2019教育第二部分 高考六大高考点例析数学

合集下载

2019年高考真题理科数学解析分类汇编6平面向量

2019年高考真题理科数学解析分类汇编6平面向量

2019年高考真题理科数学解析分类汇编6 平面向量1.【2019高考重庆理6】设,x y ∈R ,向量(,1),(1,),(2,4)a x b y c ===-且c b c a //,⊥+(A (B (C )(D )10 【答案】B【解析】因为c b c a //,⊥,所以有042=-x 且042=+y ,解得2=x ,2-=y ,即)2,1(),1,2(-==b a ,所以)1,3(-=+b a 10=+,选B. 2.【2019高考浙江理5】设a ,b 是两个非零向量。

A.若|a+b|=|a|-|b|,则a ⊥bB.若a ⊥b ,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa ,则|a+b|=|a|-|b| 【答案】C【解析】利用排除法可得选项C 是正确的,∵|a +b|=|a|-|b|,则a ,b 共线,即存在实数λ,使得a =λb .如选项A :|a +b|=|a|-|b|时,a ,b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b|=|a|-|b|不成立;选项D :若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b|=|a|-|b|不成立. 3.【2019高考四川理7】设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( ) A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b = 【答案】C 【解析】A.||||b b a a =为既不充分也不必要条件;B.可以推得||||a ba b =||||b a =为必要不充分条件;C .为充分不必要条件;D 同B.[点评]本题考查的是向量相等条件⇔模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意.4.【2019高考辽宁理3】已知两个非零向量a ,b 满足|a+b|=|a -b|,则下面结论正确的是(A) a ∥b (B) a ⊥b (C){0,1,3} (D)a+b=a -b 【答案】B【解析】一、由|a+b|=|a -b|,平方可得a ⋅b=0, 所以a ⊥b ,故选B二、根据向量加法、减法的几何意义可知|a+b|与|a -b|分别为以向量a ,b 为邻边的平行四边形的两条对角线的长,因为|a+b|=|a -b|,所以该平行四边形为矩形,所以a ⊥b ,故选B【点评】本题主要考查平面向量的运算、几何意义以及向量的位置关系,属于容易题。

2019年高考数学理科试题解析版(全国卷II)共8页word资料

2019年高考数学理科试题解析版(全国卷II)共8页word资料

2019年普通高等学校招生全国统一考试(全国卷II )(数学理)【教师简评】按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底.1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和.2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分.3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理.(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i +【答案】A【命题意图】本试题主要考查复数的运算. 【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. (2).函数1ln(1)(1)2x y x +-=>的反函数是 (A ) 211(0)x y ex +=-> (B )211(0)x y e x +=+> (C )211(R)x y ex +=-∈ (D )211(R)x y e x +=+∈【答案】D【命题意图】本试题主要考察反函数的求法及指数函数与对数函数的互化。

【解析】由原函数解得,即,又;∴在反函数中,故选D. (3).若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4【答案】C【命题意图】本试题主要考查简单的线性规划问题.【解析】可行域是由A(1,1),B(1,4),C(1,1)---构成的三角形,可知目标函数过C 时最大,最大值为3,故选C.(4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=(A )14 (B )21 (C )28 (D )35【答案】C【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++=== (5)不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<<(C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C (6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像 (A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位 【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】s i n (2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将s i n (2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B. (8)ABC V 中,点D 在AB 上,CD 平方ACB ∠.若C B a =u u r ,CA b =uu r ,1a =,2b =,则CD =uu u r(A )1233a b + (B )2133a b + (C )3455a b + (D )4355a b + 【答案】B【命题意图】本试题主要考查向量的基本运算,考查角平分线定理.【解析】因为CD 平分ACB ∠,由角平分线定理得AD CA 2=DB CB 1=,所以D 为AB 的三等分点,且22AD AB (CB CA)33==-,所以2121CD CA+AD CB CA a b 3333==+=+,故选B.(9)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积, 设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C. (10)若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =(A )64 (B )32 (C )16 (D )8【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.. 【解析】332211',22y x k a --=-∴=-,切线方程是13221()2y a a x a ---=--,令0x =,1232y a -=,令0y =,3x a =,∴三角形的面积是121331822s a a -=⋅⋅=,解得64a =.故选A.(11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个(C )有且只有3个 (D )有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(12)已知椭圆2222:1(0)x y C a b a b+=>>F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B (C (D )2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B. 第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。

2019年高考数学全国卷大纲及考试说明分析解读

2019年高考数学全国卷大纲及考试说明分析解读

全国卷注重对数学通性通法的考查,试题 以一道题为载体,呈现给考生的是一类题,是解 决这一类题的通用方法,也即一解多题.
(2018 全国Ⅱ理 20,12 分)
四 贴近生活实际 体现应用价值
全国卷在数学试题的设计上紧密结合社会实际和 考生的现实生活,体现了数学在解决实际问题中 的重要作用和应用价值,体现了高考改革中加强 应用的特点,很好地体现了“立德树人”的教育理 念. 例如(2017 全国Ⅰ理 12)
例 3 (2019 益阳高三调研 12)
例 4 (2018 河南省实验中学月考一 12)
例5
六构建解决数学问题的模式识别能力
当遇到一道数学题目时,你的第一反 应是什么?当然是迅速形成解题方案.在经过 审题并且理解题意后,立即思考问题属于哪 一部分(代数部分、立体几何部分、三角部 分、解析几何部分等等) 、哪一章节? 与这 一章节的哪个类型比较接近?解决这个类型 有哪些方法?哪个方法可以首先拿来试用?这
例如(2017 全国Ⅰ理 20)
2.综合考查素养
全国卷中试题的问题情境更加丰富,设 问方式更加新颖,综合、灵活地考查了考生 的数学素养及学习新知识的能力.
例1 (2018 全国Ⅲ理7 文9 )
三 注重能力立意 突出通性通法
1.注重能力立意 全国卷以能力立意为核心,重点考查考 生的数学能力.抽象概括能力、推理论证能力、 空间想象能力、运算求解能力、数据处理能力以 及应用意识和创新意识在试卷中都得到了较好的 考查. 2.突出通性通法
是研究变量与函数、相等与不等过程中的基本 数学思想. 解读一 参数思维:是指在解题过程中,通过 适当引入一些与题目研究的数学对象发生联 系的新变量(参数) ,以此作为媒介,再进 行分析和综合,从而解决问题.运用参数解题 的关键是恰到好处地引进参数,沟通已知和

