舵机知识

合集下载

舵机基础知识单选题100道及答案解析

舵机基础知识单选题100道及答案解析

舵机基础知识单选题100道及答案解析1. 舵机主要用于()A. 控制速度B. 改变方向C. 增加动力D. 稳定平衡答案:B解析:舵机的主要作用是改变方向。

2. 舵机通常由()驱动。

A. 直流电机B. 步进电机C. 伺服电机D. 交流电机答案:C解析:舵机通常由伺服电机驱动。

3. 舵机的控制信号一般是()A. 模拟信号B. 数字信号C. 脉冲信号D. 正弦信号答案:C解析:舵机的控制信号一般是脉冲信号。

4. 舵机的转动角度取决于()A. 电压大小B. 电流大小C. 脉冲宽度D. 脉冲频率答案:C解析:舵机的转动角度取决于脉冲宽度。

5. 常见的舵机旋转角度范围是()A. 0 - 90 度B. 0 - 180 度C. 0 - 270 度D. 0 - 360 度答案:B解析:常见舵机的旋转角度范围是0 - 180 度。

6. 舵机的精度主要取决于()A. 电机性能B. 齿轮精度C. 控制电路D. 以上都是答案:D解析:舵机的精度受到电机性能、齿轮精度和控制电路等多方面因素的影响。

7. 以下哪种不是舵机的应用场景()A. 机器人关节B. 无人机姿态控制C. 汽车发动机D. 模型飞机方向控制答案:C解析:汽车发动机不是舵机的应用场景。

8. 舵机的响应速度主要与()有关。

A. 电机转速B. 齿轮比C. 控制算法D. 以上都是答案:D解析:舵机的响应速度与电机转速、齿轮比和控制算法等都有关系。

9. 为了提高舵机的扭矩,可以()A. 增加电压B. 减小齿轮比C. 使用更大功率的电机D. 以上都是答案:D解析:增加电压、减小齿轮比、使用更大功率的电机都可以提高舵机的扭矩。

10. 舵机在工作时发热的主要原因是()A. 电流过大B. 摩擦损耗C. 电机效率低D. 以上都是答案:D解析:电流过大、摩擦损耗、电机效率低等都会导致舵机工作时发热。

11. 以下哪种舵机的精度较高()A. 塑料齿轮舵机B. 金属齿轮舵机C. 数字舵机D. 模拟舵机答案:C解析:数字舵机的精度通常较高。

舵机基础知识

舵机基础知识

舵机基础知识:最近几年国内机器人开始起步发展,很多高校、中小学都开始进行机器人技术教学。

小型的机器人、模块化的机器人、组件式的机器人是教学机器人的首选。

在这些机器人产品中,舵机是最关键,使用最多的部件。

根据控制方式,舵机应该称为微型伺服马达。

早期在模型上使用最多,主要用于控制模型的舵面,所以俗称舵机。

舵机接受一个简单的控制指令就可以自动转动到一个比较精确的角度,所以非常适合在关节型机器人产品使用。

仿人型机器人就是舵机运用的最高境界。

一、舵机的结构舵机简单的说就是集成了直流电机、电机控制器和减速器等,并封装在一个便于安装的外壳里的伺服单元。

能够利用简单的输入信号比较精确的转动给定角度的电机系统。

舵机安装了一个电位器(或其它角度传感器)检测输出轴转动角度,控制板根据电位器的信息能比较精确的控制和保持输出轴的角度。

这样的直流电机控制方式叫闭环控制,所以舵机更准确的说是伺服马达,英文servo。

舵机的主体结构如下图所示,主要有几个部分:外壳、减速齿轮组、电机、电位器、控制电路。

简单的工作原理是控制电路接收信号源的控制信号,并驱动电机转动;齿轮组将电机的速度成大倍数缩小,并将电机的输出扭矩放大响应倍数,然后输出;电位器和齿轮组的末级一起转动,测量舵机轴转动角度;电路板检测并根据电位器判断舵机转动角度,然后控制舵机转动到目标角度或保持在目标角度。

