备战高考物理备考之电磁感应现象的两类情况压轴突破训练∶培优 易错 难题篇及答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战高考物理备考之电磁感应现象的两类情况压轴突破训练∶培优 易错 难题
篇及答案解析
一、电磁感应现象的两类情况
1.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:
(1)每个线圈通过磁场区域产生的热量Q .
(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.
(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)
【答案】(1)232B L v
Q R
= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R
【解析】 【分析】 【详解】
(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量
为223()22BLv L B L v
Q Pt R v R
===
(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2
(3)线圈与传送带的相对位移大小为2112
vt
s s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1
传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2
送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】
本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.
2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。

ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。

重力加速度为g 。

求:
(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。

【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 7
2L
t g
= 【解析】 【详解】
(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有
2
1sin 302
mgL mv ︒=
, 则线框进入磁场时的速度
2sin30v g L gL =︒=
线框ab 边进入磁场时产生的电动势E =BLv 线框中电流
E I R
=
ab 边受到的安培力
22B L v
F BIL R
== 线框匀速进入磁场,则有
22sin 30B L v
mg R
︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为
22422B L v
F BI L mg R
==''=
方向沿斜面向上
(2)设线框再次做匀速运动时速度为v ',则
224sin 30B L v mg R
︒=
'
解得
4v v =
'=根据能量守恒定律有
2211
sin 30222
mg L mv mv Q ︒'⨯+=+
解得4732
mgL
Q =
线框ab 边在上侧磁扬中运动的过程所用的时间1L t v
=
设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:
22sin 302mg t BLIt mv mv ︒-='-
其中
()022BL L x I t R
-=
联立以上两式解得
()02432L x v t v
g
-=
-
线框ab 在下侧磁场匀速运动的过程中,有
00
34x x t v v
='=
所以线框穿过上侧磁场所用的总时间为
123t t t t =++=
3.如图甲所示,一对足够长的平行光滑轨道固定在水平面上,两轨道间距 l= 0.5m ,左侧接一阻值 为R 的电阻。

有一金属棒静止地放在轨道上,与两轨道垂直,金属棒及轨道的电阻皆可忽略不计,整个装置处于垂直轨道平面竖直向下的磁感应强度为1T 的匀强磁场中。

T=0 时,用一外力F 沿轨道方向拉金属棒,使金属棒以加速度 a =0.2 m/s 2 做匀加速运动,外力F 与时间 t 的关系如图乙所示。

(1)求金属棒的质量 m ;
(2)当力F 达到某一值时,保持F 不再变化,金属棒继续运动3s ,速度达到1.6m/s 且不再变化,测得在这 3s 内金属棒的位移 s=4.7 m ,求这段时间内电阻R 消耗的电能。

【答案】(1)0.5kg ;(2)1.6J 【解析】 【分析】 【详解】 由图乙知
0.10.05F t =+
(1)金属棒受到的合外力
220.10.05B l v
F F F t ma R
=-=+-=合安
当t =0时
0v at ==
0.1F =N 合
由牛顿第二定律代入数值得
0.5F m a
=
=kg 合
(2)F 变为恒力后,金属棒做加速度逐渐减小的变加速运动,经过3s 后,速度达到最大
1.6m v =m/s ,此后金属棒做匀速运动。

