高一期末精选单元测试卷(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一期末精选单元测试卷(解析版)
一、第五章抛体运动易错题培优(难)
1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()
A.α的值
B.小球的初速度v0
C.小球在空中运动时间
D.小球初动能
【答案】A
【解析】
【分析】
【详解】
设初速度v0与竖直方向夹角β,则β=90°−α(1);
由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:
sin
x
v vβ
=(2)
10
cos
y
v vβ
=(3)
2
1
12
y
v
y
g
=(4)
小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0
sin
x
v vβ
=不变,斜面倾角θ=45°,
20
tan45sin
y x x
v v v vβ
===(5)
2
2
22
y
y
y
g
=(6)
()
222
12
cos sin
2
v
y y y
g
ββ
-
∆=-=(7),
平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:
()111111tan 90222tan y x v y x v ββ
==-=(8) 由(8)变形化解:
2
011cos sin 2tan v x y g
ββ
β==(9)
同理,Ⅱ中水平位移为:
22022sin 2tan 45v x y g
β
==(10)
()
2012sin sin cos v x x x g
βββ+=+=
总(11) =tan45y
x ∆总
故
=y x ∆总
即
2sin sin cos βββ-=-(12)
由此得
1
tan 3
β=
19090arctan 3
αβ=-=-
故可求得α的值,其他选项无法求出; 故选:A 。
2.甲、乙两船在静水中航行的速度分别为5m/s 和3m/s ,两船从同一渡口过河,已知甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同。
则水的流速为( ) A .3m/s B .3.75m/s
C .4m/s
D .4.75m/s
【答案】B 【解析】 【分析】 【详解】
由题意,甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同,可知,甲乙实际速度方向一样,如图所示
可得
tan v v θ=
水甲
cos v v θ=
乙
水
两式相乘,得
3sin =5
v v θ=
乙甲 则3
tan =4
v v θ=水
甲,解得v 水=3.75m/s ,B 正确,ACD 错误。
故选B 。
3.如图所示,一铁球用细线悬挂于天花板上,静止垂在桌子的边缘, 细线穿过一光盘的中间孔,手推光盘在桌面上平移, 光盘带动细线紧贴着桌子的边缘以水平速度v 匀速运动,当光盘由
A 位置运动到图中虚线所示的
B 位置时 ,细线与竖直方向的夹角为θ,此时铁球
A .竖直方向速度大小为cos v θ
B .竖直方向速度大小为sin v θ
C .竖直方向速度大小为tan v θ
D .相对于地面速度大小为v 【答案】B 【解析】 【分析】 【详解】
线与光盘交点参与两个运动,一是逆着线的方向运动,二是垂直线的方向运动,则合运动的速度大小为v ,由数学三角函数关系,则有:sin v v v θ==球线,而线的速度的方向,即
为小球上升的速度大小,故B正确,AC错误;球相对于地面速度大小为
()2
2sin
v v vθ
'=+,故D错误.
【点睛】
对线与CD光盘交点进行运动的合成与分解,此点既有逆着线方向的运动,又有垂直线方向的运动,而实际运动即为CD光盘的运动,结合数学三角函数关系,即可求解.
4.一小船在静水中的速度为4m/s,它在一条河宽160m,水流速度为3m/s的河流中渡河,则下列说法错误的是()
A.小船以最短位移渡河时,位移大小为160m
B.小船渡河的时间不可能少于40s
C.小船以最短时间渡河时,它沿水流方向的位移大小为120m
D.小船不可能到达正对岸
【答案】D
【解析】
【分析】
【详解】
AD.船在静水中的速度大于河水的流速,由平行四边形法则求合速度可以垂直河岸,所以小船能垂直河岸正达对岸。
合速度与分速度如图
当合速度与河岸垂直,渡河位移最短,位移大小为河宽160m。
选项A正确,D错误;
BC.当静水中的速度与河岸垂直时,渡河时间最短,为
160
s40s
4
min
c
d
t
v
===
它沿水流方向的位移大小为
340m120m
min
x v t
==⨯=
水
选项BC正确。
本题选错误的,故选D。
5.某人划船横渡一条河流,已知船在静水中的速率恒为v1,水流速率恒为v2,且v1>v2.他以最短时间方式过河用时T1,以最短位移方式过河用时T2.则T1与T2的比值为()A.1
2
v
v B.