2019年高考数学文真题分类解析(共16部分,138页)

2019年高考数学文真题分类解析(共16部分,138页)

第一章 集合与常用逻辑用语1.【2019高考新课标Ⅰ,文2】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A IA. {}1,6B. {}1,7C. {}6,7D. {}1,6,7【答案】C 【解析】 【分析】先求U A ð,再求U B A ⋂ð.【详解】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C .【点睛】本题主要考查交集、补集的运算.渗透了直观想象素养.使用补集思想得出答案.2.【2019高考新课标Ⅱ,文1】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A. (–1,+∞) B. (–∞,2) C. (–1,2) D. ∅【答案】C 【解析】 【分析】本题借助于数轴,根据交集的定义可得. 【详解】由题知,(1,2)A B =-I ,故选C .【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019高考新课标Ⅲ,文1】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B =I ( )A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,2【答案】A 【解析】 【分析】先求出集合B 再求出交集.【详解】21,x ≤∴Q 11x -≤≤,∴{}11B x x =-≤≤,则{}1,0,1A B =-I , 故选A .【点睛】本题考查了集合交集的求法,是基础题.4.【2019高考北京卷,文1】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = A. (–1,1) B. (1,2)C. (–1,+∞)D. (1,+∞)【答案】C 【解析】 【分析】根据并集的求法直接求出结果.【详解】∵{|12},{|1}A x x B x =-<<=> , ∴(1,)A B ⋃=+∞ , 故选C.【点睛】考查并集的求法,属于基础题.5.【2019高考天津卷,文1】设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈<… ,则()A C B =I UA. {2}B. {2,3}C. {-1,2,3}D. {1,2,3,4}【答案】D 【解析】 【分析】先求A C I ,再求()A C B I U 。

2019年高考数学(文)考试大纲解读:专题06 平面解析几何-含解析

2019年高考数学(文)考试大纲解读:专题06 平面解析几何-含解析

(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.(十五)圆锥曲线与方程(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆的定义、几何图形、标准方程及简单几何性质.(3)了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.(4)理解数形结合的思想.(5)了解圆锥曲线的简单应用.预计2019年的高考中,对平面解析几何部分的考查总体保持稳定,其考查情况的预测如下: 直线和圆的方程问题单独考查的几率很小,多作为条件和圆锥曲线结合起来进行命题;直线与圆的位置关系是命题的热点,需给予重视,试题多以选择题或填空题的形式命制,难度中等及偏下.样题4 (2018浙江)已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________时,点B 横坐标的绝对值最大. 【答案】5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =得122x x -=,,所以,因为A ,B 在椭圆上,所以,,所以,所以224x +,与对应相减得234my +=,,当且仅当5m =时取最大值.【名师点睛】解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.样题5 (2018新课标全国Ⅱ文科)双曲线A .y =B .y =C .2y x =±D .y = 【答案】A样题6 (2018新课标全国Ⅲ文科)已知双曲线则点(4,0)到C 的渐近线的距离为A B .2C .2D .【答案】D 【解析】,1ba∴=,所以双曲线C 的渐近线方程为0x y ±=,所以点(4,0)到渐近线的距离,故选D .考向三 直线与圆锥曲线样题7 (2017新课标全国II 文科)过抛物线2:4C y x =的焦点F ,C 于点M (M在x 轴的上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A B .C .D .【答案】C样题8 (2018新课标全国Ⅱ文科)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 【答案】(1)y =x –1;(2)或.【解析】(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x=-⎧⎨=⎩得.,故.所以.由题设知22448k k +=,解得k =–1(舍去),k =1. 因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩,因此所求圆的方程为或.样题9 (2017新课标全国Ⅰ文科)设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【解析】(1)设A (x 1,y 1),B (x 2,y 2),则12x x ≠,2114x y =,2224x y =,x 1+x 2=4,于是直线AB 的斜率.【名师点睛】本题主要考查直线与圆锥曲线的位置关系,主要利用根与系数的关系:因为直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用根与系数的关系及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题、弦长问题,可用根与系数的关系直接解决,但应注意不要忽视判别式的作用.考向四 圆锥曲线的其他综合问题样题10 (2018新课标全国Ⅲ文科)已知斜率为k 的直线l 与椭圆交于A ,B 两点.线段AB 的中点为.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且.证明:.【答案】(1)见解析;(2)见解析.(2)由题意得F (1,0).设33()P x y ,, 则.由(1)及题设得,.又点P 在C 上,所以34m =, 从而3(1)2P -,,3||=2FP uu r . 于是,同理2||=22xFB -uu r ,所以,故.样题11 设椭圆的右焦点为1F 1F 且与x 轴垂直的直线(1)求椭圆C 的方程;(2)若24y x =上存在两点M N 、,椭圆C 上存在两个点P Q 、满足: 1P Q F 、、三点共线,1M N F 、、三点共线且PQ MN ⊥,求四边形PMQN 的面积的最小值.(2)当直线MN 的斜率不存在时,直线PQ 的斜率为0,此时;当直线MN 的斜率存在时,设直线MN 的方程为,联立24y x =,得,设,M N 的横坐标分别为,M N x x ,则,∴MN =,由PQ MN ⊥可得直线PQ 的方程为,联立椭圆C 的方程,消去y ,得,设,P Q 的横坐标分别为,P Q x x ,则P Q x x ∴,,令,则,综上,.。

