离散数学考前复习ppt.ppt
合集下载
离散数学复习PPT

• (a)A=(0,1),B=(0,2)
• (b) A=N,B=N N
• (c) A=R,B=(0, )
• (d) A=[0,1),B=(0.25,0.5]
• 证、(3 a)f(x)=2x,x A. • (b)
2
N={ 0 1 2 3 4 5 6 7 8 9
1
f((m,n))=m+(m+n+1)(m+n)/2 (一一映射)
012 3
• (c)A=R,B=(0, ) • 解.
• f: A B(一一变换),所以
• (d)A=[0,1),
• 解.
•
A
直线AB的方程:
•
B 所以
0x
1
• 6.证明所有整数集是可数的. • 解. •
• N可数,故Z也可数.
(一一变换) (一一对应)
• 7.证明有理数集是可数的
• 证、(1)把非零的有理数a写成既约分数的形式
• 这与
相矛盾.故有A=B.
• 第4题证法类同第3题.
• 练习题1-4
• 2.证明a) 集合[0,1]是无限集
• (b)自然数集合是无限集
• 证明a) 1
•
z
[0,1] [0, ) )所以集合[0,1]是无限集
0 x1 y
• (b)解:设
•
显然
,
•
,所以自然数集合是无限集.
• 5、证明下列每组集合A与B有相同的基数.
• 一、重要概念 • 1.关系的定义 • 2.关系的表示方法:关系图、关系矩阵. • 3.复合关系 • 4.逆关系 • 二、关系的性质(5种) • 三、关系的闭包运算
• 四、最重要内容 • 1、次序关系(拟序,全序,极大(小)元素,最大(小)元素,哈
离散数学(精选优秀)PPT

二、命题的表示法
1、命题标识符:表示命题的符号称为命题标识符。在数理逻辑中,使 用大写字母,或带下标的大写字母,或用方括号括起的数字表示命题。
例:P: 今天下雨。 “今天下雨”是一个命题,P是命题标识符。
它形成于七十年代初期,是一门新兴的工具性学科。
离散数学的应用
◆关系型数据库的设计(关系代数) ◆表达式解析(树) ◆编译技术、程序设计语言(代数结构) ◆人工智能、自动推理、机器证明(数理逻辑) ◆网络路由算法(图论) ◆游戏中的人工智能算法(图论、树、博弈论) ◆专家系统(集合论、数理逻辑—知识和推理规则的计算机表达) ◆软件工程—团队开发—时间和分工的优化(图论—网络、划分) ◆(各种)算法的构造、正确性的证明和效率的评估(离散数学的
第一章 命题逻辑
目标语言:就是表达判断的一些语言的汇集。 目标语言和一些符号公式构成了数理逻辑的形式 符号体系。
1-1 命题及其表示法
一、命题
1、定义 能表达判断的陈述句,称作命题(Proposition)。 例:判断下列语句是否为命题: (陈1)述地句球:外述存说在一智件事慧情生的物句。子,句末用句号。 (祈2)使1+句1:=要10求。或者希望别人做什么事或者不做什么事时用的 (句3)子今,天句下末雨用。句号或感叹号。 (疑4)问你句今:年提暑出假问去题的旅句行子吗,?句(末疑用问问号句。) (感5)叹克句里:特带岛有人浓说厚感:情“的克句里子特,岛句末人用是感说叹谎号话。者”。 悖(:相悖反论。)悖论:自相矛盾的陈述。
各分支)
教材
左孝凌,李为鉴,刘永才编著.离散数学.上海: 上海科学技术文献出版社,1982 主要参考教材: 孙吉贵,杨凤杰,欧阳丹彤,李占山编著.离散数 学.高等教育出版社,2002
离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。
边
连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。
《离散数学讲义》课件

离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
离散数学考前复习ppt.ppt

离散数学
离散数学
❖ 第一部分 数理逻辑 ❖ 第二部分 集合论 ❖ 第三部分 图论 ❖ 第四部分 抽象代数
第一部分 数理逻辑
数理逻辑是用数学方法研究推理中前提和 结论之间的形式关系的学科。
推理是由一个或几个判断推出一个新判断的思维形式。 数学方法是指建立一套表意符号体系,对具体
事物进行抽象的形式研究的方法。
ABC A BAC
1.3 命题公式的等值式
同一律:A 0 A, A 1 A 互补律:A A 1,A A 0 重补律:A A 等幂律:A A A, A A A, A A 1,
A A A, A A A, A A 1. 零一律:A 1 1, A 0 0
吸收律:A (A B) A, A A B A 德摩根律: A B A B, A B A B
第一部分 数理逻辑
❖ 第一章 命题逻辑 ❖ 第二章 一阶谓词逻辑
第一章 命题逻辑
❖ 1.1 命题和命题联结词 ❖ 1.2 命题公式及其赋值 ❖ 1.3 等值演算与联结词完备集 ❖ 1.4 析取范式与合取范式 ❖ 1.5 推理的形式结构 ❖ 1.6 自然推理系统P
1.1 命题和命题联结词
1. 命题:能判断真假的陈述句。
,
p2
,,
p
的命题公式,
n
给p1 , p2 ,, pn一组确定的取值,称为对A的一组赋值或解释。 若指定的一组值使A的真值为1,则称其为A的成真赋值,否则
称为成假赋值。
1.2 命题公式及其赋值
定义4.将公式A在其全部赋值下的真值情况列成表, 称为A的真值表。
真值表的构造步骤: (1)若公式F共有( n n 1)个变元,则真值表第一行写出
F
T
T
T
离散数学
❖ 第一部分 数理逻辑 ❖ 第二部分 集合论 ❖ 第三部分 图论 ❖ 第四部分 抽象代数
第一部分 数理逻辑
数理逻辑是用数学方法研究推理中前提和 结论之间的形式关系的学科。
推理是由一个或几个判断推出一个新判断的思维形式。 数学方法是指建立一套表意符号体系,对具体
事物进行抽象的形式研究的方法。
ABC A BAC
1.3 命题公式的等值式
同一律:A 0 A, A 1 A 互补律:A A 1,A A 0 重补律:A A 等幂律:A A A, A A A, A A 1,
A A A, A A A, A A 1. 零一律:A 1 1, A 0 0
吸收律:A (A B) A, A A B A 德摩根律: A B A B, A B A B
第一部分 数理逻辑
❖ 第一章 命题逻辑 ❖ 第二章 一阶谓词逻辑
第一章 命题逻辑
❖ 1.1 命题和命题联结词 ❖ 1.2 命题公式及其赋值 ❖ 1.3 等值演算与联结词完备集 ❖ 1.4 析取范式与合取范式 ❖ 1.5 推理的形式结构 ❖ 1.6 自然推理系统P
1.1 命题和命题联结词
1. 命题:能判断真假的陈述句。
,
p2
,,
p
的命题公式,
n
给p1 , p2 ,, pn一组确定的取值,称为对A的一组赋值或解释。 若指定的一组值使A的真值为1,则称其为A的成真赋值,否则
称为成假赋值。
1.2 命题公式及其赋值
定义4.将公式A在其全部赋值下的真值情况列成表, 称为A的真值表。
真值表的构造步骤: (1)若公式F共有( n n 1)个变元,则真值表第一行写出
F
T
T
T