北师大版七年级上册数学期末模拟考试试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级上册数学期末模拟考试试卷及答案
一、选择题
1.现有一列数a 1,a 2,a 3,…,a 98,a 99,a 100,其中a 3=2020,a 7=-2018,a 98=-1,且满足任意相邻三个数的和为常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .1985
B .-1985
C .2019
D .-2019
2.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,
323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则
2020a 的值为()
A .-1009
B .-2019
C .-1010
D .-2020
3.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )
A .504
B .
1009
2
C .
1011
2
D .1009
4.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )
A .21
B .89
C .261
D .361
5.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )
A .第80个图形
B .第82个图形
C .第84个图形
D .第86个图形
6.下列四个选项中,不是正方体展开图形的是( )
A .
B .
C .
D .
7.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -
B .1019x y +
C .1021x y -
D .1017x y - 8.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4
B .5
C .6
D .7
9.下列运算正确的是( ) A .()a b c a b c -+=-+ B .2(1)21x y x y --=-+ C .22223m n nm m n -=-
D .532x x -=
10.观察下列算式:122=,224=,328=,4216=,5232=,6264=,
72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .8
11.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )
A .
1
2
B .
112
C .2
D .3
12.若数a ,b 在数轴上的位置如图示,则( )
A .a +b >0
B .ab >0
C .a ﹣b >0
D .﹣a ﹣b >0
13.已知a ,b 是有理数,若表示它们的点在数轴上的位置如图所示,则|a |–|b |的值为
( )
A .零
B .非负数
C .正数
D .负数
14.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图
(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )
A .1
B .2
C .3
D .4
15.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()n
a b +的展开式的各项系数,此三角形数阵称为“杨辉三角”. 第一行 ()0
a b + 1 第二行 ()1
a b + 1 1 第三行 ()2
a b + 1 2 1 第四行 ()3
a b + 1 3 3 1 第五行 ()4
a b + 1 4 6 4 1
根据此规律,请你写出第22行第三个数是( ) A .190 B .210 C .231 D .253 16.如果a+b <0,并且ab >0,那么( )
A .a <0,b <0
B .a >0,b >0
C .a <0,b >0
D .a >0,b <0
17.如图所示,OB 是一条河流,OC 是一片菜田,张大伯每天从家(A 点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是( )
A .
B .
C .
D .
18.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一
个数记为x ,另一个数记为y ,计算代数式
()1
||||2
x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )
A .2252
B .120
C .225
D .240
19.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )
A .9
B .18
C .12
D .6
20.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).
A .36块
B .41块
C .46块
D .51块 21.下列运算中正确的是( )
A .235a b ab +=
B .220a b ba -=
C .32534a a a +=
D .22321a a -=
22.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )
A .14-
B . 3.94-
C . 1.06-
D . 3.7-
23.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )
A .a ﹣b >0
B .a +b >0
C .
b a
>0 D .ab >0
24.“比a 的3倍大5的数”用代数式表示为( ) A .35a + B .3(5)a + C .35a -
D .3(5)a -
25.方程114
x
x --=-去分母正确的是( ). A .x-1-x=-1 B .4x-1-x=-4 C .4x-1+x=-4
D .4x-1+x=-1
26.下列各式中运算正确的是( )
A .2222a a a +=
B .220a b ab -=
C .2(1)21a a -=-
D .33323a a a -=
27.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是( ) A .①② B .②③
C .①④
D .③④
28.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有
( )
A .1个
B .2个
C .3个
D .4个
29.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )
A .|a|>|b|
B .|ac|=ac
C .b <d
D .c+d >0 30.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( )
A .2
B .﹣2
C .8
D .﹣8
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】 【分析】
根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解. 【详解】
解:∵任意相邻三个数的和为常数, ∴a 1+a 2+a 3=a 2+a 3+a 4, a 2+a 3+a 4=a 3+a 4+a 5, a 3+a 4+a 5=a 4+a 5+a 6, ∴a 1=a 4,a 2=a 5,a 3=a 6, ∴原式为每三个数一个循环; ∵a 3=2020,a 7=-2018,a 98=-1, ∵732÷=…1,98332÷=…2, ∴a 1= a 7=-2018,a 2=a 98=-1, ∴a 1+a 2+a 3=-2018-1+2020=1; ∵100333÷=…1, ∴a 100=a 1=-2018; ∴a 1+a 2+a 3+…+a 98+a 99+a 100
=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100 =133********⨯-=-; 故选择:B. 【点睛】
本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.
2.C
解析:C 【解析】 【分析】
依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】
11a =-,
212a a =-+=-1, 323a a =-+=-2,
434a a =-+=-2, 5453a a =-+=-,
6563a a =-+=-,