2019高考数学二轮复习专题五解析几何商考提能圆的第二定义__阿波罗尼斯圆课件

2019高考数学二轮复习专题五解析几何商考提能圆的第二定义__阿波罗尼斯圆课件
解答
例3 如图所示,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4, 设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
解答
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
解答
例4 在x轴正半轴上是否存在两个定点A,B,使得圆x2+y2=4上任意一
四、范例欣赏
例1 设A(-c,0),B(c,0)(c>0)为两定点,动点P到A点的距离与到B点的 距离的比为定值a(a>0),求P点的轨迹.
解答
例2 如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1, 圆O2的切线PM,PN(M,N分别为切点),使得PM= 2PN,试建立适当的 坐标系,并求动点P的轨迹方程.
设切线l方程为y-2=k(x-4),
易得
|4k-2| k2+1=1,解得
k=8±1519.
∴切线 l 的方程为 y-2=8±1519(x-4).
123456
解答
(2)求以点M为圆心,且被直线y=2x-1截得的弦长为4的⊙M的方程; 解 圆心到直线 y=2x-1 的距离为 5,设圆的半径为 r,则 r2=22+( 5)2 =9,
5.如图,已知平面α⊥平面β,A,B是平面α与平面β的交线上的两个定点, DA⊂β,CB⊂β,且DA⊥α,CB⊥α,AD=4,BC=8,AB=6,在平面α上 有一个动点P,使得∠APD=∠BPC,求△PAB的面积的最大值.
123456
解答
6.已知⊙O:x2+y2=1和点M(4,2). (1)过点M向⊙O引切线l,求直线l的方程; 解 直线l的斜率存在,
证:设AB=2m(m>0),PA=λPB,以AB中点为原点,直线AB为x轴建立 平面直角坐标系,则A(-m,0),B(m,0). 又设 P(x,y),则由 PA=λPB 得 x+m2+y2=λ x-m2+y2, 两边平方并化简整理得(λ2-1)x2-2m(λ2+1)x+(λ2-1)y2=m2(1-λ2). 当λ=1时,x=0,轨迹为线段AB的垂直平分线; 当 λ>1 时,x-λλ22+ -11m2+y2=λ42λ-2m122,轨迹为以点λλ22+ -11m,0为圆心, 2λm λ2-1为半径的圆. 上述课本习题的一般化情形就是阿波罗尼斯定理.

2019年高考理科数学(2卷)答案详解

2019年高考理科数学(2卷)答案详解

2019年普通高等学校招生全国统一考试理科数学(II 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(集合)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =( ) A .(∞-,1) B .(–2,1)C .(–3,–1)D .(3,∞+)【解析】集合A ={x |x 2–5x +6>0}={x |x <2或x >3},集合B ={x |x <1},所以有A ∩B={x |x <1},即A 答案. 【答案】A2.(复数)设i z 23+-=,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【解析】i z 23+-=,则z 的共轭复数为i z 23--=,所以在复平面内z 对应的点位于第三象限. 【答案】C3.(平面向量)已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( ) A .–3 B .–2C .2D .3【解析】(1,3)=+=-BC BA AC t ,由于||1=BC ,所以03=-t ,即3=t ,(1,0)=BC .所以21302⋅=⨯+⨯=AB BC【答案】C4.(公式推导)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为( ) A .21M R M B .212M R MC .2313M R M D .2313M R M【解析】∵=rR α,∴=r R α,代入121223()()+=++M M M R r R r r R 中得12122222(1)(1)+=++M M M R R R ααα12122(1)(1)+=++M M M ααα33453122333=3(1)++⎛⎫=≈ ⎪+⎝⎭M r M R ααααα所以有 2313=M r R M 【答案】C5.(概率统计)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数 B .平均数 C .方差D .极差【解析】根据几个数字特征的定义,很容易得出答案:去掉1个最高分、1个最低分,最后中位数不变. 【答案】A6.(函数)若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .|a |>|b |【解析】答案A :∵a >b ,∴a -b >0,无法判断ln(a −b )的正负;答案B :∵y =3x 为增函数,∴3a >3b ;答案C :∵y =x 3为增函数,∴a 3>b 3;答案D :当0>a >b 时,|a |<|b |.【答案】C7.(立体几何)设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】通过画图,采用排除法,很容易得到正确答案. 【答案】B8.(解析几何)若抛物线y 2=2px (p >0)的焦点是椭圆1322=+py p x 的一个焦点,则p =( ) A .2 B .3 C .4D .8【解析】抛物线y 2=2px (p >0)的焦点为)0,2(p,并且在x 轴上. 所以椭圆1322=+p y p x 的一个焦点为)0,2(p . 所以有p p22=,得p =8. 【答案】D9.(三角函数)下列函数中,以2π为周期且在区间)2,4(ππ单调递增的是( ) A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x |D .f (x )=sin|x |【解析】答案A :函数f (x )=|cos2x |的图像如图A9-1所示,其周期是函数f (x )=cos2x 的一半,即21π=T ,且在区间)2,4(ππ为单调递增的. 答案B :与答案A 类似,函数f (x )=|sin2x |的周期是函数f (x )=sin2x 的一半,即22π=T ,且在区间)2,4(ππ为单调递减的;答案C :函数f (x )=cos|x |为偶函数,其图像如图A9-2所示.由函数f (x )=cos|x |的图像可知,其周期π23=T ;答案D :与答案C 类似,由函数f (x )=sin|x |的图像可知,其不是周期函数. 【答案】A图A9-1 图A9-210.(三角函数)已知α∈(0,2π),2sin2α=cos2α+1,则sin α=( ) A .15B .55C .33D .255【解析】利用三角公式12cos 2sin 2+=αα化简得ααα2cos 2cos sin 4=ααcos sin 2=所以2cot =α,设α所对得边为1,则临边为2,斜边为5,所以55sin =α. 【答案】B11.(解析几何)设F 为双曲线C :22221(0,0)-=>>x y a b a b的右焦点,O 为坐标原点,以OF 为直径的圆与圆222+=x y a 交于P ,Q 两点.若=PQ OF ,则C 的离心率为( ) A .2 B .3C .2D .5【解析】如图A11所示. ∵OF 为直径,=PQ OF ,∴PQ 也是直径.,即点P 、Q 的坐标为)2,2(c c .把)2,2(c c 代入222+=x y a 得,222=c a . ∴22=e ,即2=e .图A11【答案】A12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【解析】由)(2)1(x f x f =+可得Z x x f t x f t∈⋅=+),(2)(,即Z x t x f x f t∈-⋅=),(2)(.∵当(0,1]∈x 时,()(1)=-f x x x ,1()[,0]4∈-f x ∴当(1,2]∈x 时,1(0,1]-∈x ,则)2)(1(2)1(2)(--=-⋅=x x x f x f ,1()[,0]2∈-f x∴当(2,3]∈x 时,2(0,1]-∈x ,则)3)(2(4)2(2)(2--=-⋅=x x x f x f ,()[1,0]∈-f x 函数()f x 的图像如图A12所示. 对任意(,]∈-∞x m ,都有8()9≥-f x ,因此(2,3]∈m 令98)3)(2(4)(-=--=x x x f ,得 37=x 或38=x . 由图A12可知,当37≤m 时,都有8()9≥-f x .图A12【答案】B二、填空题:本题共4小题,每小题5分,共20分。