舵机的外壳一般是塑料的,特殊的舵机可能会有金属铝合金外壳。

金属外壳能够提供更好的散热,可以让舵机内的电机运行在更高功率下,以提供更高的扭矩输出。

金属外壳也可以提供更牢固的固定位齿轮箱有塑料齿轮、混合齿轮、金属齿轮的差别。

塑料齿轮成本底,噪音小,但强度较低;金属齿轮强度高,但成本高,在装配精度一般的情况下会有很大的噪音。

小扭矩舵机、微舵、扭矩大但功率密度小的舵机一般都用塑料齿轮,如Futaba 3003,辉盛的9g微舵。

金属齿轮一般用于功率密度较高的舵机上,比如辉盛的995舵机,在和3003一样体积的情况下却能提供13KG的扭矩。

舵机知识汇总

舵机知识汇总
Futaba 之外的其它厂家使用的不是 BA6688 这款 IC,一般选择 M51660、AA5188、YT5166 这些芯片一般没有 EMF 控制。
舵机控制电路用于驱动电机的也是 PWM 脉冲,不过此脉冲与上述控制舵机的 PWM 信 号不同,此脉冲占空比是在 0-100%之间变化的。控制电路通过占空比进行调速,通过正反 脉冲进行调向。具体可以看直流电动机控制方面的书籍。
我们不用装出机器人就可以预期一个事实,不停抖动的舵机装出来的仿人机器人是不可 能走的很好的,用不停抖动的舵机装出来的机械臂是不可能写字的。可惜的是,现在的数字 舵机还是很贵的,更别提用直流伺服电机+伺服驱动器+运动控制卡搭建的机器人系统了。
模拟舵机的调节周期是 20ms,也就是它的反应时间是 20ms。根据舵机的不同,假设我 们估计舵机的速度是 0.2s/60°,那么 20ms 舵机最快的时候转过 0.6 度才会进行调节,这就 是关节在突然出现大负载的情况下,会被扭矩摆动 0.6 度,然后才纠正回来,我们的直观感
需要注意的是,金属齿轮箱在长时间过载下不容易损毁,最后却会让电机过热损坏或外壳变 形,而这样的损坏是致命的、不可修复的。塑料轴的舵机如果使用金属舵盘也很危险的,舵 盘和舵机轴在相互扭转过程中,金属舵盘不会磨损,舵机轴会在一段时间后变得光秃,导致 舵机完全不能使用。
综上,选择舵机需要在计算自己所需扭矩和速度,并确定使用电压的条件下,选择有 150%左右甚至更大扭矩富余的舵机。
60°
z 转矩 舵机扭矩的单位是 KG·CM,这是一个扭矩单位。可以理解为在舵盘上距舵机轴中心水 平距离 1CM 处,舵机能够带动的物体重量。
1cm
舵机扭矩=n Kg.cm
n Kg
z 电压 厂商提供的速度、转矩数据和测试电压有关,在 4.8V 和 6V 两种测试电压下这两个参 数有比较大的差别。如 Futaba S-9001 在 4.8V 时扭力为 3.9kg、速度为 0.22 秒,在 6.0V 时 扭力为 5.2kg、速度为 0.18 秒。若无特别注明,JR 的舵机都是以 4.8V 为测试电压,Futaba 则是以 6.0V 作为测试电压。 舵机的工作电压对性能有重大的影响,舵机推荐的电压一般都是 4.8V 或 6V。当然,有 的舵机可以在 7V 以上工作,12V 的舵机也不少。较高的电压可以提高电机的速度和扭矩。 选择舵机还需要看我们的控制卡所能提供的电压。 z 尺寸、重量和材质 舵机的功率(速度×转矩)和舵机的尺寸比值可以理解为该舵机的功率密度,一般同样 品牌的舵机,功率密度大的价格高。 塑料齿轮的舵机在超出极限负荷的条件下使用可能会崩齿,金属齿轮的舵机则可能会电 机过热损毁或外壳变形。所以材质的选择并没有绝对的倾向,关键是将舵机使用在设计规格 之内。 用户一般对金属物品比较信赖,齿轮箱期望选择全金属的,舵盘期望选择金属舵盘。但

舵机控制详解

舵机控制详解

本人学习了一段时间的舵机,将自己所遇到的问题与解决方案和大家分享一下,希望对初学者有所帮助!!!!一、舵机介绍1、舵机结构舵机简单的说就是集成了直流电机、电机控制器和减速器等,并封装在一个便于安装的外壳里的伺服单元。

舵机安装了一个电位器(或其它角度传感器)检测输出轴转动角度,控制板根据电位器的信息能比较精确的控制和保持输出轴的角度。

这样的直流电机控制方式叫闭环控制,所以舵机更准确的说是伺服马达,英文 servo。

舵机组成:舵盘、减速齿轮、位置反馈电位计、直流电机、控制电路板等。

舵盘上壳齿轮组中壳电机控制电路控制线下壳工作原理:控制信号控制电路板电机转动齿轮组减速舵盘转动位置反馈电位器控制电路板反馈简单的工作原理是控制电路接收信号源的控制信号,并驱动电机转动;齿轮组将电机的速度成大倍数缩小,并将电机的输出扭矩放大响应倍数,然后输出;电位器和齿轮组的末级一起转动,测量舵机轴转动角度;电路板检测并根据电位器判断舵机转动角度,然后控制舵机转动到目标角度或保持在目标角度。

舵机接线方法:三线接线法:(1)黑线(地线)红线(电源线)两个标准:4.8V和6V蓝线/黄线(信号线)(2)棕线(地线)红线(电源线)两个标准:4.8V和6V黄线(信号线)二、舵机PWM 信号介绍1、PWM 信号的定义PWM 信号为脉宽调制信号,其特点在于他的上升沿与下降沿之间的时间宽度。

具体的时间宽窄协议参考下列讲述。

我们目前使用的舵机主要依赖于模型行业的标准协议,随着机器人行业的渐渐独立,有些厂商已经推出全新的舵机协议,这些舵机只能应用于机器人行业,已经不能够应用于传统的模型上面了。

关于舵机PWM 信号的基本样式如下图其PWM 格式注意的几个要点:(1) 上升沿最少为0.5mS ,为0.5mS---2.5mS 之间; (2) 控制舵机的PWM 信号周期为20ms ; 2.PWM 信号控制精度制定1 DIV = 8uS ; 250DIV=2mSPWM 上升沿函数: 0.5mS + N ×DIV 0uS ≤ N ×DIV ≤ 2mS0.5mS ≤ 0.5Ms+N ×DIV ≤ 2.5mS 3、舵机位置控制方法舵机的转角达到185度,由于采用8为CPU 控制,所以控制精度最大为256份。

舵机控制详解

舵机控制详解

舵机控制详解 The manuscript was revised on the evening of 2021本人学习了一段时间的舵机,将自己所遇到的问题与解决方案和大家分享一下,希望对初学者有所帮助!!!!一、舵机介绍1、舵机结构舵机简单的说就是集成了直流电机、电机控制器和减速器等,并封装在一个便于安装的外壳里的伺服单元。

舵机安装了一个电位器(或其它角度传感器)检测输出轴转动角度,控制板根据电位器的信息能比较精确的控制和保持输出轴的角度。

这样的直流电机控制方式叫闭环控制,所以舵机更准确的说是伺服马达,英文 servo。

舵机组成:舵盘、减速齿轮、位置反馈电位计、直流电机、控制电路板等。

舵盘上壳齿轮组中壳电机控制电路控制线下壳工作原理:控制信号控制电路板电机转动齿轮组减速舵盘转动位置反馈电位器控制电路板反馈简单的工作原理是控制电路接收信号源的控制信号,并驱动电机转动;齿轮组将电机的速度成大倍数缩小,并将电机的输出扭矩放大响应倍数,然后输出;电位器和齿轮组的末级一起转动,测量舵机轴转动角度;电路板检测并根据电位器判断舵机转动角度,然后控制舵机转动到目标角度或保持在目标角度。

舵机接线方法:三线接线法:(1)黑线(地线)红线(电源线)两个标准:和6V蓝线/黄线(信号线)(2)棕线(地线)红线(电源线)两个标准:和6V黄线(信号线)二、舵机PWM 信号介绍1、PWM 信号的定义PWM 信号为脉宽调制信号,其特点在于他的上升沿与下降沿之间的时间宽度。

