望谟县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
望谟县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 函数f (x )=sin (ωx +φ)(ω>0,-π2≤φ≤π2)的部分图象如图所示,则φ
ω
的值为( )
A.1
8 B .14
C.12 D .1
2. 如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于( )
A .0.1
B .0.2
C .0.3
D .0.4
3. 已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则
=( )
A .﹣1
B .2
C .﹣5
D .﹣3
4. 已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫
⎪⎝⎭
内变动 时,的取值范围是( )
A . ()0,1
B .⎝
C .()1,3⎫
⎪⎪⎝⎭
D .(
5. 某几何体的三视图如图所示,该几何体的体积是( )
A .
B .
C .
D .
6.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.
甲说:我在1日和3日都有值班;
乙说:我在8日和9日都有值班;
丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是()
A.2日和5日B.5日和6日C.6日和11日D.2日和11日
7.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线
段记为,,将线段竖直放置在同一水平线上,则大致的图形是()
A
B
C
D
8. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( ) A .[﹣6,2] B .[﹣6,0)∪( 0,2] C .[﹣2,0)∪( 0,6] D .(0,2]
9. 函数()log 1x
a f x a x =-有两个不同的零点,则实数的取值范围是( )
A .()1,10
B .()1,+∞
C .()0,1
D .()10,+∞ 10.已知等比数列{a n }的公比为正数,且a 4•a 8=2a 52,a 2=1,则a 1=( )
A
. B .2 C
. D
.
11.已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15
B .30
C .31
D .64
12.下列函数中,既是奇函数又是减函数的为( ) A .y=x+1
B .y=﹣x 2
C .
D .y=﹣x|x|
二、填空题
13.已知关于的不等式2
0x ax b ++<的解集为(1,2),则关于的不等式2
10bx ax ++>的解集 为___________.
14.已知,x y 满足41
y x
x y x ≥⎧⎪
+≤⎨⎪≥⎩
,则222
23y xy x x -+的取值范围为____________. 15.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单 位:小时)间的关系为0e
kt
P P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了
消除27.1%的污染物,则需要___________小时.
【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用. 16.下列命题:
①函数y=sinx 和y=tanx 在第一象限都是增函数;
②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.
其中正确命题的序号是 (把所有正确命题的序号都写上).
17.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④
sin sin sin a b c
A B C
+=
+.其中恒成立的等式序号为_________. 18.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.
三、解答题
19.(本小题满分12分)某市拟定2016年城市建设,,A B C 三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C 三项重点工程竞标成功的概率分别为a ,b ,
14()a b >,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为34
.
(1)求a 与b 的值;
(2)公司准备对该公司参加,,A B C 三个项目的竞标团队进行奖励,A 项目竞标成功奖励2万元,B 项目竞标成功奖励4万元,C 项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.
【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.
20.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方
程为⎩
⎪⎨⎪⎧x =cos t y =1+sin t (t 为参数),圆C 2的普通方程为x 2+y 2+23x =0.
(1)求C 1,C 2的极坐标方程;
(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.
21.(本小题满分10分) 已知函数()|||2|f x x a x =++-.
(1)当3a =-时,求不等式()3f x ≥的解集; (2)若()|4|f x x ≤-的解集包含[1,2],求的取值范围.
22.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A
到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.(Ⅰ)求椭圆E的方程;
(Ⅱ)判断▱ABCD能否为菱形,并说明理由.
(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.
23.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近
8次的训练成绩如下(单位:分):
甲8381937978848894
乙8789897774788898
(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;(Ⅱ)本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.
24.已知函数f(x)=(log2x﹣2)(log4x﹣)
(1)当x∈[2,4]时,求该函数的值域;
(2)若f(x)>mlog2x对于x∈[4,16]恒成立,求m的取值范围.