。精品解析:2019年全国统一高考数学试卷(理科)(新课标Ⅱ)(解析版)

。精品解析:2019年全国统一高考数学试卷(理科)(新课标Ⅱ)(解析版)
本题也可用直接法,因为 a b ,所以 a b 0 ,当 a b 1 时, ln( a b) 0 ,知 A 错,因为 y 3x 是增 函数,所以 3a 3b ,故 B 错;因为幂函数 y x3 是增函数, a b ,所以 a3 b3 ,知 C 正确;取 a 1,b 2 ,
4
满足 a b , 1 a b 2 ,知 D 错. 【详解】取 a 2, b 1,满足 a b , ln( a b) 0 ,知 A 错,排除 A;因为 9 3a 3b 3 ,知 B 错,排 除 B ;取 a 1, b 2 ,满足 a b ,1 a b 2 ,知 D 错,排除 D,因为幂函数 y x3 是增函数, a b ,
所以 a3 b3 ,故选 C. 【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算 能力素养,利用特殊值排除即可判断.
7.设 α, β为两个平面,则 α∥β的充要条件是
A. α内有无数条直线与 β平行
B. α内有两条相交直线与 β平行
C. α,β平行于同一条直线
x8 ,
中位数仍为 x5 , A 正确.
②原始平均数 x
1 9
(
x1
x2
x3
x4
x8 x9 ) ,后来平均数 x
1( 7
x2
x3
x4
x8)
平均数受极端值影响较大,
x 与 x 不一定相同, B 不正确
③ S2
1 9
2
x1 x
s2
1 7
x2
2
x
2
x1 x
2
x3 x
2
x9 x
2
x8 x 由②易知, C 不正确.
题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日

浙江省2019高考数学专题二立体几何第三讲大题考法——立体几何课件

浙江省2019高考数学专题二立体几何第三讲大题考法——立体几何课件

[ 解]
法一:(1)证明:设 AD 的中点为 O,连接 OB,OP.
∵△PAD 是以 AD 为斜边的等腰直角三角形, ∴OP⊥AD. 1 ∵BC= AD=OD,且 BC∥OD, 2
∴四边形 BCDO 为平行四边形, 又∵CD⊥AD,∴OB⊥AD, ∵OP⊂平面 OPB,OB⊂平面 OPB,OP∩OB=O, ∴AD⊥平面 OPB. 过点 O 在平面 POB 内作 OB 的垂 线 OM, 交 PB 于 M, 以 O 为坐标原点, OB 所在直线为 x 轴,OD 所在直线为 y 轴,OM 所在直线为 z 轴,建立空间直 角坐标系,如图. 设 CD=1, 则有 A(0, -1,0), B(1,0,0), C(1,1,0), D(0,1,0).
得 m =(1,0, 3). 设直线 CE 与平面 PBC 所成角为 θ. ―→ | CE · m| ―→ 2 则 sin θ=|cos〈m , CE 〉|= = , ―→ 8 | CE |· |m | 2 故直线 CE 与平面 PBC 所成角的正弦值为 . 8 法二:(1)证明:如图,设 PA 的中点 为 F, 连接 EF, FB.因为 E, F 分别为 PD, 1 PA 的中点,所以 EF∥AD 且 EF= AD. 2 1 又因为 BC∥AD,BC= AD, 2
设平面 PAB 的法向量为 n =(x1,y1,z1), ―→ 3 1 ―→ ∵ AP =- ,1, , AB =(1,1,0), 2 2
1 - x1+y1+ 3z1=0, 2 ∴ 2 x1+y1=0, 取 y1=-1,得 n =(1,-1, 3). ―→ ―→ 1 3 5 而 CE =- ,- , ,则 CE · n =0, 2 4 4 而 CE⊄平面 PAB,∴CE∥平面 PAB. (2)设平面 PBC 的法向量为 m =(x2,y2,z2), ―→ ―→ 3 3 ∵ BC =(0,1,0), BP =- ,0, , 2 2 y2=0, ∴ 3 3 - x + z =0, 2 2 2 2 取 x2=1,

2019年高考真题理科数学解析分类汇编6平面向量共9页文档

2019年高考真题理科数学解析分类汇编6平面向量共9页文档

2019年高考真题理科数学解析分类汇编6 平面向量1.【2019高考重庆理6】设,x y ∈R ,向量(,1),(1,),(2,4)a x b y c ===-且c b c a //,⊥,+(A (B (C ) (D )10 【答案】B【解析】因为c b c a //,⊥,所以有042=-x 且042=+y ,解得2=x ,2-=y ,即)2,1(),1,2(-==b a ,所以)1,3(-=+b a 10=+,选B.2.【2019高考浙江理5】设a ,b 是两个非零向量。

A.若|a+b |=|a |-|b |,则a ⊥bB.若a ⊥b ,则|a +b |=|a |-|b |C.若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD.若存在实数λ,使得b =λa ,则|a +b |=|a |-|b | 【答案】C【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a ,b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D :若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立.3.【2019高考四川理7】设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b = 【答案】C 【解析】A.||||b a =为既不充分也不必要条件;B.可以推得||||a ba b =||||b a =为必要不充分条件;C .为充分不必要条件;D 同B.[点评]本题考查的是向量相等条件⇔模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意.4.【2019高考辽宁理3】已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是(A) a ∥b (B) a ⊥b (C){0,1,3} (D)a +b =a -b 【答案】B【解析】一、由|a +b |=|a -b |,平方可得a ⋅b =0,所以a ⊥b ,故选B二、根据向量加法、减法的几何意义可知|a +b |与|a -b |分别为以向量a ,b 为邻边的平行四边形的两条对角线的长,因为|a +b |=|a -b |,所以该平行四边形为矩形,所以a ⊥b ,故选B 【点评】本题主要考查平面向量的运算、几何意义以及向量的位置关系,属于容易题。

2019年普通高等学校招生全国统一考试数学及详细解析(全国卷Ⅱ.文)(吉林、黑龙江、广西)

2019年普通高等学校招生全国统一考试数学及详细解析(全国卷Ⅱ.文)(吉林、黑龙江、广西)