具体的时间宽窄协议参考下列讲述。

我们目前使用的舵机主要依赖于模型行业的标准协议,随着机器人行业的渐渐独立,有些厂商已经推出全新的舵机协议,这些舵机只能应用于机器人行业,已经不能够应用于传统的模型上面了。

关于舵机PWM 信号的基本样式如下图其PWM 格式注意的几个要点: (1) 上升沿最少为,为之间;(2) 控制舵机的PWM 信号周期为20ms ; 2.PWM 信号控制精度制定1 DIV = 8uS ; 250DIV=2mS PWM 上升沿函数: + N ×DIV0uS ≤ N ×DIV ≤ 2mS ≤ +N ×DIV ≤ 3、舵机位置控制方法 舵机的转角达到185度,由于采用8为CPU 控制,所以控制精度最大为256份。

舵机速度控制原理

舵机速度控制原理

舵机速度控制原理一、简介舵机是一种常见的电机装置,用于控制机器人或其他设备的角度或位置。

舵机速度控制是指调节舵机旋转的速度,使其能够按照预定的速度进行移动。

本文将深入探讨舵机速度控制的原理及相关知识。

二、舵机基本原理舵机的基本原理是通过提供电流来驱动电机转动,同时通过电子电路控制电机的角度。

舵机通常由一个电机、一个位置传感器和一个电子电路组成。

当电流通过电机时,电机开始旋转。

位置传感器会监测电机的角度,并将这一信息传输给电子电路。

电子电路会根据接收到的角度信号,控制电机的转动,使其停留在特定的位置。

三、舵机速度控制原理舵机速度控制是在舵机基本原理的基础上,通过控制电机旋转的速度来实现的。

下面将介绍舵机速度控制的原理和实现方法。

1. PWM信号控制舵机速度的控制是通过改变PWM信号来实现的。

PWM即脉宽调制信号,它的工作原理是通过改变信号的脉冲宽度来控制电机的转速。

舵机所接收的PWM信号通常是一个周期为20ms的方波信号,脉冲宽度在0.5ms到2.5ms之间,其中1.5ms为中间位置。

脉冲宽度越大,舵机转动的角度也越大,速度也就越快。

2. 舵机控制电路为了实现舵机的速度控制,需要添加一个舵机控制电路。

舵机控制电路通常由微控制器、驱动电路和PWM信号发生器组成。

微控制器负责接收输入的速度指令,并将其转换成相应的PWM信号。

驱动电路负责放大电流并驱动电机转动。

PWM信号发生器则用于生成PWM信号,并将其发送给舵机。

3. 控制算法舵机速度控制的实现还需要控制算法的支持。

常见的控制算法有以下几种:•开环控制:根据速度指令直接控制PWM信号的脉冲宽度。

这种方法简单但不够准确,容易受到外界干扰而导致误差增大。

•闭环控制:根据速度指令和实际转速的差异,通过调整PWM信号来控制舵机的速度。

闭环控制能够更精确地控制舵机的速度,但需要额外的位置传感器来监测实际转速。

•PID控制:PID控制是一种常用的闭环控制算法,通过比较实际转速和目标转速的差异,计算出一个修正量,再通过调整PWM信号的脉冲宽度来控制舵机的速度。

舵机基础知识

舵机基础知识

舵机基础知识:最近几年国内机器人开始起步发展,很多高校、中小学都开始进行机器人技术教学。

小型的机器人、模块化的机器人、组件式的机器人是教学机器人的首选。

在这些机器人产品中,舵机是最关键,使用最多的部件。

根据控制方式,舵机应该称为微型伺服马达。

早期在模型上使用最多,主要用于控制模型的舵面,所以俗称舵机。

舵机接受一个简单的控制指令就可以自动转动到一个比较精确的角度,所以非常适合在关节型机器人产品使用。

仿人型机器人就是舵机运用的最高境界。

一、舵机的结构舵机简单的说就是集成了直流电机、电机控制器和减速器等,并封装在一个便于安装的外壳里的伺服单元。

能够利用简单的输入信号比较精确的转动给定角度的电机系统。

舵机安装了一个电位器(或其它角度传感器)检测输出轴转动角度,控制板根据电位器的信息能比较精确的控制和保持输出轴的角度。

这样的直流电机控制方式叫闭环控制,所以舵机更准确的说是伺服马达,英文servo。

舵机的主体结构如下图所示,主要有几个部分:外壳、减速齿轮组、电机、电位器、控制电路。

简单的工作原理是控制电路接收信号源的控制信号,并驱动电机转动;齿轮组将电机的速度成大倍数缩小,并将电机的输出扭矩放大响应倍数,然后输出;电位器和齿轮组的末级一起转动,测量舵机轴转动角度;电路板检测并根据电位器判断舵机转动角度,然后控制舵机转动到目标角度或保持在目标角度。

舵机的外壳一般是塑料的,特殊的舵机可能会有金属铝合金外壳。

金属外壳能够提供更好的散热,可以让舵机内的电机运行在更高功率下,以提供更高的扭矩输出。

金属外壳也可以提供更牢固的固定位齿轮箱有塑料齿轮、混合齿轮、金属齿轮的差别。

塑料齿轮成本底,噪音小,但强度较低;金属齿轮强度高,但成本高,在装配精度一般的情况下会有很大的噪音。

小扭矩舵机、微舵、扭矩大但功率密度小的舵机一般都用塑料齿轮,如Futaba 3003,辉盛的9g微舵。

金属齿轮一般用于功率密度较高的舵机上,比如辉盛的995舵机,在和3003一样体积的情况下却能提供13KG的扭矩。

舵机知识分享

舵机知识分享

一,舵机的分类1,按照舵机的工作信号来分类:航模舵机有数码舵机Digital Servo,模拟舵机Analog Servo。

(1)数码舵机是数字传输(数字舵机Digital Servo),灵活方便、可靠、兼容性好,抗干扰能力强,可方便实现双向通信,是必然的趋势;(2)模拟舵机是现有的PWM模拟传输(模拟舵机Analog Servo),即脉宽的变化直接代表控制矢量,容易受干扰;2,按照舵机的工作电压来分类:普通电压舵机(4.8-6V),高压舵机HV SERVO (6-7.4V);高压舵机HV SERVO(9.4-12V)。