2
1
v
v C
1
22
12
v
v v
-
D
22
12
1
v v
-
【答案】D
【解析】
【分析】【详解】
河水流速处处相同大小为v2,船速大小恒为v1,且v1>v2。
设河宽为d,以最短位移过河时,所用时间为T2,则有
22
12
2
d
v v
T
=-
以最短时间T1过河时,有
1
1
d
v
T
=
联立解得
22
12
1
21
v v
T
T
-
=
选项D正确,ABC错误。
故选D。
6.如图所示,竖直墙MN,小球从O处水平抛出,若初速度为v a,将打在墙上的a点;若初速度为v b,将打在墙上的b点.已知Oa、Ob与水平方向的夹角分别为α、β,不计空气阻力.则v a与v b的比值为()
A.
sin
sin
α
βB.
cos
cos
β
α
C
tan
tan
α
β
D
tan
tan
β
α
【答案】D
【解析】
根据平抛运动知识可知:
2
1
2
tan
2
a
a a
gt gt
v t v
α==,则
2tan
a
a
v
t
g
α
=
同理可知:
2tan
b
b
v
t
g
β
=
由于两次运动水平方向上的位移相同,根据s vt
=
解得:
tan
tan
a
b
v
v
β
α
=,故D正确;ABC错误;
故选D
7.如图所示,是竖直平面内的直角坐标系,P 、Q 分别是y 轴和x 轴上的一点,这两点到坐标原点的距离均为L 。
从P 点沿x 轴正向抛出一个小球,小球只在重力作用下运动,恰好经过Q 点,现改变抛出点的位置(仍从第一象限抛出),保持抛出速度的大小和方向不变,要使小球仍能经过Q 点,则新的抛出点坐标(x 、y )满足的函数关系式为( )
A .(
)2
L L
x -
B .(
)2
32L L
x -
C .(
)2
2L L
x -
D .()2
2L L
x -
【答案】A 【解析】 【分析】 【详解】
小球从P 点沿x 轴正向抛出,有
212
L gt =
0L v t =
解得
01
22
v gL =
当抛出点的坐标为(x ,y )时,小球以初速度v 0水平抛出,仍能到达Q 点,则有
0L x v t '-=
212
'=
y gt 解得
()2
L x y L
-=
,其中0<x <L
选项A 正确,BCD 错误。
故选A 。
8.如图所示,在一倾角为ϕ的斜面底端以一额定速率0v 发射物体,要使物体在斜面上的射程最远,忽略空气阻力,那么抛射角θ的大小应为( )
A .
4
2
π
ϕ
-
B .
4
π
ϕ-
C .
4
2
π
ϕ
+
D .
4
π
ϕ+
【答案】C 【解析】 【分析】 【详解】
以平行于斜面为x 轴,垂直于斜面为y 轴,发射点为原点,建立平面直角坐标系,由运动学方程得
()()2
020
1cos sin 2
1sin cos 0
2x v t g t y v t g t θϕϕθϕϕ⎧=-⋅-⋅⎪⎪⎨
⎪=-⋅-⋅=⎪⎩
解得
()2
2sin 2sin cos v x g θϕϕϕ
--=⋅
显然当4
2
π
ϕ
θ=
+
时
()
2
max
1sin v x g ϕ=+。
故选C 。
9.2019年女排世界杯,中国女排以十一连胜夺冠。
如图为排球比赛场地示意图,其长度为L ,宽度s ,球网高度为h 。
现女排队员在底线中点正上方沿水平方向发球,发球点高度为1.5h ,排球做平抛运动(排球可看做质点,忽略空气阻力),重力加速度为g ,则排球( )
A 23L g
h
B
C
D
【答案】C 【解析】 【分析】 【详解】
根据平抛运动的两分运动规律
0x v t =
2
12y gt =
联立可得
2
20
2g y x v =
A .刚能过网的条件为
2
L x =
1.50.5y h h h =-=
带入轨迹方程可得最小初速度为
0v =
故A 错误;
B .能落在界内的最大位移是落在斜对角上,构成的直角三角形,由几何关系有
max s =故B 错误;
C .能过网而不出界是落在斜对角上,条件为
x =
1.5y h =
带入轨迹方程可得最大初速度为