望谟县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】
【解析】解析:选B.由图象知函数的周期T =2, ∴ω=2π
2
=π,
即f (x )=sin (πx +φ),由f (-1
4)=0得
-π4+φ=k π,k ∈Z ,即φ=k π+π4. 又-π2≤φ≤π2,∴当k =0时,φ=π4,
则φω=1
4,故选B. 2. 【答案】A
【解析】解:如果随机变量ξ~N (﹣1,σ2
),且P (﹣3≤ξ≤﹣1)=0.4,
∵P (﹣3≤ξ≤﹣1)
=
∴
∴P (ξ≥1)=
.
【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.
3. 【答案】C
【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,
即2,﹣1是f ′(x )=0的两个根,
∵f (x )=ax 3+bx 2
+cx+d , ∴f ′(x )=3ax 2
+2bx+c , 由f ′(x )=3ax 2
+2bx+c=0,
得2+(﹣1)==1,
﹣1×2=
=﹣2,
即c=﹣6a ,2b=﹣3a ,
即f ′(x )=3ax 2+2bx+c=3ax 2
﹣3ax ﹣6a=3a (x ﹣2)(x+1),
则=
==﹣5,
故选:C
【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.
4. 【答案】C 【解析】1111]
试题分析:由直线方程1:L y x =,可得直线的倾斜角为0
45α=,又因为这两条直线的夹角在0,
12π⎛⎫
⎪⎝⎭
,所以直线2:0L ax y -=的倾斜角的取值范围是003060α<<且0
45α≠,所以直线的斜率为
00tan 30tan 60a <<且0tan 45α≠,即
13
a <<或1a << C. 考点:直线的倾斜角与斜率. 5. 【答案】A
【解析】解:几何体如图所示,则V=
,
故选:A .
【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.
6. 【答案】C
【解析】解:由题意,1至12的和为78, 因为三人各自值班的日期之和相等, 所以三人各自值班的日期之和为26,
根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,
据此可判断丙必定值班的日期是6日和11日, 故选:C .
【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.
7.【答案】C
【解析】根据题意有:
A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);
E的坐标为(4,3,12)
(1)l1长度计算
所以:l1=|AE|==13。
(2)l2长度计算
将平面A1B1C1D1沿Z轴正向平移AA1个单位,得到平面A2B2C2D2;显然有:
A2的坐标为:(0,0,24),B2的坐标为(11,0,24),C2的坐标为(11,7,24),D2的坐标为(0,7,24);
显然平面A2B2C2D2和平面ABCD关于平面A1B1C1D1对称。
设AE与的延长线与平面A2B2C2D2相交于:E2(x E2,y E2,24)
根据相识三角形易知:
x E2=2x E=2×4=8,
y E2=2y E=2×3=6,
即:E2(8,6,24)
根据坐标可知,E2在长方形A2B2C2D2内。
8.【答案】B
【解析】解:设此等比数列的公比为q,
∵a+b+c=6,
∴=6,
∴b=.
当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];
当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).
∴b的取值范围是[﹣6,0)∪(0,2].
故选:B.
【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.
9. 【答案】B 【解析】
试题分析:函数()f x 有两个零点等价于1x
y a ⎛⎫
= ⎪⎝⎭
与log a y x =的图象有两个交点,当01a <<时同一坐标
系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图
(1),由图知有两个交点,不符合题意,故选B.
x
(1) (2)
考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.
【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)
可确定函数的零点个数;③数形结合法:一是转化为两个函数(
)(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③. 10.【答案】D
【解析】解:设等比数列{a n }的公比为q ,则q >0,
∵a 4•a 8=2a 52,∴a 62=2a 52
, ∴q 2
=2,∴q=
, ∵a 2=1,∴a 1==
.
故选:D
11.【答案】A
【解析】解:∵等差数列{a n },
∴a 6+a 8=a 4+a 10,即16=1+a 10, ∴a 10=15, 故选:A .
12.【答案】D
【解析】解:y=x+1不是奇函数; y=﹣x 2不是奇函数;
是奇函数,但不是减函数; y=﹣x|x|既是奇函数又是减函数, 故选:D .
【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.