2019年普通高等学校全国统一考试文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至9页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3. 本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k K n kn n P k C P P -=-一、选择题(1)函数()sin cos f x x x =+的最小正周期是 (A )4π(B )2π(C )π(D )2π解:∵sin(x+α)|,∴T=22ππ=,()sin cos f x x x =+的最小正周期是π.选(C)(2)正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C 的中点.那么,正方体的过P 、Q 、R 的截面图形是(A ) 三角形(B )四边形(C )五边形(D )六边形解:如图, 正方体的过P 、Q 、R 的截面图形是六边形PMRSQ,选(D)(3)函数21(0)y x x =-≤的反函数是(A ))y x =≥-1(B ))y x =≥-1(C ))y x =≥0(D ))y x =≥0解:由21(0)y x x =-≤得(1)x y =≥-,∴函数21(0)y x x =-≤的反函数是y=(1)x =≥-,选(B)(4)已知函数tan y x ω=在(,)22ππ-内是减函数,则 (A ) 0<ω≤1(B )-1≤ω<0(C )ω≥1(D )ω≤-1解:可用排除法,∵当ω>0时正切函数在其定义域内各长度为一个周期的连续区间内为增函数,∴排除(A),(C),又当|ω|>1时正切函数的最小正周期长度小于π,∴tan y x ω=在(,)22ππ-内不连续,在这个区间内不是减函数,这样排除(D),故选(B)。

19年数学高考大题知识点

19年数学高考大题知识点

19年数学高考大题知识点数学一直是高考中的一门重要科目,对于考生来说,掌握数学的基本知识和解题技巧是取得好成绩的关键。

本文将针对2019年数学高考大题中的一些知识点进行详细论述,希望能帮助广大考生更好地备战。

一、平面向量平面向量是高考数学中的重要内容之一,涉及到向量的表示、运算、共线、垂直等多个方面的知识点。

在2019年数学高考大题中,平面向量的应用较多。

首先,我们来讨论平面向量的表示和运算。

平面向量一般用字母加上箭头表示,如向量AB记作→AB。

向量可以进行加法、减法和乘法运算。

加法运算遵循平行四边形法则,即将两个向量的起点连在一起,将两个向量的终点连在一起,连接起始点和终止点,所得到的向量即为两个向量的和。

减法运算可视为加法运算的逆运算,即将被减数加上减向量的负向量。

向量与标量的乘法是指用一个实数来放大或缩小向量的长度。

其次,我们关注平面向量的共线和垂直。

两个非零向量共线的充要条件是它们的方向相同或相反;两个非零向量垂直的充要条件是它们的内积为零。

二、几何证明几何证明是高考数学中的另一重要内容,要求考生具备一定的几何知识和推理能力。

通过几何证明,可以深入理解几何定理和性质,拓宽数学思维。

在2019年的数学高考大题中,几何证明的题目较多,涉及到平行线、相似三角形、圆等几何概念。

在几何证明中,需要应用到的知识点有:等腰三角形的性质、直角三角形的性质、两角平分线的性质等等。

考生在备考过程中,要熟练掌握这些几何知识点,结合定理使用灵活。

三、数列与数学归纳法数列是高考数学中的重要考点之一,对于考生来说,了解数列的基本概念、计算方法以及性质是必不可少的。

数列中的重要概念包括等差数列、等比数列、递推公式等。

在2019年数学高考大题中,数列的应用较多,包括求和、推导递推公式等。

对于这些题目,考生需要熟练掌握数列的求和公式,对于等差数列和等比数列应用不同的求和公式。

数学归纳法是解决数列问题的一种重要思想方法,可以通过归纳证明来推导出数列的通项公式。

2019高考数学分类汇编解析版(2)

2019高考数学分类汇编解析版(2)