0max
v ==
D .根据末速度的合成规律可知,能落在界内的最大末速度为
2
2
2max
0max 2 1.5()334
g s v v g h L gh h =+⋅=++
故D 错误。
故选C 。
10.高度为d 的仓库起火,现需要利用仓库前方固定在地面上的消防水炮给它灭火。
如图所示,水炮与仓库的距离为d ,出水口的横截面积为S 。
喷水方向可自由调节,功率也可以变化,火势最猛的那层楼窗户上、下边缘离地高度分别为0.75d 和0.25d ,(要使火火效果最好)要求水喷入时的方向与窗户面垂直,已知水炮的效率为η,水的密度为ρ,重力加速度为g ,不计空气阻力,忽略水炮离地高度。
下列说法正确的是( )
A dg
B 2dg
C .若水从窗户的正中间进入,则此时的水炮功率最小
D .满足水从窗户进入的水炮功率最小值为()3
21
22S gd ρη
【答案】CD 【解析】 【分析】 【详解】
A .把抛出水的运动逆向思维为平抛运动,根据平抛运动规律有
022g g
v h h
==水从上边缘进入0.75h d =,解得
0220.753
g
gd
v d
==
⨯故A 错误;
B .水从下边缘进入0.25h d =,解得
0220.25g
v gd d
==⨯
C .逆向思维,水到达水炮时
0x v v =,2y
v gh =
则有
2
22(2)2x
y
d v v v g h h
=+=+
根据数学知识可知,当2d h =,即0.5h d =时,v 最小,对应位置为窗户正中间,故C 正确;
D .由上面的分析可知,当v 的最小值2v dg =,满足水从窗户进入的水炮功率最小,其最小值为
()223
3212122122mv vt S g Sv W Sv P t t d t ρρηηρη
η===== 故D 正确。
故选CD 。
二、第六章 圆周运动易错题培优(难)
11.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘的中心轴OO '转动.三个物体与圆盘的动摩擦因数均为
0.1μ=,最大静摩擦力认为等于滑动摩擦力.三个物体与轴O 共线且OA =OB =BC =r =0.2
m ,现将三个物体用轻质细线相连,保持细线伸直且恰无张力.若圆盘从静止开始转动,角速度极其缓慢地增大,已知重力加速度为g =10 m/s 2,则对于这个过程,下列说法正确的是( )
A .A 、
B 两个物体同时达到最大静摩擦力 B .B 、
C 两个物体的静摩擦力先增大后不变 C .当5/rad s ω>时整体会发生滑动
D 2/5/rad s rad s ω<<时,在ω增大的过程中B 、C 间的拉力不断增大 【答案】BC 【解析】
ABC 、当圆盘转速增大时,由静摩擦力提供向心力.三个物体的角速度相等,由2F m r ω=可知,因为C 的半径最大,质量最大,故C 所需要的向心力增加最快,最先达到最大静摩擦力,此时
2122C mg m r μω= ,计算得出:11
2.5/20.4
g
rad s r
μω=
=
= ,当C 的摩擦力达到最大静
摩擦力之后,BC 开始提供拉力,B 的摩擦力增大,达最大静摩擦力后,AB 之间绳开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 与B 的摩擦力也达到最大时,且BC 的拉力大于AB 整体的摩擦力时物体将会出现相对滑动,此时A 与B 还受到绳的拉力,对C
可得:2
2222T mg m r μω+= ,对AB 整体可得:2T mg μ= ,计算得出:2g
r
μω=
,当
1
5/0.2
g
rad s r
μω>
=
= 时整体会发生滑动,故A 错误,BC 正确; D 、当 2.5rad/s 5rad/s?ω<<时,在ω增大的过程中B 、C 间的拉力逐渐增大,故D 错误; 故选BC
12.如图所示,一个边长满足3:4:5的斜面体沿半径方向固定在一水平转盘上,一木块静止在斜面上,斜面和木块之间的动摩擦系数μ=0.5。