二、填空题
13.【答案】),1()2
1,(+∞-∞ 【
解
析
】
考
点:一元二次不等式的解法. 14.【答案】[]2,6 【解析】
考点:简单的线性规划.
【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数
的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1表示点
(),x y 与原点()0,0的距离;(2(),x y 与点(),a b 间的距离;(3)
y
x
可表示点(),x y 与()0,0点连线的斜率;(4)
y b
x a
--表示点(),x y 与点(),a b 连线的斜率. 15.【答案】15
【解析】由条件知5000.9e k P P -=,所以5e 0.9k
-=.消除了27.1%的污染物后,废气中的污染物数量为00.729P ,于是000.729e kt P P -=,∴315e 0.7290.9e kt k --===,所以15t =小时.
16.【答案】 ②③④⑤
【解析】解:①函数y=sinx 和y=tanx 在第一象限都是增函数,不正确,取x=
,
,但是
,
,因此不是单调递增函数;
②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点,正确;
③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,∴
=5(a 6+a 5)>0,
=11a 6<0,
∴a 5+a 6>0,a 6<0,∴a 5>0.因此S n 最大值为S 5,正确;
④在△ABC 中,cos2A ﹣cos2B=﹣2sin (A+B )sin (A ﹣B )=2sin (A+B )sin (B ﹣A )<0⇔A >B ,因此正确;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确. 其中正确命题的序号是 ②③④⑤.
【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.
17.【答案】②④ 【解析】
试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2
A B π
+=
,所以三角形为等腰三角
形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由
正弦定理以及合分比定理可知sin sin sin a b c
A B C
+=
+是正确,故选选②④.1 考点:正弦定理;三角恒等变换. 18.【答案】
【解析】由y =x 2+3x 得y ′=2x +3, ∴当x =-1时,y ′=1,
则曲线y =x 2+3x 在点(-1,-2)处的切线方程为y +2=x +1, 即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0),
由y =ax +ln x 得y ′=a +1
x
(x >0),
∴⎩⎪⎨⎪
⎧a +1x 0
=1
y 0=x 0
-1y 0
=ax 0
+ln x
,解之得x 0
=1,y 0
=0,a =0. ∴a =0. 答案:0
三、解答题
19.【答案】
【解析】(1)由题意,得1
1424
131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩,因为a b >,解得1213a b ⎧=⎪⎪⎨⎪=⎪⎩
.…………………4分
(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X ,
则X 的值可以为0,2,4,6,8,10,12.…………5分 而4
1
433221)0(=⨯⨯=
=X P ;1231(2)2344P X ==⨯⨯=;
1131(4)2348P X ==⨯⨯=; 1211135
(6)23423424P X ==⨯⨯+⨯⨯=
; 1211(8)23412P X ==⨯⨯=; 1111
(10)23424P X ==⨯⨯=
; 1111
(12)23424
P X ==⨯⨯=
.…………………9分 所以X 的分布列为:
于是,11()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯12
=
.……………12分 20.【答案】
【解析】解:(1)由C 1:⎩
⎪⎨⎪⎧x =cos t
y =1+sin t (t 为参数)得
x 2+(y -1)2=1, 即x 2+y 2-2y =0,
∴ρ2-2ρsin θ=0,即ρ=2sin θ为C 1的极坐标方程, 由圆C 2:x 2+y 2+23x =0得
ρ2+23ρcos θ=0,即ρ=-23cos θ为C 2的极坐标方程. (2)由题意得A ,B 的极坐标分别为 A (2sin α,α),B (-23cos α,α). ∴|AB |=|2sin α+23cos α| =4|sin (α+π
3)|,α∈[0,π),
由|AB |=2得|sin (α+π3)|=1
2,
∴α=π2或α=5π
6
.
当α=π2时,B 点极坐标(0,π2)与ρ≠0矛盾,∴α=5π6,
此时l 的方程为y =x ·tan 5π6
(x <0),
即3x +3y =0,由圆C 2:x 2+y 2+23x =0知圆心C 2的直角坐标为(-3,0), ∴C 2到l 的距离d =|3×(-3)|(3)2+32
=3
2
,
∴△ABC 2的面积为S =1
2
|AB |·d
=12×2×32=32
. 即△ABC 2的面积为3
2
.