高压舵机是工作电压高在6-7.4V;9.4-12V(以后高压舵机的工作电压应该还会更高的),高压舵机的优点就是发热小,反应更灵敏,扭力更大。

3, 按照是否防水来分类:全防水舵机,普通舵机。

(全防水舵机的视频)4,机器人专用舵机与模型舵机的区别机器人用的大部分舵机和模型舵机都是一样的,只是航模用舵机限制转角,一般是90-270°,有些机器人舵机的工作角度到达360度,360度舵机一般都是用到机器人上的。

二,舵机的结构(舵机的结构视频)1,外壳:外壳材料有金属,塑料,半金属半塑料三种。

(全金属外壳舵机,半金属半塑料外壳舵机,塑料外壳舵机)2,马达: 无刷马达,空心杯马达,铁心马达。

(无刷马达舵机,空心杯马达舵机,铁芯马达舵机)3,齿轮套件:舵机的齿轮材料(Gear Material)有塑料和金属之区分,金1 / 2属齿轮的舵机一般皆为大扭力及高速型,具有齿轮不会因负载过大而崩牙的优点。

4,动力输出轴:(1),动力输出轴材料有塑料和金属之分,大扭力的一般都采用金属材料。

(2),标准舵机的输出轴的齿数有以下三种:25T(FUTABA品牌的舵机),24T (HITEC品牌的舵机),23T (JR品牌的舵机)。

这个参数主要用来匹配舵臂的,因为常规舵臂的齿数也是:25T(FUTABA),24T(HITEC),23T(JR)这三种,只有舵机轴的齿数和舵臂的齿数一样才能使用。

舵机知识

舵机知识

舵机是遥控模型控制动作的动力来源,不同类型的遥控模型所需的舵机种类也随之不同。

如何审慎地选择经济且合乎需求的舵机,也是一门不可轻忽的学问。

舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。

目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。

舵机是一种俗称,其实是一种伺服马达。

舵机最早出现在航模运动中。

在航空模型中,飞行机的飞行姿态是通过调节发动机和各个控制舵面来实现的。

举个简单的四通飞机来说,飞机上有以下几个地方需要控制:1.发动机进气量,来控制发动机的拉力(或推力);2.副翼舵面(安装在飞机机翼后缘),用来控制飞机的横滚运动;3.水平尾舵面,用来控制飞机的俯仰角;4.垂直尾舵面,用来控制飞机的偏航角;遥控器有四个通道,分别对应四个舵机,而舵机又通过连杆等传动元件带动舵面的转动,从而改变飞机的运动状态。

舵机因此得名:控制舵面的伺服电机。

不仅在航模飞机中,在其他的模型运动中都可以看到它的应用:船模上用来控制尾舵,车模中用来转向等等。

由此可见,凡是需要操作性动作时都可以用舵机来实现。

一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。

舵机的基本结构是这样,但实现起来有很多种。

例如电机就有有刷和无刷之分,齿轮有塑料和金属之分,输出轴有滑动和滚动之分,壳体有塑料和铝合金之分,速度有快速和慢速之分,体积有大中小三种之分等等,组合不同,价格也千差万别。

例如,其中小舵机一般称作微舵,同种材料的条件下是中型的一倍多,金属齿轮是塑料齿轮的一倍多。

需要根据需要选用不同类型。

为了适合不同的工作环境,有防水及防尘设计的舵机;并且因应不同的负载需求,舵机的齿轮有塑胶及金属之区分,金属齿轮的舵机一般皆为大扭力及高速型,具有齿轮不会因负载过大而崩牙的优点。

较高级的舵机会装置滚珠轴承,使得转动时能更轻快精准。

滚珠轴承有一颗及二颗的区别,当然是二颗的比较好。

舵机知识汇总

舵机知识汇总
我们不用装出机器人就可以预期一个事实,不停抖动的舵机装出来的仿人机器人是不可 能走的很好的,用不停抖动的舵机装出来的机械臂是不可能写字的。可惜的是,现在的数字 舵机还是很贵的,更别提用伺服直流电机+伺服驱动器+运动控制卡搭建的机器人系统了。
模拟舵机的调节周期是 20ms(看看模块卡的舵机程序),也就是它的反应时间是 20ms。 根据舵机的不同,假设我们估计舵机的速度是 0.2s/60°,那么 20ms 舵机最快的时候转过 0.6 度才会进行调节,这就是关节在突然出现大负载的情况下,会被扭矩摆动 0.6 度,然后 才纠正回来,我们的直观感觉就是这个舵机不“硬”我们掰动舵盘,可以掰动一个位置。
舵机的主体结构如下图所示,主要有几个部分:外壳、减速齿轮组、电机、电位器、控 制电路。简单的工作原理是控制电路接收信号源的控制信号,并驱动电机转动;齿轮组将电 机的速度成大倍数缩小,并将电机的输出扭矩放大响应倍数,然后输出;电位器和齿轮组的 末级一起转动,测量舵机轴转动角度;电路板检测并根据电位器判断舵机转动角度,然后控 制舵机转动到目标角度或保持在目标角度。
盘。但需要注意的是,金属齿轮箱在长时间过载下也不会损毁,最后确是电机过热损坏或外 壳变形,而这样的损坏是致命的,不可修复的。塑料出轴的舵机如果使用金属舵盘是很危险 的,舵盘和舵机轴在相互扭转过程中,金属舵盘不会磨损,舵机轴会在一段时间后变得光秃, 导致舵机完全不能使用。
综上,选择舵机需要在计算自己所需扭矩和速度,并确定使用电压的条件下,选择有 15后舵机开始在机器人上得到大幅度的运用,转动的角度也在根据机器人关节的需要增 加到-90 度至 90 度之间,脉冲宽度也随之有了变化。
对于控制脉冲有的书上讲的是 PPM(脉位调制信号),有的定义为 PWM(脉宽调制信号)。 准确的讲应该叫什么笔者也没有确定的答案,请恕我才疏学浅。对与模型遥控器,发射机到 接收机之间的信号编码方式是 PPM(也有 PCM)方式,当然,这个信号的编码传输过程不 是接收机到舵机之间,切不可混淆。对于 PPM、PCM 在调制信号上面的区别可以看《现代 无线通讯》。