1.6m v =m/s 时
0F =合
220.4m
B l v F F R
===N 安
将F =0.4N 代入0.10.05F t =+
求出金属棒做变加速运动的起始时间为t =6s (该时间即为匀加速持续的时间) 该时刻金属棒的速度为
1 1.2v at ==m/s
这段时间内电阻R 消耗的电能
()2
2112
F K m E W E FS m v v =-∆=--
()221
0.4 4.70.5 1.6 1.2 1.62
E =⨯-⨯⨯-=J
4.如图所示,光滑的水平平行金属导轨间距为 L ,导轨电阻忽略不计.空间存在垂直于导 轨平面竖直向上的匀强磁场,磁感应强度大小为 B ,轻质导体棒 ab 垂直导轨放置,导体棒 ab 的电阻为 r ,与导轨之间接触良好.两导轨之间接有定值电阻,其阻值为 R ,轻质导体棒中间系一轻细线,细 线通过定滑轮悬挂质量为 m 的物体,现从静止释放该物体,当物体速度达到最大时,下落的高度为 h , 在本问题情景中,物体下落过程中不着地,导轨足够长,忽略空气阻力和一切摩擦阻力,重力加速度 为 g .求:
(1)物体下落过程的最大速度 v m ;
(2)物体从静止开始下落至速度达到最大的过程中,电阻 R 上产生的电热 Q ; (3)物体从静止开始下落至速度达到最大时,所需的时间 t .
【答案】(1)22()mg R r B L + (2) 3244
()
2mghR m g R R r R r B L
+-+ (3) 2222()()m R r B L h B L mg R r +++ 【解析】
【分析】在物体加速下落过程中,加速度逐渐减小,当加速度为0时,下落速度达到最大,由平衡条件、闭合电路欧姆定律和电磁感应定律求出物体下落过程的最大速度;在物体下落过程中,物体重力势能减少,动能增加,系统电热增加,根据能量守恒定律求出电阻R 上产生的电热;在系统加速过程中,分别对导体棒和物体分析,根据动量定理可得所需的时间;
解:(1)在物体加速下落过程中,加速度逐渐减小,当加速度为0时,下落速度达到最大 对物体,由平衡条件可得mg=Fr 对导体棒Fr=BIL
对导体棒与导轨、电阻R 组成的回路,根据闭合电路欧姆定律E
I R r
=+ 根据电磁感应定律E=BLv m 联立以上各式解得m 22
()
v mg R r B L +=
(2)在物体下落过程中,物体重力势能减少,动能增加,系统电热增加,根据能量守恒定律可得 mgh=
1
2
mv m 2+Q 总 在此过程中任一时刻通过R 和r 两部分电阻的电流相等,则电功率之比正比于电阻之比,故整个过程中回路中的R 与r 两部分电阻产生的电热正比于电阻,所以
Q R Q R r
=+总 联立解得3244
()
Q 2mghR m g R R r R r B L +=-
+ (3)在系统加速过程中,任一时刻速度设为v ,取一段时间微元Δt ,在此过程中分别对导
体棒和物体分析,根据动量定理可得22T F 0B L v t R r ⎛⎫
-∆= ⎪+⎝

()T m F m g t v -∆=∆
整理可得22m m B L v
g t t v R r ∆-∆=∆+
即22
m m B L g t x v R r ∆-∆=∆+
全过程叠加求和22
m m m B L gt h v R r
-=+
联方解得2222
()t ()
m R r B L h
B L mg R r +=++
5.某同学在学习电磁感应后,认为电磁阻尼能够承担电梯减速时大部分制动的负荷,从而减小传统制动器的磨损.如图所示,是该同学设计的电磁阻尼制动器的原理图.电梯箱与配重质量都为M ,通过高强度绳子套在半径1r 的承重转盘上,且绳子与转盘之间不打滑.承重转盘通过固定转轴与制动转盘相连.制动转盘上固定了半径为2r 和3r 的内外两个金属圈,金属圈内阻不计.两金属圈之间用三根互成120︒的辐向导体棒连接,每根导体棒电阻均为R .制动转盘放置在一对励磁线圈之间,励磁线圈产生垂直于制动转盘的匀强磁场(磁感应强度为B ),磁场区域限制在120︒辐向角内,如图阴影区所示.若电梯箱内放置质量为m 的货物一起以速度v 竖直上升,电梯箱离终点(图中未画出)高度为h 时关闭动力系统,仅开启电磁制动,一段时间后,电梯箱恰好到达终点.
(1)若在开启电磁制动瞬间,三根金属棒的位置刚好在图所示位置,则此时制动转盘上的电动势E 为多少?此时a 与b 之间的电势差有多大?
(2)若忽略转盘的质量,且不计其它阻力影响,则在上述制动过程中,制动转盘产生的热量是多少?
(3)若要提高制动的效果,试对上述设计做出二处改进.
【答案】(1)22321()2Bv r r E r -=
,22321()6Bv r r U r -= (2)2
1()2
Q M m v mgh =+-(3) 若要提高制动的效果,可对上述设计做出改进:增加外金属圈的半径r 3或减小内金属圈的半径r 2 【解析】 【分析】 【详解】
(1)在开启电磁制动瞬间,承重转盘的线速度为v ,所以,角速度
1
v
r ω=
所以,制动转盘的角速度1
v
r ω=,三根金属棒的位置刚好在图2所示位置,则fe 切割磁感线产生电动势
22321
()2Bv r r B S E t t r -∆Φ⋅∆===∆∆
所以干路中的电流
223E E
I R R R R R
=
=+
+ 那么此时a 与b 之间的电势差即为路端电压
22321
()
6Bv r r U E IR r -=-=
(2)电梯箱与配重用绳子连接,速度相同;由能量守恒可得
21
(2)()2
m M v m M gh Mgh Q +=+-+ 解得:
21
()2
Q M m v mgh =
+- (3)若要提高制动的效果,那么在相同速度下,要使h 减小,则要使制动转盘产生的热量增加,即在相同速度下电功率增大,,速度为v 时的电功率
222223
221()362
B v r r E P Rr R
-== 所以,若要提高制动的效果,可增加外金属圈的半径r 3或减小内金属圈的半径r 2或减小金属棒的电阻或减小承重盘的半径r 1.
6.如图所示,在倾角为37︒的光滑斜面上存在两个磁感应强度均为B 的匀强磁场区域。