若木块能保持在离转盘中心的水平距离为40cm 处相对转盘不动,g =10m/s 2,则转盘转动角速度ω的可能值为(设最大静摩擦力等于滑动摩擦力)( )
A .1rad/s
B .3rad/s
C .4rad/s
D .9rad/s
【答案】BC 【解析】 【分析】 【详解】
根据题意可知,斜面体的倾角满足
3
tan 0.54
θμ=
>= 即重力沿斜面的分力大于滑动摩擦力,所以角速度为零时,木块不能静止在斜面上;当转动的角速度较小时,木块所受的摩擦力沿斜面向上,当木块恰要向下滑动时
11cos sin N f mg θθ+= 2111sin cos N f m r θθω-=
又因为滑动摩擦力满足
11f N μ=
联立解得
1522
rad/s 11
ω=
当转动角速度变大,木块恰要向上滑动时
22cos sin N f mg θθ=+
2
222sin cos N f m r θθω+=
又因为滑动摩擦力满足
22f N μ=
联立解得
252rad/s ω=
综上所述,圆盘转动的角速度满足
522
rad/s 2rad/s 52rad/s 7rad/s 11
ω≈≤≤≈ 故AD 错误,BC 正确。
故选BC 。
13.如图所示,匀速转动的水平圆盘上放有质量分别为2kg 和3kg 的小物体A 、B ,A 、B 间用细线沿半径方向相连。
它们到转轴的距离分别为R A =0.2m 、R B =0.3m 。
A 、B 与盘面间的最大静摩擦力均为重力的0.4倍。
g 取10m/s 2,现极其缓慢地增大圆盘的角速度,则下列说法正确的是( )
A .小物体A 达到最大静摩擦力时,
B 受到的摩擦力大小为12N B .当A 恰好达到最大静摩擦力时,圆盘的角速度为4rad/s
C 230
D .当A 恰好达到最大静摩擦力时,剪断细线,A 将做向心运动,B 将做离心运动 【答案】AC 【解析】 【分析】 【详解】
A .当增大原盘的角速度,
B 先达到最大静摩擦力,所以A 达到最大静摩擦力时,B 受摩擦力也最大,大小为
f B=km B
g =0.4⨯3⨯10N=12N
故A 正确;
B .当A 恰好达到最大静摩擦力时,圆盘的角速度为ω,此时细线上的拉力为T ,由牛顿第二定律,对A
2A A A k T R m g m ω-=
对B
2B B B T km g m R ω+=
联立可解得
s 13
102
rad/ω=
故B 错误;
C. 当细线上开始有弹力时,此时B 物体受到最大摩擦力,由牛顿第二定律,有
2B B 1B k m R m g ω=
可得
1230
rad/s 3
ω=
故C 正确;
D. 当A 恰好达到最大静摩擦力时,剪断细线,A 物体摩擦力减小,随圆盘继续做圆周运动,而B 不再受细线拉力,最大摩擦力不足以提供向心力,做离心运动,故D 错误。
故选AC 。
14.如图所示,一个内壁光滑的弯管处于竖直平面内,其中管道半径为R . 现有一个半径略小于弯管横截面半径的光滑小球在弯管里运动,当小球通过最高点时速率为v 0,则下列说法中错误的是
A .若0v gR
B .若0v gR >
,则小球对管内上壁有压力
C .若00v gR <<
D .不论v 0多大,小球对管内下壁都有压力
【答案】D 【解析】 【分析】 【详解】
A .到达管道的最高点,假设恰好与管壁无作用力.则有:小球仅受重力,由重力提供向心力,即:
20
v mg m R
=
得
0v gR =
所以A 选项是正确的,不符合题意.
B .当0v gR >
,则小球到达最高点时,有离心的趋势,与内上壁接触,从而受到内上壁向下
的压力,所以小球对管内上壁有压力,故B 选项是正确的,不符合题意. C .当00v gR <<
,则小球到达最高点时, 有向心的趋势,与内下壁接触,从而受到内下壁
的压力.所以C 选项是正确的,不符合题意.
D .小球对管内壁的作用力,要从速度大小角度去分析.,若0v gR >,则小球对管内上壁
有压力;若00v gR <<
,则小球对管内下壁有压力.故D 不正确,符合题意.