舵机的基础知识

舵机的基础知识

舵机的文献综述最近几年国内机器人开始快速发展,很多高校、中小学在进行机器人技术教学。

小型的机器人、模块化的机器人、组件式机器人是教学机器人的首选。

在这些机器人产品中,舵机是最关键、使用最多的部件。

依据控制方式的特点,舵机应该称为微型伺服马达。

早期在模型上使用最多,主要用于控制模型的舵面,所以俗称舵机。

舵机接受一个简单的控制指令就可以自动转动到一个比较精确的角度,所以非常适合在关节型机器人产品上使用。

仿人型机器人就是舵机运用的最高境界。

一、舵机的结构舵机简单是集成了直流电机、电机控制器和减速器等,并封装在一个便于安装的外壳里的伺服单元。

能够利用简单的输入信号比较精确的控制转动角度的机电系统。

舵机内部有一个电位器(或其它角度传感器)用于检测输齿轮箱出轴转动角度,控制板根据电位器的信息能比较精确的控制和保持输出轴的角度。

这样的直流电机控制方式叫闭环控制,所以舵机更准确的说是伺服马达,英文 servo。

舵机的主体结构主要有几个部分:外壳、减速齿轮组、电机、电位器、控制电路。

简单的工作原理是:控制电路接收信号源的控制信号,并驱动电机转动;齿轮组将电机的速度成大倍数缩小,并将电机的输出扭矩放大相应倍数,然后输出;电位器和齿轮组的末级一起转动,测量舵机轴转动角度;电路板检测并根据电位器判断舵机转动角度,然后控制舵机转动到目标角度或保持在目标角度。

舵机的外壳一般是塑料的,特殊的舵机可能会有铝合金外壳。

金属外壳能够提供更好的散热,可以让舵机内的电机运行在更高功率下,以提供更高的扭矩输出。

金属外壳也可以提供更牢固的固定位置。

齿轮箱有塑料齿轮、混合齿轮、金属齿轮的差别。

塑料齿轮成本底,噪音小,但强度较低;金属齿轮强度高,但成本高,在装配精度一般的情况下会有很大的噪音。

小扭矩舵机、微舵、扭矩大但功率密度小的舵机一般都用塑料齿轮,如Futaba 3003,辉盛的 9g 微舵。

金属齿轮一般用于功率密度较高的舵机上,比如辉盛的 995 舵机。

舵机速度控制原理

舵机速度控制原理

舵机速度控制原理舵机是一种常见的电机,主要用于控制机器人、模型船、飞机等设备的运动。

舵机速度控制是控制舵机转动速度的一种技术,可以实现精确的运动控制。

本文将详细介绍舵机速度控制原理。

一、舵机基础知识1. 舵机结构舵机由电机、减速器、位置反馈装置、控制电路和输出轴组成。

其中,电机通过减速器将高速旋转转换为低速高扭矩输出,位置反馈装置可以测量输出轴位置,并将其反馈给控制电路,从而实现精确的位置控制。

2. 舵机工作原理当输入PWM信号时,舵机会根据信号占空比来确定输出轴的位置。

PWM信号周期一般为20ms,占空比范围为0-100%。

当占空比为0%时,输出轴处于最左侧;当占空比为50%时,输出轴处于中心位置;当占空比为100%时,输出轴处于最右侧。

二、舵机速度控制原理1. PWM信号频率与周期PWM信号频率指每秒钟PWM信号重复出现的次数。

PWM信号周期指PWM信号一次完整的周期所需要的时间。

一般来说,PWM信号频率越高,控制精度越高,但同时也会增加计算负担和电路复杂度。

PWM信号周期越短,输出轴转动速度就越快。

2. 舵机速度控制方法舵机速度控制可以通过改变PWM信号占空比来实现。

当占空比较小时,输出轴转动速度较慢;当占空比较大时,输出轴转动速度较快。

因此,可以通过改变PWM信号占空比的大小来控制舵机的转动速度。

3. 舵机加减速控制方法为了实现更加精确的运动控制,可以采用舵机加减速控制方法。

该方法主要分为两个阶段:加速阶段和匀速阶段。

在加速阶段中,PWM信号占空比逐渐增大,输出轴转动速度逐渐增快;在匀速阶段中,PWM信号占空比保持不变,输出轴转动速度保持恒定。

当需要停止时,则采用减速阶段,在该阶段中PWM信号占空比逐渐减小,输出轴转动速度逐渐减慢,直到停止。

三、舵机速度控制电路设计1. 舵机速度控制电路原理图舵机速度控制电路主要由PWM信号发生器、加减速电路、H桥驱动电路和舵机组成。

其中,PWM信号发生器用于产生PWM信号;加减速电路用于实现舵机加减速控制;H桥驱动电路用于控制输出轴的转向;舵机则是被控制的对象。

舵机知识总结和注意点(自我总结)

舵机知识总结和注意点(自我总结)