由此可得:每两个数的答案是相同的,结果为-2
n
(n 为偶数), ∴
2020
10102
=, ∴2020a 的值为-1010, 故选:C. 【点睛】
此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.
3.B
解析:B 【解析】 【分析】
观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】
观察图形可知:点2n A 在数轴上,2n OA n =,
2016OA 1008=,
2019OA 1009∴=,点2019A 在数轴上,
22019
OA A 11009S
1009122
∴=⨯⨯=, 故选B . 【点睛】
本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.
4.D
解析:D 【解析】 【分析】
首先把输入的x 的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止. 【详解】
解:4×4+5=16+5=21,
21<100,
21×4+5=84+5=89,
89<100,
89×4+5=356+5=361,
∴输出的结果是361.
故选:D.
【点睛】
此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.
5.C
解析:C
【解析】
【分析】
根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)
×1
2
,偶数个图形的火柴棒个数,8+7(n-2)×
1
2
,由此可解决问题.
【详解】
解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,
第3个图形有12根火柴棒,
第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×1
2
,偶数
个图形的火柴棒个数,8+7(n-2)×1
2

若5+7(n-1)×1
2
=295,没有整数解,
若8+7(n-2)×1
2
=295,解得n=84,
即用295根火柴搭成的图形是第84个图形,
故选:C.
【点睛】
本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.
6.A
解析:A
【解析】
【分析】
根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体.
【详解】
正方体共有11种表面展开图, B 、C 、D 能围成正方体;
A 、不能,折叠后有两个面重合,不能折成正方体. 故选:A . 【点睛】
本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.
7.A
解析:A 【解析】 【分析】
把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律. 【详解】
多项式的第一项依次是x ,x 2,x 3,x 4,…,x n , 第二项依次是y ,-y 3,y 5,-y 7,…,(-1)n+1y 2n-1, 所以第10个式子即当n=10时, 代入到得到x n +(-1)n+1y 2n-1=x 10-y 19. 故选:A . 【点睛】
本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.
8.B
解析:B 【解析】 【分析】
用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】

29623
4.655
-==, ∴分成的组数是5组. 故答案选B . 【点睛】
本题主要考查了频数分布直方图,准确计算是解题的关键.
9.C
解析:C 【解析】 【分析】
分别判断各选项是否正确. 【详解】
A 中,a b +c a b c -=--(),错误;
B 中,2(1)22x y x y --=-+,错误;
C 中,22223m n nm m n -=-,正确;
D 中,532x x x -=,错误 故选:C . 【点睛】
本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.
10.D
解析:D 【解析】 【分析】
根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8. 【详解】
解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环, ∵2019÷4=504…3, ∴22019的末位数字是8. 故选:D 【点睛】
本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.
11.D
解析:D 【解析】 【分析】
直接利用已知代入得出b 的值,进而求出输入﹣3时,得出y 的值. 【详解】
∵当输入x 的值是﹣3,输出y 的值是﹣1, ∴﹣1=
32
b
-+, 解得:b =1,
故输入x 的值是3时,y =23
31
⨯-=3. 故选:D . 【点睛】
本题主要考查了代数式求值,正确得出b 的值是解题关键.
12.D
解析:D
【解析】
【分析】
首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.
【详解】
由数轴可知:a <0<b ,a<-1,0<b<1,
所以,A.a+b<0,故原选项错误;
B. ab <0,故原选项错误;
C.a-b<0,故原选项错误;
D. 0a b -->,正确.
故选D .
【点睛】
本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.
13.D
解析:D
【解析】
【分析】
本题根据a 、b 在数轴上的位置判定其绝对值大小,继而作差可直接得出答案.
【详解】
由已知得:a 离数轴原点的距离相对于b 更近,可知a <b , 故:0a b -<,即其差值为负数;
故选:D .
【点睛】
本题考查根据数轴上点的位置判别式子正负,解题关键在于对数轴相关概念与性质的理解,比较大小注意细心即可.
14.B
解析:B
【解析】
【分析】
设第1列第3行的数字为x,P 处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p ,可得P 处数字.
【详解】
解:设第1列第3行的数字为x,P 处对应的数字为p,根据题意得,
x+(-2)+1=x+(-3)+p ,解得p=2,
故选:B .
【点睛】
本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横
行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.
15.B
解析:B
【解析】
【分析】
根据题目中的规律,即可求出第22行(a+b)21的展开式中第三项的系数.
【详解】
解:找规律发现(a+b)3的第三项系数为3=1+2;
(a+b)4的第三项系数为6=1+2+3;
(a+b)5的第三项系数为10=1+2+3+4;
不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),
∴第22行(a+b)21第三项系数为1+2+3+…+19+20=210;
故选:B.
【点睛】
本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.16.A
解析:A
【解析】
分析:根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b 小于0,即可得到a与b都为负数.
详解:∵ab>0,
∴a与b同号,
又a+b<0,
则a<0,b<0.
故选A.
点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.D
解析:D
【解析】
【分析】
做出点A关于OB和OC的对称点A′和A″,连接A′A″,与OB、OC分别交与点M,N,则沿AM-MN-NA的路线行走路线最短.
【详解】
要找一条最短路线,以河流为轴,取A点的对称点A',连接A'N与河流相交于M点,再连接AM,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:
故选D.
【点睛】
本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题
的关键.
18.D
解析:D
【解析】
【分析】
先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.
【详解】
①若x>y,则代数式中绝对值符号可直接去掉,
∴代数式等于x,
②若y>x则绝对值内符号相反,
∴代数式等于y,
由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.
故选:D.
【点睛】
本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.
19.B
解析:B
【解析】
试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.
解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,
即各范围的人数分别为3,9,18,12,6.
所以分数在70.5~80.5之间的人数是18人.
故选B.
考点:频数(率)分布直方图.
20.C
解析:C
【解析】
【分析】
根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.
【详解】
⨯+=块.
解:∵第1个图形有黑色瓷砖5116
⨯+=块.
第2个图形有黑色瓷砖52111
⨯+=块.
第3个图形有黑色瓷砖53116