15.如图所示,放于竖直面内的光滑金属细圆环半径为R ,质量为m 的带孔小球穿在环上,同时有一长为R 的细绳一端系于球上,另一端系于圆环最低点,绳上的最大拉力为2mg ,当圆环以角速度ω绕竖直直径转动,且细绳伸直时,则ω不可能...
为( )
A .
2g
R
B .2
g R
C .
6g R
D .
7g
R
【答案】D 【解析】 【分析】 【详解】
因为圆环光滑,所以小球受到重力、环对球的弹力、绳子的拉力等三个力。
细绳要产生拉力,绳要处于拉伸状态,根据几何关系可知,此时细绳与竖直方向的夹角为60°,如图所示
当圆环旋转时,小球绕竖直轴做圆周运动,向心力由三个力在水平方向的合力提供,其大
小为
2F m r ω=
根据几何关系,其中
sin60r R ︒=
一定,所以当角速度越大时,所需要的向心力越大,绳子拉力越大,所以对应的临界条件是小球在此位置刚好不受拉力,此时角速度最小,需要的向心力最小,对小球进行受力分析得
min tan60F mg ︒=
即
2
min tan60sin60mg m R ω︒︒=
解得
min 2g
R
ω=
当绳子的拉力达到最大时,角速度达到最大,
m max N ax 606sin sin 0F T F ︒=+︒ N max cos cos 6060T mg F =︒︒+
可得
max 33g F m =
同理可知,最大角速度为
max 6g R
ω=
则
7g R 不在26g g
R R
ω≤≤范围内,故选D 。
16.在游乐园质量为m 的人乘坐如图所示的过山车,当过山车从高度释放之后,在竖直平面内通过了一个光滑的圆周轨道(车的轨迹如图所示的虚线),下列说法正确的是( )
A .车在最高点时人处于倒坐状态,全靠保险带拉住,若没有保险带,人一定会掉下去
B .人在最低点时对座位的压力大于mg
C .人在最高点和最低点时的向心加速度大小相等
D .人在最高点时对座位仍可能产生压力,但压力一定小于mg 【答案】B
【分析】 【详解】
A .当人与保险带间恰好没有作用力时,由重力提供向心力得
2v mg m
R
=临
解得临界速度为
=v gR 临
当速度v gR ≥
时,没有保险带,人也不会掉下来。
选项A 错误;
B .人在最低点时,加速度方向竖直向上,根据牛顿第二定律分析可知,人处于超重状态,人对座位的压力大于mg ,选项B 正确;
C .在最高点和最低点速度大小不等,根据向心加速度公式2
=v a r
可知,人在最高点和最低
点时的向心加速度大小不相等,选项C 错误; D .当人在最高点的速度v gR >时人对座位就产生压力。
当速度增大到2v gR =时,
压力为3mg ,选项D 错误。
故选B 。
17.长为L 的细线一端系一质量为m 的小球(可视为质点),另一端固定在一光滑锥顶上,光滑锥顶角为2θ,轴线在竖直方向,如图甲所示。
使小球在水平面内做角速度为ω的匀速圆周运动,线的张力为T ,经分析可得2-T ω关系图像如图乙所示,已知重力加速度为g 。
则( )
A .sin a mg θ=
B .g b L
=
C .图线1的斜率1sin k mL θ=
D .图线2的斜率2k mL =
【答案】D 【解析】 【分析】 【详解】
A .当角速度为零时,受力分析则有
cos T mg a θ==
B .当小球贴着光滑圆锥做匀速圆周运动时,由题图可知,当角速度的平方达到b 时,支持力为零,有
2tan sin mg mL θθω=
解得
2cos g
b L ωθ
==
故B 错误。
C .小球未脱离圆锥时,有
2sin cos sin T N mL θθθω-= cos sin T N mg θθ+=
联立两式解得
22cos sin T mg mL θθω=+
可知图线1的斜率
21sin k mL θ=
故C 错误。
D .当小球脱离圆锥后,有
2sin sin T a mL a ω=
即
2T mL ω=
则图线2的斜率
2k mL =
故D 正确。
故选D 。