磁场Ⅰ的方向垂直于斜面向下,其上下边界'AA 与DD'的间距为H 。

磁场H 的方向垂直于斜面向上,其上边界'CC 与'DD 的间距为h 。

线有一质量为m 、边长为L (h <L <H )、电阻为R 的正方形线框由'AA 上方某处沿斜面由静止下滑,恰好能匀速进入磁场Ⅰ。

已知当cd 边刚要进入磁场Ⅱ的前一瞬间,线框的加速度大小为10.2a g =,不计空气阻力,求: (1)cd 边刚到达'AA 时的速度1v ;
(2)cd 边从'AA 运动到'CC 过程中,线框所产生的热量Q ; (3)当cd 边刚进入磁场H 时,线框的加速度大小2a 。

【答案】(1)12235mgR v B L =(2)322
44
3()2525mg H h m g R Q B L
+=-(3)2a g =- 【解析】 【分析】 【详解】
(1)cd 边刚到达'AA 时有
221
sin 37B L v mg R

= 解得
122
35mgR
v B L =
(2)已知当cd 边刚要进入磁场Ⅱ的前一瞬间,由牛顿第二定律得
222
1sin 37B L v mg ma R

-=
解得
222
25mgR
v B L =
由能量守恒得
2
21()sin 372
mg H h Q mv ︒+=+
解得
322
44
3()2525mg H h m g R Q B L
+=- (3)当cd 边刚进入磁场II 时,ab ,cd 两边分别在两磁场中切割磁感线,则有此时线圈中的电动势变为只有cd 切割时的两倍,电流也为两倍,由左手定则可知,ab ,cd 两边受的安培力相同,方向沿斜面向上,线圈此时受的安培力变为原来的4倍,则有
222
2sin 374B L v mg ma R

-=
解得
2a g =-。

7.如图所示,MN 、PQ 为足够长的平行金属导轨.间距L=0.50m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R=5.0Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0T .将一根质量m=0.05kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数0.50μ=,当金属棒滑至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离 2.0m s =.已知210m/s g =, sin370.60︒=,
cos370.80︒=.求:
(1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒达到cd 处的速度大小;
(3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 【答案】(1)22.0/a m s = (2) 2.0/v m s = (3)0.10Q J = 【解析】 【分析】
根据牛顿第二定律求加速度,根据平衡条件求金属棒速度大小,由能量守恒求电阻R 上产生的热量; 【详解】
(1)设金属杆的加速度大小a ,则sin cos mg mg ma θμθ-= 解得22.0m/s a =
(2)设金属棒达到cd 位置时速度大小为V ,电流为I ,金属棒受力平衡,有
sin cos mg BIL mg θμθ=+
BLv
I R
=
解得: 2.0m/s V =.
(3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒,有
2
1sin cos 2
mgs mv mgs Q θμθ⋅=
+⋅+ 解得:0.10J Q =
8.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其匀
速向上运动;当金属杆受到平行于斜面向下大小为
2
F
的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求:
(1)金属杆的质量;
(2)金属杆在磁场中匀速向上运动时速度的大小。