∴第9个图形中有黑色瓷砖59146
⨯+=块.
故选:C.
【点睛】
本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.21.B
解析:B
【解析】
【分析】
根据同类项的定义和合并同类项的法则解答.
【详解】
解:A、2a与3b不是同类项,不能合并,故本选项错误;
B、原式=0,故本选项正确;
C、a3与3a2不是同类项,不能合并,故本选项错误;
D、原式=a2,故本选项错误.
故选B.
【点睛】
此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.
22.B
解析:B
【解析】
【分析】
根据如图所示的按键顺序,列出算式3×(-5
6
)-1.22,再计算可得.
【详解】
根据如图所示的按键顺序,输出结果应为3×(-5
6
)-1.22=-2.5-1.44=-3.94,
故选:B.
【点睛】
本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.
23.A
解析:A
【解析】
【分析】
根据数轴判断出a、b的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.
【详解】
由图可知,b<0,a>0,且|b|>|a|,
A 、a -b >0,故本选项符合题意;
B 、a +b <0,故本选项不合题意;
C 、
b a
<0,故本选项不合题意; D 、ab <0,故本选项不合题意.
故选:A .
【点睛】 本题考查了数轴,熟练掌握数轴的特点并判断出a 、b 的正负情况以及绝对值的大小是解题的关键.
24.A
解析:A
【解析】
【分析】
根据题意可以用代数式表示比a 的3倍大5的数,本题得以解决.
【详解】
解:比a 的3倍大5的数”用代数式表示为:3a +5,
故选A .
【点睛】
本题考查列代数式,解题的关键是明确题意,列出相应的代数式.
25.C
解析:C
【解析】
1144(1)4
414x x x x x x --
=---=--+=- 方程左右两边各项都要乘以4,故选C
26.A
解析:A
【解析】
【分析】
各项计算得到结果,即可作出判断.
【详解】
A 、2222a a a +=,符合题意;
B 、2a b 和2ab 不是同类项,不能合并,不符合题意;
C 、2(1)22a a -=-,不符合题意;
D 、33323a a a -=-,不符合题意,
故选:A .
【点睛】
本题考查了整式的加减,熟练掌握运算法则是解本题的关键.
27.B
解析:B
【解析】
【分析】
根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断即可得出结果.
【详解】
解:①用两颗钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;
②从甲地到乙地架设电线,总是沿线段架设是利用了“两点之间线段最短”,故正确;
③把弯曲的公路改直就能缩短路程是利用了“两点之间线段最短”,故正确;
④植树时只要确定两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误.
故选:B
【点睛】
本题主要考查的是线段的性质和直线的性质,正确的掌握这两个性质是解题的关键.28.B
解析:B
【解析】
【分析】
分别找出每个图形从三个方向看所得到的图形即可得到答案.
【详解】
解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;
②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;
③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;
④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;
故选B.
【点睛】
本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.
29.B
解析:B
【解析】
【分析】
先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.
【详解】
从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;
A、|a|>|b|,故选项正确;
B、a、c异号,则|ac|=-ac,故选项错误;
C、b<d,故选项正确;
D、d>c>1,则c+d>0,故选项正确.
故选B.
【点睛】
本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.
30.B
解析:B
【解析】
【分析】
把x=1代入方程3x﹣m=5得出3﹣m=5,求出方程的解即可.
【详解】
把x=1代入方程3x﹣m=5得:3﹣m=5,
解得:m=﹣2,
故选:B.
【点睛】
本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.。

相关文档
最新文档