18.如图所示,一个半径为R 的实心圆盘,其中心轴与竖直方向的夹角为30︒,开始时,圆盘静止,其上表面覆盖着一层灰尘,没有掉落。
现将圆盘绕其中心轴旋转,其角速度从零缓慢增大至ω,此时圆盘表面上的灰尘75%被甩掉。
设灰尘与圆盘间的动摩擦因数为
μ=
3
2
,重力加速度为g ,则ω的值为( )
A 2g R
B 32g R
C 52g R
D g R
【解析】 【分析】 【详解】
越靠近边缘的灰尘越容易被甩掉,剩余的灰尘半径为r ,则
22(175%)R r ππ-=
解得
12
r R =
在圆盘的最低点,根据牛顿的第二定律
2cos sin mg mg m r μθθω-=
解得
2g R
ω=
A 正确,BCD 错误。
故选A 。
19.如图所示,A 、B 是两只相同的齿轮,A 被固定不能转动。
若B 齿轮绕A 齿轮运动半周,到达图中的C 位置,则B 齿轮上所标出的竖直向上的箭头所指的方向是( )
A .竖直向上
B .竖直向下
C .水平向左
D .水平向右
【答案】A 【解析】 【详解】
若B 齿轮逆时针绕A 齿轮转动,当B 齿轮转动
1
4
周时,B 齿轮在A 齿轮正上方,B 齿轮上所标出箭头所指的方向竖直向下;B 齿轮继续转动1
4
周,B 齿轮到达图中的C 位置,B 齿轮上所标出箭头所指的方向竖直向上。
若B 齿轮顺时针绕A 齿轮转动,当B 齿轮转动
1
4
周时,B 齿轮在A 齿轮正下方,B 齿轮上所标出箭头所指的方向竖直向下;B 齿轮继续转动1
4
周,B 齿轮到达图中的C 位置,B 齿轮上所标出箭头所指的方向竖直向上。
综上,BCD 三项错误,A 项正确。
20.如图所示,一倾斜的圆筒绕固定轴OO 1以恒定的角速度ω转动,圆筒的半径r =1.5m.筒壁内有一小物体与圆筒始终保持相对静止,小物体与圆筒间的动摩擦因数为
3
2
(设最大静摩擦力等于滑动摩擦力),转动轴与水平面间的夹角为60°,重力加速度g 取10m/s 2,则ω的最小值是( )
A .1rad/s
B .
30
rad/s C . 10rad/s D .5rad/s
【答案】C 【解析】 【分析】 【详解】
对物体受力分析如图:
受重力G ,弹力N ,静摩擦力f .ω的最小值时,物体在上部将要产生相对滑动.由牛顿第二定律可知,
2cos mg N m r θω+=
在平行于桶壁方向上,达到最大静摩擦力,即
max sin f mg θ=
由于max f N μ=;由以上式子,可得
10rad/s ω=
故选C .
三、第八章 机械能守恒定律易错题培优(难)
21.如图所示,两质量都为m 的滑块a ,b (为质点)通过铰链用长度为L 的刚性轻杆相连接,a 套在竖直杆A 上,b 套在水平杆B 上两根足够长的细杆A 、B 两杆分离不接触,且两杆间的距离忽略不计。
将滑块a 从图示位置由静止释放(轻杆与B 杆夹角为30°),不计一切摩擦,已知重力加速度为g 。
在此后的运动过程中,下列说法中正确的是( )
A .滑块a 和滑块b 所组成的系统机械能守恒
B .滑块b 的速度为零时,滑块a 的加速度大小一定等于g
C .滑块b 3gL
D .滑块a 2gL
【答案】AC 【解析】 【分析】 【详解】
A .由于整个运动过程中没有摩擦阻力,因此机械能守恒,A 正确;
B .初始位置时,滑块b 的速度为零时,而轻杆对滑块a 有斜向上的推力,因此滑块a 的加速度小于g ,B 错误;
C .当滑块a 下降到最低点时,滑块a 的速度为零,滑块b 的速度最大,根据机械能守恒定律
o 21(1sin 30)2
b mgL mv +=
解得
3b v gL =C 正确;
D .滑块a 最大速度的位置一定在两杆交叉点之下,设该位置杆与水平方向夹角为θ 根据机械能守恒定律
o 2211(sin 30sin )22
a b mgL mv mv θ+=
+ 而两个物体沿杆方向速度相等
cos sin b a v v θθ=
两式联立,利用三角函数整理得
21
2(sin )cos 2
a v gL θθ=+
利用特殊值,将o =30θ 代入上式可得