2019高考数学分类汇编解析版(2)专题06 三角函数及解三角形 专题07 平面向量 专题08 数列专题09 不等式、推理与证明 专题10 概率与统计专题06 三角函数及解三角形1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称,2sin cos ++x xx x排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C 【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |【答案】A【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ; 作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确;作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B , 故选A .图1图2图34.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B .5C 3D 5【答案】B 【解析】2sin 2cos21αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin α∴=选B .5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】Dπ6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x.若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B . CD .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; 又12π()sin,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =2A =,∴()2sin 2f x x =,3π()8f =故选C. 7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 【答案】π2【解析】函数()2sin 2f x x ==1cos 42x -,周期为π2.8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==11sin 222ABC S ac B ==⨯=△ 9.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式22112()1()33[1()13⨯-+---+综上,πsin 2410α⎛⎫+= ⎪⎝⎭10.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【答案】5,10【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以5BD =.ππcos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-()sin 1202sin A C C ︒+-=,即1cos sin 2sin 222C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 602C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【答案】(1)B =60°;(2)(82. 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,ABC S <<△. 因此,△ABC面积的取值范围是82⎛⎫ ⎪ ⎪⎝⎭.13.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值.【答案】(1)7b =,5c =;(2【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭. 解得5c =. 所以7b =.(2)由1cos 2B =-得sin 2B =.由正弦定理得sin sin c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin B C B C B C -=-=. 14.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值.【答案】(1)14-;(2)716-.【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a aa cb B ac a a +-+-===-⋅⋅.(2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭. 15.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 【答案】(1)3c =(2)5. 【解析】(1)因为23,3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以3c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭. 16.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+. 【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM ==,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a=4+Q(4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q(4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q两点间的距离为17+. 17.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[122-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π1223x ⎛⎫=-+ ⎪⎝⎭.因此,函数的值域是[1,122-+.专题07 平面向量1.【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B . 2.【2019年高考全国II 卷理数】已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .−3 B .−2 C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .3.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC 的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅,即22||||AB AC AC AB +>-,因为AC AB BC -=,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C .4.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,=a c ___________. 【答案】23【解析】因为2=c a ,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c22133⋅==⨯⋅a c a c . 5.【2019年高考天津卷理数】在四边形ABCD中,,5,30AD BC AB AD A ==∠=︒∥,点E在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________. 【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B,5()22D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒, 所以直线BEy x =-, 直线AE的斜率为y x =.由(3y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-,所以1)E -.所以35(,)(3,1)12BD AE =-=-.6.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____..【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-, ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=7.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.【答案】0;则(1,0),(0,1),(1,0),(0,1),(1,1),(1,1)AB BC CD DA AC BD ===-=-==-(AB BC CD DA AC BD λλλλλλ+++++=(1,2,3,4,5,6)i i λ=可取遍1±,所以当1256341,1λλλλλλ======-时,有最大值max y ==.故答案为0;专题08 数列1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =- 【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A . 2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A4.【2019年高考全国I 卷理数】记S n 为等比数列{a n }的前n 项和.若21463a a a ==,,则S 5=____________. 【答案】1213【解析】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q =又0q ≠, 所以3,q =所以55151(13)(1)12131133a q S q --===--.5.【2019年高考全国III 卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4【解析】设等差数列{a n }的公差为d ,因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d ⨯+==⨯+. 6.【2019年高考北京卷理数】设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n的最小值为__________. 【答案】 0,10-.【解析】等差数列{}n a 中,53510S a ==-,得32,a =-又23a =-,所以公差321d a a =-=,5320a a d =+=,由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-.7.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 8.【2019年高考全国II 卷理数】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(I )证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (II )求{a n }和{b n }的通项公式. 【答案】(I )见解析;(2)1122n n a n =+-,1122n n b n =-+.【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+. 又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21n n a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.9.【2019年高考北京卷理数】已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(Ⅲ)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s-1个(s =1,2,…),求数列{a n }的通项公式. 【答案】(Ⅰ) 1,3,5,6(答案不唯一);(Ⅱ)见解析;(Ⅲ)见解析. 【解析】(Ⅰ)1,3,5,6.(答案不唯一) (Ⅱ)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -.由p <q ,得10p q r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a , 又12,,,p r r r a a a 是{}n a 的长度为p 的递增子列,所以0p m r a a ≤.所以00m n a a <·(Ⅲ)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数). 假设2m 排在2m −1之后. 设121,,,,21m p p p a a a m --是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m .因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中. 又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m m m --⨯⨯⨯⨯⨯⨯=<个.与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m.与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件. 所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.10.【2019年高考天津卷理数】设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .【答案】(Ⅰ)31n a n =+;32nn b =⨯(Ⅱ)(i )()221941n n n a c -=⨯-(ii )()()2*211*12725212nn n i i i a c n n n --=∈=⨯+⨯--∈∑N N【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n n n n a n n b -=+-⨯=+=⨯=⨯. 所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.(Ⅱ)(i )()()()()22211321321941n n n n n n n a c a b -=-=⨯+⨯-=⨯-. 所以,数列(){}221n n a c -的通项公式为()221941n n n a c -=⨯-. (ii )()()22221111211n n niini iiiiii i i i a c a a c a a c====⎡⎤=+-=+⎣⎦-∑∑∑∑()()12212439412n nnni i =⎛⎫- ⎪=⨯+⨯+⨯- ⎪⎝⎭∑ ()()2114143252914nn n n ---=⨯+⨯+⨯--()211*2725212n n n n --=⨯+⨯--∈N .11.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =.由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.12.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(I )求数列{},{}n n a b 的通项公式; (II )记,n c n *=∈N 证明:12+.n c c c n *++<∈N【答案】(I )()21n a n =-,()1n b n n =+;(II )证明见解析. 【解析】(I )设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N .所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(II)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++<那么,当1n k =+时,121k k c c c c +++++<<<==.即当1n k =+时不等式也成立. 根据(i )和(ii),不等式12n c c c +++<*n ∈N 成立.13.【四川省峨眉山市2019届高三高考适应性考试数学试题】在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于A .66B .132C .-66D .- 32【答案】D【解析】因为3a ,9a 是方程224120x x ++=的两根,所以3924a a +=-,又396242a a a +=-=,所以612a =-,61111111211()13222a a a S ⨯⨯+===-,故选D.专题09 不等式、推理与证明1.【2019年高考全国II 卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD【答案】D 【解析】由rRα=,得r R α= 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得3α=所以3.r R α==2.【2019年高考全国II 卷理数】若a >b ,则 A .ln(a −b )>0 B .3a <3bC .a 3−b 3>0D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .3.【2019年高考北京卷理数】若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为 A .−7 B .1C .5D .7【答案】C【解析】由题意1,11yy x y-≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C .4.【2019年高考北京卷理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=52lg 21E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为A . 1010.1B . 10.1C . lg10.1D . 10–10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选:A .5.【2019年高考天津卷理数】设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……,则目标函数4z x y =-+的最大值为 A .2 B .3C .5D .6【答案】D【解析】已知不等式组表示的平面区域如图中的阴影部分. 目标函数的几何意义是直线4y x z =+在y 轴上的截距, 故目标函数在点A 处取得最大值. 由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -,所以max 4(1)15z =-⨯-+=. 故选C.6.【2019年高考天津卷理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B【解析】化简不等式,可知 05x <<推不出11x -<, 由11x -<能推出05x <<,故“250x x -<”是“|1|1x -<”的必要不充分条件, 故选B.7.【2019年高考浙江卷】若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是A . 1-B . 1C . 10D . 12【答案】C【解析】画出满足约束条件的可行域如图中阴影部分所示。

2019年高考数学试题及答案解析

2019年高考数学试题及答案解析

2019年高考数学试题及答案解析2019年高考数学试题及答案解析2019年高考数学试题有许多,同学们着实费了不少功夫来准备,本文将通过列出部分试题及其答案解析,来帮助同学们回顾一下高考考试中出现的题目,也可以更好地加深对理解和熟练运用所学知识的能力。

一、单项选择题1、对于给定的几何体,若两个棱的中点连接,得到的图形是一个()A、四面体B、六面体C、八面体D、十二面体答案:B解析:在三角形ABC中,求得AT角为30°,而AT角和MT共线,故MT角为30°;1特别地,可知AM和BC共线,MT就在伸展图上,由此可以构造一个六面体。

2、已知a、b、s的的单位分别为米、千克和秒,若形如as/b的组合称为物理量,它的单位是( )A、米/千克B、米/秒C、千克/秒D、米·千克/秒答案:B解析:根据力的定义,as/b的组合是速度,即物体每秒钟所移动的距离,因此它的单位应该是米每秒。

二、问答题1、数列{an}和 {bn}满足:a1=1,an=2an-1+1, b2=2, bn=3bn-1-2,设cn=anbn,求cn的表达式是()答案:cn=2cn-2+1解析:由题可知,cn=anbn,利用递推公式可以有:an=2an-1+1,bn=3bn-1-2,故cn=anbn=2an-1bn-1+1×bn-1-2=2cn-2+1,即cn=2cn-2+1。