舵机知识总结(自我总结)1,舵机的工作电压对性能有重大的影响,舵机推荐的电压一般都是4.8V或6V。

2,舵机的控制脉冲周期20ms,脉宽从0.5ms-2.5ms,分别对应-90度到+90度的位置。

{0.5ms对应45°}3,需要解释的是舵机原来主要用在飞机、汽车、船只模型上,作为方向舵的调节和控制装置。

所以,一般的转动范围是45°、60°或者90°,这时候脉冲宽度一般只有1ms-2ms之间。

4,另外要记住一点,舵机的转动需要时间的,因此,程序中时间的变化不能太快,不然舵机跟不上程序。

根据需要,选择合适的延时,返复调试,可以让舵机很流畅的转动,而不会产生像步进电机一样的脉动。

5,舵机的速度决定于你给它的信号脉宽的变化速度。

如果你要求的速度比较快的话,舵机就反应不过来了;将脉宽变化值线性到你要求的时间内,一点一点的增加脉宽值,就可以控制舵机的速度了。

5,前面提到,舵机转角控制需要将两个八位寄存器合成为一个十六位寄存器。

当输入脉冲周期为20ms时,占空比为2.5%时,转角为-90°占空比为5%时,转角为-45°占空比为7.5%时,转角为-0°占空比为10%时,转角为45°占空比为12.5%时,转角为90°附上控制舵机转角90°程序:#include <hidef.h> /* common defines and macros */#include "derivative.h" /* derivative-specific definitions *///PWM初始化//实现舵机90度转,占空比为12.5%void PWM_Init(void){PWME=0x00; //禁止PWM模块PWMCTL_CON01=1; //0和1联合成16位PWM;PWMCAE_CAE1=0; //选择输出模式为左对齐输出模式PWMPOL_PPOL1=1; //先输出高电平,计数到DTY时,反转电平PWMPRCLK = 0X00; //clockA不分频,clockA=busclock=16MHz;PWMSCLA = 8; //对clock A进行2*8=16分频;pwm clock=clockA/16=1MHz;PWMCLK_PCLK1 = 1; //选择clock SA做时钟源PWMPER01 = 20000; //周期20ms;50Hz;(可以使用的范围:50-200hz)PWMDTY01 = 2500; //高电平时间为2.5ms; 单位1usPWME_PWME1 = 1;}void main(void){/* put your own code here */PWM_Init();while(1);}。

舵机的工作原理

舵机的工作原理

舵机的工作原理引言概述:舵机是一种常见的电子设备,广泛应用于机器人、遥控模型等领域。

它能够实现精确的角度控制,具有较高的工作精度和可靠性。

本文将详细介绍舵机的工作原理,包括机电原理、反馈控制原理、位置控制原理、信号控制原理和工作模式。

一、机电原理:1.1 机电类型:舵机通常采用直流机电作为驱动源,常见的有核心式机电和无核心式机电两种类型。

1.2 机电结构:核心式机电由电枢、永磁体和电刷组成,无核心式机电则是通过电磁感应原理实现转动。

1.3 机电工作原理:舵机的机电通过电流控制实现转动,电流的方向和大小决定了舵机的转动方向和角度。

二、反馈控制原理:2.1 反馈装置:舵机内置了一个反馈装置,通常是一个旋转电位器或者光电编码器,用于检测舵机的角度。

2.2 反馈信号:反馈装置会输出一个反馈信号,表示当前舵机的角度位置。

2.3 反馈控制:通过比较反馈信号和目标角度信号,舵机可以根据误差进行调整,实现精确的角度控制。

三、位置控制原理:3.1 控制信号:舵机接收一个控制信号,通常是一个脉冲宽度调制(PWM)信号。

3.2 脉宽解读:舵机通过解读控制信号的脉冲宽度来确定目标角度。

3.3 控制算法:舵机根据控制信号的脉冲宽度和反馈信号的角度,采用控制算法计算出驱动机电的电流,从而实现位置控制。

四、信号控制原理:4.1 控制信号范围:舵机的控制信号通常在0.5ms到2.5ms的脉宽范围内变化。

4.2 脉宽对应角度:脉宽的变化对应着舵机的角度变化,通常0.5ms对应最小角度,2.5ms对应最大角度。

4.3 中立位置:控制信号的脉宽为1.5ms时,舵机处于中立位置,即角度为0度。

五、工作模式:5.1 位置模式:舵机可以在位置模式下工作,根据控制信号的脉宽来实现精确的角度控制。

5.2 速度模式:舵机还可以在速度模式下工作,根据控制信号的脉宽来实现转速的控制。

5.3 扭矩模式:舵机在扭矩模式下工作时,根据控制信号的脉宽来实现扭矩的控制,可以用于对外力的响应。

舵机原理知识

舵机原理知识
中国机器人网
舵机基础知识
最近几年国内机器人开始起步发展,很多高校、中小学都开始进行机器人技术教学。小 型的机器人、模块化的机器人、组件式的机器人是教学机器人的首选。在这些机器人产品中, 舵机是最关键,使用最多的部件。
根据控制方式,舵机应该称为微型伺服马达。早期在模型上使用最多,主要用于控制模 型的舵面,所以俗称舵机。舵机接受一个简单的控制指令就可以自动转动到一个比较精确的 角度,所以非常适合在关节型机器人产品使用。仿人型机器人就是舵机运用的最高境界。
齿轮箱有塑料齿轮、混合齿轮、金属齿轮的差别。塑料齿轮成本底,噪音小,但强度较 低;金属齿轮强度高,但成本高,在装配精度一般的情况下会有很大的噪音。小扭矩舵机、 微舵、扭矩大但功率密度小的舵机一般都用塑料齿轮,如 Futaba 3003,辉盛的 9g 微舵。 金属齿轮一般用于功率密度较高的舵机上,比如辉盛的 995 舵机,在和 3003 一样体积的情 况下却能提供 13KG 的扭矩。Hitec 甚至用钛合金作为齿轮材料,其高强度能保证 3003 大小 的舵机能提供 20 几公斤的扭矩。混合齿轮在金属齿轮和塑料齿轮间做了折中,在电机输出 齿轮上扭矩一般不大,用塑料齿轮。
那么什么是总线伺服舵机。我们先来看一下我们现在使用舵机和数字舵机时遇见的问 题。
1、我们利用舵机(不论数字还是模拟)搭建一个仿人机器人,用了 20 个自由度,用了 20 个舵机。每根舵机都要接到控制卡上,有的线还需要延长,所有的线加起来有超过 30 根, 像团海草一样把机器人整个身体缠了个遍,机器人在走动的时候突然发现舵机线被拉松了, 机器人一个趔趄把脖子都摔断了。控制卡上需要做出 20 个 PWM 信号接口(我们一直在为 这个技术问题发愁,现在或许好一点),那可是长长的一排插针啊。健忘的我还很容易忘记 哪个插针对应哪个舵机,好不容易接上后,一通电,机器人腿转到背后去了,一排查发现腿 关节接到肩关节了。当我们需要给机器人加些传感器时候,突然发现,IO 口都被用掉了, 定时器不够用了,天啊,真是噩梦。

舵机知识

舵机知识

舵机知识舵机又称伺服电机; 作为小型机器人身上最常用的动作元件, 如果连舵机知识都不懂你又怎么混迹 DIY 界呢?为了修炼成为一个真正的 DIYer,趁着果壳 DIY 开设舵机知识扫盲班,赶紧去恶补一下吧!双向电梯• • • • • • • •1 2 3 4 5 6 7 8简介 舵机的结构和原理 选择舵机 舵机的支架和连接装置 如何控制舵机 舵机应用:云台网络摄像头 如何 DIY 连续旋转的舵机 连续旋转舵机的应用:5 分钟的绘图机器人1简介舵机控制的机器人● 我猜你肯定在机器人和电动玩具中见到过这个小东西,至少也听到过它转起来时那与众 不同的“吱吱吱”的叫声。