【答案】(1)4sin F m g α=;(2)2222
344tan RE RF
v B l B l μα
=-。

【解析】 【分析】 【详解】
(1)金属杆在平行于斜面向上大小为F 的恒定拉力作用下可以保持匀速向上运动,设金属杆的质量为m ,速度为v ,由力的平衡条件可得
sin cos F mg mg BIl αμα=++,
同理可得
sin cos 2
F
mg mg BIl αμα+=+,
由闭合电路的欧姆定律可得
E IR =,
由法拉第电磁感应定律可得
E BLv =,
联立解得
4sin F
m g α
=

(2)金属杆在磁场中匀速向上运动时速度的大小
2222
344tan RE RF
v B l B l μα
=
-。

9.如图,两根相距l =0.4m 、电阻不计的平行光滑金属导轨水平放置,一端与阻值R =0.15Ω的电阻相连.导轨x >0一侧存在沿x 方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k =0.5T/m ,x =0处磁场的磁感应强度B 0=0.5T .一根质量m =0.1kg 、电阻r =0.05Ω的金属棒置于导轨上,并与导轨垂直.棒在外力作用下从x =0处以初速度v 0=2m/s 沿导轨向右运动,运动过程中电阻上消耗的功率不变.求:
(1)同路中的电流;
(2)金属棒在x =2m 处的速度;
(3)金属棒从x =0运动到x =2m 过程中安培力做功的大小; (4)金属棒从x =0运动到x =2m 过程中外力的平均功率. 【答案】(1)2(2)(3)1.6(4)0.71 【解析】 【分析】 【详解】
(1)因为运动过程中电阻上消耗的功率不变,所以回路中电流不变,感应电动势不变 x =0处导体棒切割磁感线产生电动势
电流
(2) x =2m 处
解得
(3)
F-X 图像为一条倾斜的直线,图像围成的面积就是二者的乘积即 x =0时,F=0.4N x =2m 时,F=1.2N
(4) 从x =0运动到x =2m ,根据动能定理
解得
解得
所以
【点睛】
(1)由法拉第电磁感应定律与闭合电路欧姆定律相结合,来计算感应电流的大小;(2)由因棒切割产生感应电动势,及电阻的功率不变,即可求解;(3)分别求出x=0与x=2m 处的安培力的大小,然后由安培力做功表达式,即可求解;(4)依据功能关系,及动能定理可求出外力在过程中的平均功率.
10.如图,水平面上有两根足够长的光滑平行金属导轨,导轨间距为l ,电阻不计,左侧接有定值电阻R ,质量为m 、电阻为r 的导体杆,以初速度v 0沿轨道滑行,在滑行过程中保持与轨道垂直且接触良好,整个装置处于方向竖直向上,磁感应强度为B 的匀强磁场中。

宏观规律与微观规律有很多相似之处,导体杆速度的减小规律类似于放射性元素的半衰期,理论上它将经过无限长的时间衰减完有限的速度。

(1)求在杆的速度从v 0减小到0
2
v 的过程中: ①电阻R 上产生的热量; ②通过电阻R 的电量;
(2)①证明杆的速度每减小一半所用的时间都相等;
②若杆的动能减小一半所用时间为t 0,则杆的动量减小一半所用时间是多少?
【答案】(1)①2
038()Rmv R r +,②
2mv Bl
;(2)①22()v B l t v m R r ∆=∆+,②2t 0。