21.【答案】(1){|1x x ≤或8}x ≥;(2)[3,0]
-. 【解析】
试
题解析:(1)当3a =-时,25,2()1,
2325,3x x f x x x x -+≤⎧⎪
=<<⎨⎪-≥⎩
,当2x ≤时,由()3f x ≥得253x -+≥,解得1x ≤; 当23x <<时,()3f x ≥,无解;当3x ≥时,由()3f x ≥得253x -≥,解得8x ≥,∴()3f x ≥的解集为{|1x x ≤或8}x ≥.
(2)()|4||4||2|||f x x x x x a ≤-⇔---≥+,当[1,2]x ∈时,|||4|422x a x x x +≤-=-+-=, ∴22a x a --≤≤-,有条件得21a --≤且22a -≥,即30a -≤≤,故满足条件的的取值范围为[3,0]-. 考点:1、绝对值不等式的解法;2、不等式恒成立问题. 22.【答案】
【解析】解:(I )由题意可得:,解得c=1,a=2,b 2
=3.
∴椭圆E 的方程为=1.
(II )假设▱ABCD 能为菱形,则OA ⊥OB ,k OA •k OB =﹣1. ①当AB ⊥x 轴时,把x=
﹣1代入椭圆方程可得:
=1,解得y=
,
取A
,则|AD|=2,|AB|=3,此时▱ABCD 不能为菱形.
②当AB 与x 轴不垂直时,设直线AB 的方程为:y=k (x+1),A (x 1,y 1),B (x 2,y 2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.
∴
k OA•k OB=====
,
假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.
综上可得:平行四边形ABCD不可能是菱形.
(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.
|AB|==.
点O到直线AB的距离d=.
∴S平行四边形ABCD=4×S△OAB=
=2××=.
则S2==<36,
∴S<6.
因此当平行四边形ABCD为矩形面积取得最大值6.
23.【答案】
【解析】解:(I)记甲、乙两位选手近8次的训练的平均成绩分别为、,方差分别为、
.,
.…
,
.…
因为,,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加.…
(II)记事件C表示为“甲回答问题A成功”,事件D表示为“甲回答问题B成功”,则P(C)=,P(D)=,
且事件C与事件D相互独立.…
记甲按AB顺序获得奖品价值为ξ,则ξ的可能取值为0,100,400.
P(ξ=0)=P()=,P(ξ=100)=P()=,P(ξ=400)=P(CD)=.
0 100 400
所以甲按AB顺序获得奖品价值的数学期望.…
记甲按BA顺序获得奖品价值为η,则η的可能取值为0,300,400.
P(η=0)=P()=,P(η=300)=P()=,P(η=400)=P(DC)=,
η
所以甲按BA顺序获得奖品价值的数学期望.…
因为Eξ>Eη,所以甲应选择AB的答题顺序,获得的奖品价值更高.…
【点评】本小题主要考查平均数、方差、古典概型、相互独立事件的概率、离散型随机变量分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想.
24.【答案】
【解析】解:(1)f(x)=(log2x﹣2)(log4x﹣)
=(log2x)2﹣log2x+1,2≤x≤4
令t=log2x,则y=t2﹣t+1=(t﹣)2﹣,
∵2≤x≤4,
∴1≤t≤2.
当t=时,y min=﹣,当t=1,或t=2时,y max=0.
∴函数的值域是[﹣,0].
(2)令t=log2x,得t2﹣t+1>mt对于2≤t≤4恒成立.
∴m<t+﹣对于t∈[2,4]恒成立,
设g(t)=t+﹣,t∈[2,4],
∴g(t)=t+﹣=(t+)﹣,
∵g(t)=t+﹣在[2,4]上为增函数,
∴当t=2时,g(t)min=g(2)=0,
∴m<0.。