.521a v gL gL =>
因此最大值不是2gL ,D 错误。
故选AC 。
22.一辆小汽车在水平路面上由静止启动,在前5s 内做匀加速直线运动,5s 末达到额定功率,之后保持以额定功率运动,其v t -图象如图所示.已知汽车的质量为
3110kg m =⨯,汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是( )
A .汽车在前5s 内的牵引力为3510N ⨯
B .汽车速度为25m /s 时的加速度为25m /s
C .汽车的额定功率为100kW
D .汽车的最大速度为80m /s
【答案】AC 【解析】 【分析】 【详解】
A .由速度时间图线知,匀加速运动的加速度大小
2220
m/s 4m/s 5
a =
= 根据牛顿第二定律得
F f ma -=
解得牵引力
1000N 4000N 5000N F f ma =+=+=
选项A 正确; BC .汽车的额定功率
500020W 100000W 100kW P Fv ==⨯==
汽车在25m/s 时的牵引力
100000'N 4000N 25
P F v ===
根据牛顿第二定律得加速度
22'40001000
'm/s 3m/s 1000
F f a m --=
== 选项B 错误,C 正确;
D .当牵引力等于阻力时,速度最大,则最大速度
100000
m/s 100m/s 1000
m P v f =
== 选项D 错误。
故选AC 。
23.如图所示,固定在竖直平面内的圆管形轨道的外轨光滑,内轨粗糙。
一小球从轨道的最低点以初速度v 0向右运动,球的直径略小于圆管的直径,球运动的轨道半径为R ,空气阻力不计,重力加速度大小为g ,下列说法一定正确的是 ( )
A .若05v gR <
B .若02v gR <,小球不可能到达圆周最高点
C .若02v gR <,小球运动过程中机械能守恒
D .若05v gR > 【答案】BC 【解析】 【分析】 【详解】
AD. 小球如果不挤压内轨,则小球到达最高点速度最小时,小球的重力提供向心力,由牛顿第二定律,在最高点,有
2
v mg m R
=
由于小球不挤压内轨,则小球在整个运动过程中不受摩擦力作用,只有重力做功,机械能守恒,从最低点到最高点过程中,由机械能守恒定律,有
22
011222
mv mv mg R =+⋅ 解得
05v gR =
若小球速度05v gR <,小球也是有可能做完整的圆周运动的,可能到达圆周最高点,只是最终在圆心下方做往复运动,故A 错误;若小球速度05v gR >,则小球一定不挤压内轨,小球运动过程中机械能守恒,故D 错误;
B. 如果轨道内轨光滑,小球在运动过程中不受摩擦力,小球在运动过程中机械能守恒,如果小球运动到最高点时速度为0,由机械能守恒定律,有
2
0122
mv mg R =⋅ 解得
02v gR =
现在内轨粗糙,如果小球速度02v gR <,小球在到达最高点前一定受到摩擦力作用,即小球在到达最高点前速度已为零,小球不可能到达圆周最高点,故B 正确;
C.若小球上升到与圆心等高处时速度为零,此时小球只与外轨作用,不受摩擦力,只有重力做功,由机械能守恒定律,有
2
012
mv mgR = 解得
02v gR =
若02v gR <,小球只与外轨作用,不受摩擦力作用,小球运动过程中机械能守恒,故C 正确。
故选BC 。
24.如图所示,水平转台上有一个质量为m 的物块,用长为L 的细绳将物块连接在转轴上,细线与竖直转轴的夹角为θ,此时绳中张力为零,物块与转台间动摩擦因数为μ(μ<tanθ),最大静摩擦力等于滑动摩擦力,物块随转台由静止开始缓慢加速转动,则( )
A .物块随转台由静止开始至绳中出现拉力时,转台对物块做的功为2sin mgL μθ
B .物块随转台由静止开始至绳中出现拉力时,转台对物块做的功为
1
sin 2
mgL μθ C .物块随转台由静止开始至转台对物块支持力为零时,转台对物块做的功为2sin 2os mgL c θ
θ