对,它就是遥控舵机,常用在机器人技术、电影效果制作和木偶 控制当中,不过让人大跌眼镜的是,它竟是为控制玩具汽车和飞机才设计的。

● 舵机的旋转不像普通电机那样只是古板的转圈圈,它可以根据你的指令旋转到 0 至 180 度之间的任意角度然后精准的停下来。

如果你想让某个东西按你的想法运动, 舵机可是个不 错的选择,它控制方便、最易实现,而且种类繁多,总能有一款适合你呦。

● 用不着太复杂的改动,舵机就可摇身一变成为一个高性能的、数字控制的、并且可调速 的齿轮电机。

在这篇文章中, 我会介绍舵机使用的的一些基础知识以及怎样制作一个连续运 转舵机。

2舵机的结构和原理A.标准舵机图解● 遥控舵机(或简称舵机)是个糅合了多项技术的科技结晶体,它由直流电机、减速齿轮 组、传感器和控制电路组成,是一套自动控制装置,神马叫自动控制呢?所谓自动控制就是 用一个闭环反馈控制回路不断校正输出的偏差, 使系统的输出保持恒定。

我们在生活中常见 的恒温加热系统就是自动控制装置的一个范例, 其利用温度传感器检测温度, 将温度作为反 馈量,利用加热元件提输出,当温度低于设定值时,加热器启动,温度达到设定值时,加热 器关闭,这样不就使温度始终保持恒定了吗。

B.闭环反馈控制● 对于舵机而言呢,位置检测器是它的输入传感器,舵机转动的位置一变,位置检测器的 电阻值就会跟着变。

舵机的基础知识

舵机的基础知识

舵机的文献综‎述最近几年国内‎机器人开始快‎速发展,很多高校、中小学在进行‎机器人技术教‎学。

小型的机器人、模块化的机器‎人、组件式机器人‎是教学机器人‎的首选。

在这些机器人‎产品中,舵机是最关键、使用最多的部‎件。

依据控制方式‎的特点,舵机应该称为‎微型伺服马达‎。

早期在模型上‎使用最多,主要用于控制模型的舵‎面,所以俗称舵机‎。

舵机接受一个‎简单的控制指‎令就可以自动‎转动到一个比‎较精确的角度‎,所以非常适合‎在关节型机器‎人产品上使用‎。

仿人型机器人‎就是舵机运用‎的最高境界。

一、舵机的结构舵机简单是集‎成了直流电机‎、电机控制器和‎减速器等,并封装在一个‎便于安装的外‎壳里的伺服单‎元。

能够利用简单‎的输入信号比‎较精确的控制‎转动角度的机‎电系统。

舵机内部有一‎个电位器(或其它角度传‎感器)用于检测输齿‎轮箱出轴转动‎角度,控制板根据电‎位器的信息能‎比较精确的控‎制和保持输出‎轴的角度。

这样的直流电‎机控制方式叫‎闭环控制,所以舵机更准‎确的说是伺服‎马达,英文 servo。

舵机的主体结‎构主要有几个‎部分:外壳、减速齿轮组、电机、电位器、控制电路。

简单的工作原‎理是:控制电路接收‎信号源的控制‎信号,并驱动电机转‎动;齿轮组将电机‎的速度成大倍‎数缩小,并将电机的输‎出扭矩放大相‎应倍数,然后输出;电位器和齿轮‎组的末级一起‎转动,测量舵机轴转‎动角度;电路板检测并‎根据电位器判‎断舵机转动角‎度,然后控制舵机‎转动到目标角‎度或保持在目‎标角度。

舵机的外壳一‎般是塑料的,特殊的舵机可‎能会有铝合金‎外壳。

金属外壳能够‎提供更好的散‎热,可以让舵机内‎的电机运行在‎更高功率下,以提供更高的‎扭矩输出。

金属外壳也可‎以提供更牢固‎的固定位置。

齿轮箱有塑料‎齿轮、混合齿轮、金属齿轮的差‎别。

塑料齿轮成本‎底,噪音小,但强度较低;金属齿轮强度‎高,但成本高,在装配精度一‎般的情况下会‎有很大的噪音‎。

舵机基础知识

舵机基础知识

舵机基础知识:最近几年国内机器人开始起步发展,很多高校、中小学都开始进行机器人技术教学。

小型的机器人、模块化的机器人、组件式的机器人是教学机器人的首选。

在这些机器人产品中,舵机是最关键,使用最多的部件。

根据控制方式,舵机应该称为微型伺服马达。

早期在模型上使用最多,主要用于控制模型的舵面,所以俗称舵机。

舵机接受一个简单的控制指令就可以自动转动到一个比较精确的角度,所以非常适合在关节型机器人产品使用。

仿人型机器人就是舵机运用的最高境界。

一、舵机的结构舵机简单的说就是集成了直流电机、电机控制器和减速器等,并封装在一个便于安装的外壳里的伺服单元。

能够利用简单的输入信号比较精确的转动给定角度的电机系统。

舵机安装了一个电位器(或其它角度传感器)检测输出轴转动角度,控制板根据电位器的信息能比较精确的控制和保持输出轴的角度。

这样的直流电机控制方式叫闭环控制,所以舵机更准确的说是伺服马达,英文servo。

舵机的主体结构如下图所示,主要有几个部分:外壳、减速齿轮组、电机、电位器、控制电路。

简单的工作原理是控制电路接收信号源的控制信号,并驱动电机转动;齿轮组将电机的速度成大倍数缩小,并将电机的输出扭矩放大响应倍数,然后输出;电位器和齿轮组的末级一起转动,测量舵机轴转动角度;电路板检测并根据电位器判断舵机转动角度,然后控制舵机转动到目标角度或保持在目标角度。