2、已知a、b、c、d分别是棱锥AP-DC的四边长,其中AD及PC垂直于DC,且d=6,若a+b+c=12,则AP的高h的值为()答案:h=4解析:由等式a+b+c=12可知,APD和APC是直角三角形,AD=d=6,故三边求斜边求得PC=2,AP=√(a²+b²+2ac)=√(12²+2×12×6)=4,即h=4。

2019年高考数学(文科)二轮复习专题透析6解析几何

2019年高考数学(文科)二轮复习专题透析6解析几何

2015 年
纵观三年全国卷试题,解析几何一直是高考的重点和热点,常 以“两小一大”呈现,共 22 分.“两小题”主要考查直线的方程、 两条直线平行与垂直的判定、两条直线的交点和距离、结合直线 的方程用几何法或待定系数法确定圆的标准方程,以及直线与圆、 圆与圆的位置关系等问题;“一大题”主要考查圆锥曲线的定义、 标准方程、几何性质、直线与圆锥曲线的位置关系等内容,以及与 之相关的轨迹问题、定点与定值问题、最值问题、参变量范围问 题、曲线中的探究性或证明问题.其中含参数问题为命题热点,需 要综合运用函数与方程、 不等式、 平面向量等知识,以及数形结合、 分类讨论等数学思想方法进行求解,对考生的代数恒等变换能力、 计算能力等有较高的要求.
|������������ 0 +������������0 +������| ������2 +������ 2
(其中点 P(x0,y0),直线方程 (其中两条平行直线方程
2.两条平行直线间的距离:d=
|������2 -������1 | ������2 +������ 2
分别为 l1:Ax+By+C1=0,l2:Ax+By+C2=0). 四、圆的方程 1.圆的标准方程:(x-a)2+(y-b)2=r2(r>0),圆心为(a,b),半径 为 r.
(2)标准方程 y 轴上). (3)几何性质 ①双曲线的焦点到渐近线的距离等于虚半轴长 b;②离心率
������ e=������ = ������ 2 1 + ( ������ ) ,其中 c2=a2+b2;③渐近线方程为 ������ 轴上),y=±������ x(焦点在 y 轴上). ������ y=±������ x(焦点在 ������ 2 ������ 2 ������ 2 ������ 2 - =1(a>0,b>0)(焦点在 x 轴上),������ 2 -������ 2 =1(a>0,b>0)(焦点在 ������ 2 ������ 2

2019年高考数学试题解析(2)课件

2019年高考数学试题解析(2)课件

【答案】C
4
6.2 (2019年1卷理数第6题)
我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻组成,
爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该
重卦恰有 3 个阳爻的概率是
A. 5 16
B. 11 32
C. 21 32
D. 11 16
【解析】所有重卦的个数为
26

64
,恰有
3
个阳爻的个数为
C
3 6
C33

20
,因此恰有
3
个阳
爻的概率为
P 20 5 64 16
【答案】A
5
6.3 (2019年2卷文数第4题)
生物实验室有 5 只兔子,其中只有 3 只测量过某项指标,若从这 5 只兔子中随机取出 3 只,
则恰有 2 只测量过该指标的概率为
高中数学
2019年高考数学试题解析(2)
本课件包括了2019年全国卷1、2、3的文科数学和理科数学.
高中数学
2019年高考数学试题解析(2)
2019年高考数学试题解析(1):集合、复数、框图、推理、平面向量、不等式与线性规划 2019年高考数学试题解析(2):概率统计、数列 2019年高考数学试题解析(3):三角函数、解三角形、函数与导数 2019年高考数学试题解析(4):解析几何、立体几何 2019年高考数学试题解析(5):坐标系与参数方程、不等式选讲
以所求的概率 P 12 1 . 24 2
【答案】D
10
6.6 (2019年3卷文数第4题、理数第3题)
《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对任意正整数n都有
bc11+
c2 b2
+…+bcnn
=an+1成
立,求c1+c2+…+c2 011的值.
返回
解:(1)由已知有a2=1+d,a5=1+4d,a14=1+13d, ∴(1+4d)2=(1+d)(1+13d). 解得d=2(∵d>0). ∴an=1+(n-1)·2=2n-1. 又b2=a2=3,b3=a5=9,∴数列{bn}的公比为3. ∴bn=3·3n-2=3n-1.
返回
(2)由bc11+bc22+…+bcnn=an+1得 当n≥2时,bc11+bc22+…+bcnn--11=an, 两式相减得:当n≥2时,bcnn=an+1-an=2.
返回
∴cn=2bn=2·3n-1(n≥2).又n=1时,bc11=a2,∴c1=3,
∴cn=32·3n-1
n=1 n≥2
考查 归思想在数列中常有考查,应引起足够的重视.
方式
数列求和又是数列的重点内容,特别错位相减
法求和,裂项相消法求和都是高考的热点,题型以
解答题为主
返回
对于数列的备考:一是要重视两类基本数列的 概念、公式和性质,这是解决数列问题的根本;二 是要在知识的复习和解题过程中体会其中所蕴含的 备考 数学思想方法,如分类讨论、数形结合、等价转化, 指要 函数与方程、整体思想等;三是适度注意递推数列 的复习,实际上递推数列的基本解决方法是转化, 转化为两类基本数列后进行解决,在复习递推数列 时要明确这个指导思想.
返回
解: (1)因为cos 2C=1-2sin2C=-14, 及0<C<π,
所以sin C=
10 4.
返回
(2)当a=2,2sin A=sin C时,由正弦定理sina A=sinc C,得
c=4.
由cos 2C=2cos2C-1=-14,及0<C<π得
cos
C=±
6 4.
返回
由余弦定理c2=a2+b2-2abcos C,得 b2± 6b-12=0, 解得b= 6或2 6, 所以bc==4 6, 或bc==42. 6,
q=1的情况
返回
[例1] (2011·重庆高考)设{an}是公比为正数的等比 数列,a1=2,a3=a2+4.
(1)求{an}的通项公式; (2)设{bn}是首项为1,公差为2的等差数列,求数列 {an+bn}的前n项和S{an}的公比,则由 a1=2,a3= a2+4 得 2q2=2q+4,即 q2-q-2=0,解得 q=2 或 q=-1(舍去),因此 q=2,所以{an}的通项为 an=2·2n-1 =2n(n∈N+). (2)Sn=211--22n+n×1+nn2-1×2=2n+1+n2-2.
[解析] 集合M=(-3,2),M∩N=(-3,2)∩[1,3]=
[1,2).
[答案] A
返回
8.(2012·合肥高二检测)已知集合M={x|x2<4},N=
{x|x2-2x-3<0},则集合M∩N等于
()
A.{x|x<-2}
B.{x|x>3}
C.{x|-1<x<2} D.{x|2<x<3}
返回
解析:解x2<4得-2<x<2,∴M=(-2,2). 解x2-2x-3<0得-1<x<3,∴N=(-1,3). ∴M∩N=(-2,2)∩(-1,3)=(-1,2). 答案:C
返回
返回
数列是高中数学的重点内容之一,也是高 考的必考内容及重点考查的范围,它始终处在 考查 知识的交汇点上.数列常与函数、方程、不等 方式 式等知识交汇命题.它知识点多,思想丰富, 综合性强,从而能很好地考查逻辑推理能力和 运算能力.
返回
另外,数学思想的应用也是数列综合题的一大
特色,分类讨论,数形结合,函数与方程,以及化
返回
1.(2011·四川高考)数列{an}的前n项和为Sn,若a1=1,
aa+1=3Sn(n≥1),则a6=
()
A.3×44
B.3×44+1
C.43
D.43+1
解析:由an+1=3Sn⇒Sn+1-Sn=3Sn,即Sn+1=4Sn, 又S1=a1=1,可知Sn=4n-1,于是a6=S6-S5= 45-44=3×44.
考点一