【解析】 【详解】
(1)①设电路中产生的热量为Q ,由能量守恒定律
22
0011()222
v mv m Q =+ 串联电路中,产生的热量与电阻成正比,可得
Q R =
R
R r
+Q 解得电阻R 产生的热量为
2
38()
R Rmv Q R r =+;
②设该过程所用时间为t ,由动量定理
0(
)2
v BIlt m v -=- 其中
It q =
解得通过R 的电量为:
2mv q Bl
=
; (2)①设某时刻杆的速度为v (从v 0开始分析亦可),则 感应电动势
E =Blv ,
感应电流
I =E R r
+, 安培力
F =BIl =22B l v
R r
+
在很短时间Δt 内,由动量定理
F Δt =m Δv ,(Δv 为速度变化绝对值)
可得
22B l v
t m v R r
∆=∆+ 所以在任意短时间内速度变化的比例为
22
()
v B l t v m R r ∆=∆+ 由于22
()
B l m R r +为定值,可见任何相等时间内速度变化的比例都相等。

所以从任何时刻开始
计算,速度减小一半所用时间都相等。

②杆的动能减小一半,其速度v
,所用时间为t 0,
由①中分析可得,杆的速度从
2再减小到
22
所用时间仍为t0,
所以杆的速度减小一半所用时间为2t0,即动量减小一半所用时间为2t0。

11.如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L,左端接有阻值R的电阻,一质量m、长度L的金属棒MN放置在导轨上,棒的电阻为r,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度为B,棒在水平向右的外力作用下,由静止开始做加速运动,保持外力的功率为P不变,经过时间t导体棒最终做匀速运动.求:
(1)导体棒匀速运动时的速度是多少?
(2)t时间内回路中产生的焦耳热是多少?
【答案】(1);(2)
【解析】
【分析】
(1)金属棒在功率不变的外力作用下,先做变加速运动,后做匀速运动,此时受到的安培力与F二力平衡,由法拉第定律、欧姆定律和安培力公式推导出安培力与速度的关系式,再由平衡条件求解速度;
(2)t时间内,外力F做功为Pt,外力F和安培力对金属棒做功,根据动能定理列式求出金属棒克服安培力做功,即可得到焦耳热.
【详解】
(1)金属棒匀速运动时产生的感应电动势为 E=BLv
感应电流I=
金属棒所受的安培力 F安=BIL
联立以上三式得:F安=
外力的功率 P=Fv
匀速运动时,有F=F安
联立上面几式可得:v=
(2)根据动能定理:W F+W安=
其中 W F=Pt,Q=﹣W安
可得:Q=Pt﹣
答:
(1)金属棒匀速运动时的速度是.
(2)t时间内回路中产生的焦耳热是Pt﹣.
【点睛】
金属棒在运动过程中克服安培力做功,把金属棒的动能转化为焦耳热,在此过程中金属棒做加速度减小的减速运动;对棒进行受力分析、熟练应用法拉第电磁感应定律、欧姆定律、动能定理等正确解题.
12.据英国2018年《每日邮报》5月2日报道,中国科学家一直在努力测试一种超高速列车——真空管道超高速列车,它将比现有高铁快3倍,速度达到1000km/h。

其动力系统的简化模型如图1所示,图中粗实线表示固定在水平面上间距为L的两条平行光滑金属导轨,电阻忽略不计,ab和cd是通过绝缘材料固定在列车底部的两根金属棒,长度均为L,电阻均为R并与导轨良好接触,始终与导轨保持垂直,两金属棒ab和cd间距为x,列车与金属棒的总质量为m。

列车启动前,ab、cd处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面向下。

为使列车启动,需在M、N间连接电动势为E的直流电源,电源内阻及导线电阻忽略不计,列车启动完成后电源会自动关闭。

(1)启动时,若M接“+”、N接“-”,接通电源时判断列车运行方向,并简要说明理由;(2)求启动时列车加速度的最大值;
(3)列车启动完成后电源会自动关闭,列车将保持匀速行驶,到站时为让列车减速,需在前方设置如图2所示的一系列磁感应强度为B的匀强磁场区域,磁场宽度和相邻磁场间距均等于x。

