Mei B C, Xu X W, et al. Synthesis of high-purity Ti3SiC2 and Ti3AlC2 by HP. J Mater Sci Lett,
2003, 22(15): 1111―1112
12 Zhu J Q, Mei B C, Xu X W, et al. Effect of aluminum on the reaction synthesis of ternary carbide Ti3SiC2.
Scr Mater, 2003, 49: 693―697
13 Ikeda J A, Chiang Y M. Space charge segregation at grain boundaries in titanium dioxide: I, relationship
between lattice defect chemistry and space charge potential. J Am Ceram Soc, 1993, 76: 2437―2446
14 Ikeda J A, Chiang Y M. Space charge segregation at grain boundaries in titanium dioxide: II, model
experiments. J Am Ceram Soc, 1993, 76: 2447―2454
15 Haul R, Dumbgen G. Sauerstoff-selbstdiffusion in rutilkristallen. J Phys Chem Solids, 1965, 26(1): 1―10。