考点二


考点三



考点四


考点五

考点六
高考六大高频考点例析
返回
返回
考查 方式
主要考查等差、等比数列的有关计算,注重 基础知识与基本技能的考查,多以选择题或填空 题的形式考查
理解等差、等比数列的定义、性质、通项公
备考 指要
式、前n项和公式,以及等差中项的定义,还需 重点掌握由an与Sn的关系求通项公式的方法,并 且注意在运用等比数列前n项和公式时,勿忽略
返回
cos C+sin C= 2sin(A+C)= 2sin(90°+2C)= 2cos 2C.
2 2 cos
C+
2 2 sin
C=cos
2C,
cos(45°-C)=cos 2C.
因为0°<C<90°,
所以2C=45°-C,C=15°.
返回
5.(2010·浙江高考)在△ABC中,角A,B,C所对的边分 别为a,b,c,已知cos 2C=-14. (1)求sin C的值; (2)当a=2,2sin A=sin C时,求b及c的长.
返回
[例 3] (2011·新课标高考)已知等比数列{an}中,a1=13, 公比 q=13.
(1)Sn 为{an}的前 n 项和,证明:Sn=1-2an; (2)设 bn=log3a1+log3a2+…+log3an,求数列{bn}的通 项公式.
返回
[解] (1)证明:因为an=13×(13)n-1=31n, Sn=1311--1331n=1-2 31n, 所以Sn=1-2 an.
故a1=aq43=16,S5=a111--qq5=31.
答案:C
返回
3.(2011·福建高考)已知等差数列{an}中,a1=1,a3=-3. (1)求数列{an}的通项公式; (2)若数列{an}的前k项和Sk=-35,求k的值.
返回
解:(1)设等差数列{an}的公差为d, 则an=a1+(n-1)d. 由a1=1,a3=-3可得1+2d=-3. 解得d=-2. 从而,an=1+(n-1)×(-2)=3-2n.
答案:A
返回
2.已知数列{an}为等比数列,Sn是它的前n项和.若a2·a3=
2a1,且a4与2a7的等差中项为54,则S5=
()
A.35
B.33
C.31
D.29
返回
解析:设数列{an}的公比为q,a2·a3=a
2 1
·q3=a1·a4=2a1⇒
a4=2,a4+2a7=a4+2a4q3=2+4q3=2×54⇒q=12,
返回
(2)由(1)得知an=3n-1,bn=log3an+1=n,
bn·b1n+1=n+11n=n1-n+1 1
T2
011=b11b2+…+b2
1 011b2
012=(1-12)+(12-13)+…+
(2
0111-2
0112)=22
011 012
返回
7.(2012·郑州模拟)已知等差数列{an}的首项a1=1,公差 d>0,且第二项、第五项、第十四项分别为等比数列{bn} 的第二项、第三项、第四项.
返回
又因为cos B=14,且0<B<π,
所以sin B= 415,
因此S=12acsin B=12×1×2×
415=
15 4.
返回
4.(2011·大纲全国高考)△ABC的内角A、B、C的对边分 别为a、b、c.已知A-C=90°,a+c= 2b,求C. 解:由a+c= 2b及正弦定理可得 sin A+sin C= 2sin B. 又由于A-C=90°,B=180°-(A+C),故
(1)求ssiinn CA的值;
(2)若 cos B=14,b=2,求△ABC 的面积 S.
返回
[解] (1)由正弦定理,设sina A=sinb B=sinc C=k,
则2c-b a=2ksinkCsi-n Bksin
A=2sin
C-sin sin B
A,
所以cos
A-2cos cos B
C=2sin
由于正、余弦定理常与三角函数及平面向量综 备考 合考查,故应熟练掌握正、余弦定理、三角形的面 指要 积公式、平面向量的运算以及运用三角公式进行恒
等变换的技能
返回
[例 2] (2011·山东高考)在△ABC 中,内角 A,B,
C
的对边分别为
a,b,c.已知cos
A-2cos cos B
C=2c-b a.
返回
(2)因为bn=log3a1+log3a2+…log3an =-(1+2+…+n) =-nn2+1. 所以{bn}的通项公式为bn=-nn2+1.
返回
6.(2012·青岛高二检测)数列{an}的前n项和记为Sn,a1=t,
点(Sn,an+1)在直线y=2x+1上,n∈N+.
(1)当实数t为何值时,数列{an}是等比数列?
C-sin sin B
A .
返回
即(cos A-2cos C)sin B=(2sin C-sin A)cos B, 化简可得sin(A+B)=2sin(B+C). 又A+B+C=π, 所以sin C=2sin A. 因此ssiinn CA=2.
返回
(2)由ssiinn CA=2得c=2a. 由余弦定理b2=a2+c2-2accos B及cos B=14,b=2, 得4=a2+4a2-4a2×14. 解得a=1, 从而c=2.
相关文档
最新文档