D .物块随转台由静止开始至转台对物块支持力为零时,转台对物块做的功为34os mgL
c θ
【答案】BC 【解析】 【分析】
此题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N =0,f =0。
【详解】
AB .对物体受力分析知物块离开圆盘前,合力为
2
sin v F f T m r
θ=+= …①
cos N T mg θ+=…②
根据动能定理知
2
12
k W E mv ==
…③ 又
T =0,r =L sin θ…④
由①②③④解得
11
sin sin 22
W fL mgL θμθ=
≤ 至绳中出现拉力时,转台对物块做的功为1
sin 2
mgL μθ,选项A 错误,B 正确; CD .当N =0,f =0,由①②③知
21sin sin tan 22cos mgL W mgL θ
θθθ
==
选项C 正确;D 错误。
故选BC 。
25.如图甲所示,质量为0.1 kg 的小球从最低点A 冲入竖直放置在水平地面上、半径为0.4 m 的半圆轨道,小球速度的平方与其高度的关系图象如图乙所示.已知小球恰能到达最高点C ,轨道粗糙程度处处相同,空气阻力不计.g 取10 m/s 2,B 为AC 轨道中点.下列说法正确的是( )
A .图乙中x =4 m 2s -2
B .小球从B 到
C 损失了0.125 J 的机械能
C .小球从A 到C 合外力对其做的功为-1.05J
D .小球从C 抛出后,落地点到A 的距离为0.8 m 【答案】ACD 【解析】 【分析】 【详解】
A.当h =0.8 m 时小球在C 点,由于小球恰能到达最高点C ,故
mg =2C
mv R
所以C v gR =
2C v gR ==4 m 2·s -2
故选项A 正确;
B.由已知条件无法计算出小球从B 到C 损失了0.125 J 的机械能,故选项B 错误;
C.小球从A 到C ,由动能定理可知
W 合=
22
1122
C A mv mv -=-1.05 J 故选项C 正确;
D.小球离开C 点后做平抛运动,故
2R =
2
12
gt 落地点到A 的距离x 1=v C t ,解得x 1=0.8 m ,故选项D 正确.
26.如图所示,AB 是倾角为37°的斜面,BC 为水平面,一小球以6J 的初动能从A 点水平抛出,第一次落到界面上的动能为12J ,若A 点水平抛出的动能为12J ,则第一次落到界面上的动能为( )
A .18J
B .24J
C .36J
D .42J
【答案】A 【解析】 【分析】 【详解】
当小球以6J 的初动能从A 点水平抛出时,假设小球落在斜面上,设初速度为1v ,在空中运动时间为1t ,由平抛运动规律可得
2
12
h gt =
① 1x v t = ②
tan 37h x
=
③ 从开始抛出到落到斜面过程,由动能定理可得
K K mgh E E =-末初 ④
2
112
K E mv =
初 ⑤ 联立①②③④⑤可得
19.5J 12J K E =≠末
故假设不成立,小球没有落在斜面上
当小球以6J 的初动能从A 点水平抛出时,小球落在水平面上,由动能定理可得
1K K mgh E E =-2⑥
当小球以12J 的初动能从A 点水平抛出时,小球也落在水平面上,由动能定理可得
43K K mgh E E =-⑦
联立⑥⑦可得
418J K E =
故选A
27.如图所示,一质量为M 的人站在台秤上,一根长为R 的悬线一端系一个质量为m 的小球,手拿悬线另一端,小球绕悬线另一端点在竖直平面内做圆周运动,且小球恰好能通过圆轨道最高点,则下列说法正确的是( )
A .小球运动到最高点时,小球的速度为零
B .当小球运动到最高点时,台秤的示数最小,且为Mg
C .小球在a 、b 、c 三个位置时,台秤的示数相同
D .小球从最高点运动到最低点的过程中台秤的示数增大,人处于超重状态 【答案】C 【解析】 【分析】 【详解】
A .小球恰好能通过圆轨道最高点,由
2
v mg m R
=。