若某时刻列车的速度为v0,此时ab、cd均在无磁场区域,试计算前方至少需要多少块这样的有界磁场才能使列车停下来。

【答案】(1)向右运动,理由:左手定则;(2)2BEL
mR
;(3)0
22
mv R
N
B L x
=,若N为
整数,则经过N块即可;若N不为整数,则经过N的整数部分1
+块即可
【解析】
【详解】
(1)接通电源时列车向右运动,理由M接电压正极,金属棒中电流方向由a到b,由c到d,根据左手定则,安培力方向向右,列车要向右运动;
(2)刚开始通电时加速度最大,此时两金属棒并联,每根中电流为:
=
E I R
每根金属棒受安培力:
F BIL =
所以列车的加速度为:
2BEL
a mR
=
(3)列车减速时总有一边切割磁感线,设切割磁感线的平均速度为v ,平均感应电动势为:
E BLv =
平均感应电流为:
2BLv
I R
'=
所受安培力为:
F BI L ''=
设每经过一块磁场时设列车速度变化为v ∆,列车前进时收到安培力的作用,由动量定理
列车安培力的冲量等于列车动量的变化量,即有:
222B L v
t m v R
∆=∆g 又由于:
2v t x ∆=g
解得:
22B L x
v Rm ∆=
0022=v mv R N v B L x
=
∆ 若N 为整数,则经过N 块即可
若N 不为整数,则经过N 的整数部分1+块即可
13.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中.一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ.现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直).设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g .求:此过程中,
(1)导体棒刚开始运动时的加速度a (2)导体棒速度的最大值v m (3)导体棒中产生的焦耳热Q (4)流过电阻R 的电量q 【答案】(1)F mg a m μ-= (2)22
()()
m F mg r R v B d μ-+= (3){2221()()[]2r F mg r R Q FL mgL m r R B d μμ-+⎫=--⎬
+⎭
(4)BLd
q R r =+ 【解析】 【详解】
(1)导体棒刚开始运动时,水平方向只受拉力F 和摩擦力作用,则F-μmg=ma,解得
F mg a m
μ-=
(2)杆受到的安培力:F B =BId=22 m
B d v R r
+,
杆匀速运动时速度最大,由平衡条件得:F=F B +f ,
即:F=22 m
B d v R r
++μmg , 解得:()()22
m F mg r R v B d μ-+=

(3)开始到达到最大速度的过程中,由能量守恒定律得:FL-μmgL=Q+1
2
mv m 2, 导体棒上产生的热流量:Q R =
r
R r
+Q , 解得:Q R = r R r + [(F-μmg )L-22
44
()()2m F mg R r B d
μ-+]; (4)电荷量:()E BdL BdL
q I t t t R r R r t
R r ==
=⨯=+++V V V V ; 【点睛】当杆做匀速运动时速度最大,应用平衡条件、安培力公式、能量守恒定律即可正确解题.分析清楚杆的运动过程,杆做匀速运动时速度最大;杆克服安培力做功转化为焦耳热,可以从能量角度求焦耳热.
14.如图所示,两根间距为L 的光滑金属导轨CMM ′P ′P 、DNN ′Q ′Q 固定放置,导轨MN 左
侧部分向上弯曲,右侧水平。

在导轨水平部分的左右两端分布着两个匀强磁场区域MM ′N ′N 、P ′PQQ ′,区域长度均为d ,磁感应强度大小均为B ,Ⅰ区方向竖直向上,Ⅱ区方向竖直向下,金属棒b 静止在区域Ⅱ的中央,b 棒所在的轨道贴一较小的粘性纸片(其余部分没有),它对b 棒的粘滞力为b 棒重力的k 倍,现将a 棒从高度为h 0处静止释放,a 棒刚一进入区域Ⅰ时b 棒恰好可以开始运动,已知a 棒质量为m ,b 棒质量为2m ,a 、b 棒均与导轨垂直,电阻均为R ,导轨电阻不计,重力加速度为g ,则 (1)h 0应为多少?
(2)将a 棒从高度小于h 0的某处静止释放,使其以速度v 1(v 1为已知量)进入区域Ⅰ,且能够与b 棒发生碰撞。

求从开始释放a 棒到a 、b 两棒刚要发生碰撞的过程中,a 棒产生的焦耳热。

(3)调整两磁场区域间的距离使其足够远(区域大小不变),将a 棒从高度大于h 0的某处静止释放,使其以速度v 2(v 2为已知量)进入区域Ⅰ,经时间t 0后从区域Ⅰ穿出,穿出时的
速度为
1
2
v 2,请在同一直角坐标系中画出“从a 棒进入磁场开始,到a 、b 两棒相碰前”的过程中,两棒的速度—时间图象(必须标出t 0时刻b 棒的速度,规定向右为正方向)。

【答案】(1)22244
8R k m g
B L
(2)222213388B L d B L d v R mR ⎛⎫- ⎪⎝⎭(3)
【解析】 【详解】
(1)设a 棒刚进入区域Ⅰ时的速度为0v ,由机械能守恒得:
2001
2
mgh mv =
由b 棒恰好开始运动时受力平衡得
220
22B L v mgk BLI R
==
解得:
222044
8R k m g
h B L
= (2)设a 棒穿出区域Ⅰ时的速度为1v ',与b 棒相碰前的速度为v ,则有:
11111mv mv BL t BLq I -='= 1222mv mv BLI t BLq ='-=
12q BLd
R
=
24q BLd
R
=
联立可得:
22134B L d
mv mv R
-=
a 棒产生的焦耳热:
2211
2(1)4
a Q Q m v v -==
可得:
2222133()88a B L d B L d v R
Q R =-
(3)①判断0t 时刻b 棒能否穿出区域Ⅱ,假定b 不能穿出区域Ⅱ,并设0t 时的速度大小为
b v ,00t :阶段a 、b 棒受到的冲量相等,有:
221
()22
b m v v mv -=
解得:
214
b v v =
因22
21
a b v v v >
=,故有: 12b a v v < 12
b x d <
所以假设成立,即在a 棒穿出Ⅰ区时b 棒尚在Ⅱ区; ②判断0t 后,b 棒能否穿出区域Ⅱ,假定b 棒不能穿出区域Ⅱ 因10222b BLI t mv BLI t ==,则有:
1022I t I t =
即:
12q q =
所以:
22(2)a b b BL v v t v t R
R
-=
设在0t 前后b 棒在区域Ⅱ中走过的距离分别为1x 、2x ,则有:
10b x v t =
220()b a b x v t v v t =-=
解得:
12000(12
)b a b a x x v t v v t v t d d ==+=+->
所以假设不成立,即b 棒能穿出区域Ⅱ且速度不为零; 两棒的速度-时间图象如图所示:
15.如图,光滑的平行金属导轨水平放置,导轨间距为L ,左侧接一阻值为R 的电阻,导轨其余部分电阻不计。

矩形区域abfe 内存在垂直轨道平面向下的有界匀强磁场,磁感应强度大小为B ,一质量为m 的金属棒MN 置于导轨上,连人电路部分的电阻为r ,与导轨垂直且接触良好。

金属棒受到一个水平拉力作用,从磁场的左边界由静止开始作匀加速直线运动,加速度大小为a 。

棒运动到cd 处撤去外力,棒继续运动到磁场右边界ef 处恰好静止。

已知ac=bd=x 1,求:
(1)金属棒在区域abdc 内切割磁感线时产生的感应电动势E 随位移x (相对b 点)的表达式; (2)撤去外力后继续运动到ef 的位移x 2;
(3)金属棒整个运动过程中电阻R .上的最大热功率。

【答案】(1)()120E BL ax
x x =剟
(2)1
2()2m R r ax x +=
(3)
2212
2()ax B L P R R r =+
【解析】 【详解】
(1)金属棒产生的感应电动势
E BLv =
金属棒由静止开始作匀加速直线运动,则有
22v ax =
联立得。

相关文档
最新文档