舵机的外壳一般是塑料的,特殊的舵机可能会有金属铝合金外壳。

金属外壳能够提供更好的散热,可以让舵机内的电机运行在更高功率下,以提供更高的扭矩输出。

金属外壳也可以提供更牢固的固定位齿轮箱有塑料齿轮、混合齿轮、金属齿轮的差别。

塑料齿轮成本底,噪音小,但强度较低;金属齿轮强度高,但成本高,在装配精度一般的情况下会有很大的噪音。

小扭矩舵机、微舵、扭矩大但功率密度小的舵机一般都用塑料齿轮,如Futaba 3003,辉盛的9g微舵。

金属齿轮一般用于功率密度较高的舵机上,比如辉盛的995舵机,在和3003一样体积的情况下却能提供13KG的扭矩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DIYer修炼:舵机知识扫盲双向电梯• 1 简介• 2 舵机的结构和原理• 3 选择舵机• 4 舵机的支架和连接装置• 5 如何控制舵机• 6 舵机应用:云台网络摄像头•7 如何DIY连续旋转的舵机•8 连续旋转舵机的应用:5分钟的绘图机器人1 简介舵机控制的机器人● 我猜你肯定在机器人和电动玩具中见到过这个小东西,至少也听到过它转起来时那与众不同的“吱吱吱”的叫声。

对,它就是遥控舵机,常用在机器人技术、电影效果制作和木偶控制当中,不过让人大跌眼镜的是,它竟是为控制玩具汽车和飞机才设计的。

● 舵机的旋转不像普通电机那样只是古板的转圈圈,它可以根据你的指令旋转到0至180度之间的任意角度然后精准的停下来。

如果你想让某个东西按你的想法运动,舵机可是个不错的选择,它控制方便、最易实现,而且种类繁多,总能有一款适合你呦。

● 用不着太复杂的改动,舵机就可摇身一变成为一个高性能的、数字控制的、并且可调速的齿轮电机。

在这篇文章中,我会介绍舵机使用的的一些基础知识以及怎样制作一个连续运转舵机。

2 舵机的结构和原理A.标准舵机图解● 遥控舵机(或简称舵机)是个糅合了多项技术的科技结晶体,它由直流电机、减速齿轮组、传感器和控制电路组成,是一套自动控制装置,神马叫自动控制呢?所谓自动控制就是用一个闭环反馈控制回路不断校正输出的偏差,使系统的输出保持恒定。

我们在生活中常见的恒温加热系统就是自动控制装置的一个范例,其利用温度传感器检测温度,将温度作为反馈量,利用加热元件提输出,当温度低于设定值时,加热器启动,温度达到设定值时,加热器关闭,这样不就使温度始终保持恒定了吗。

B.闭环反馈控制● 对于舵机而言呢,位置检测器是它的输入传感器,舵机转动的位置一变,位置检测器的电阻值就会跟着变。

通过控制电路读取该电阻值的大小,就能根据阻值适当调整电机的速度和方向,使电机向指定角度旋转。

图A显示的是一个标准舵机的部件分解图。

图B显示的是舵机闭环反馈控制的工作过程。

3 选择舵机C.大扭力/微型/标准舵机● 舵机的形状和大小多到让人眼花缭乱,但大致可以如图C所示分类。

最右边身材不错的是常见的标准舵机,中间两个小不点是体积最小的微型舵机,左边的魁梧的那个是体积最大的大扭力舵机。

它们都是同样的三线控制,因此你可以根据需求换个大个的或小个的。

● 除了大小和重量,舵机还有两个主要的性能指标:扭力和转速,这两个指标由齿轮组和电机所决定。

扭力,通俗讲就是舵机有多大的劲儿。

在5V的电压下,标准舵机的扭力是5.5千克/厘米(75盎司/英寸),转速很容易理解,就是指从一个位置转到另一个位置要多长时间。

在5V电压下,舵机标准转度是0.2秒移动60度。

总之,和我们人一样,舵机的个子越大,转的就越慢但也越有劲儿。

● 赶快想好你要做的东西,让我们开始动手吧。

确定做什么之后,选择哪种大小的舵机(标准型、微型、绞盘型)就是小case了,你可以绅士般的从中选个最便宜的。

在这个项目中,我选的就是微型系列的HexTronik公司生产的HXT500型舵机,额定数值是扭力0.8千克,转速0.10秒,只花不到4美元就搞定了。

4 舵机的支架和连接装置D.多种舵盘● 想在你的项目中用上舵机,就要满足两个条件:一是需要个能把舵机固定到基座上的支架,二是得有个能将驱动轴和物体连在一起的连接装置。

支架一般舵机上就有,而且带有拧螺丝用的安装孔。

如果你仅仅是测试的话,用点儿热熔胶或者双面泡沫胶带就能轻松的固定住舵机。

● 怎样连接驱动轴呢,你会发现舵机都附带了一些有孔的小东西,这就是舵盘,它可以套在驱动轴,臂上打上了些小孔。

你只要用连接棒或者线把物体连到孔上,就可以将舵机的旋转运动变成物体的直线运动了,当然了,选用不同的舵盘或固定孔就能产生不同的运动啦。

● 图示的是几种不同的舵盘。

前面4个白色的是舵机附带的舵盘,右边四个是用激光切割机切割塑料得到的DIY舵盘。

最右边的2个是舵盘和支架的组合,如果你想实现两个舵机的组合运动,把这个舵盘的支架固定到另一个舵机的支架上就OK了。

E.普通舵盘设计F.其他舵盘● 制作普通舵盘对于童鞋们来说是比较容易的,先用矢量作图软件画一个多边形,这个多边形的半径和顶点数都要和舵机驱动轴匹配,这样它就能连接到驱动轴上了,其他种类的也是这样画出来的。

5 如何控制舵机G.3线接口● 像图所示那样,舵机有一个三线的接口。

黑色(或棕色)的线是接地线,红线接+5V电压,黄线(或是白色或橙色)接控制信号端。

H.控制信号● 控制信号(如图H)是一种脉宽调制(PWM)信号,凡是微控制器能轻松的产生这种信号。

在此文中,我用的是常用的Arduino开发环境下的微控制器。

● 脉冲的高电平持续1到2毫秒(ms),也就是1000到2000微秒(µs)。

在1000µs 时,舵机左满舵。

在2000µs时,右满舵。

不过你可以通过调整脉宽来实现更大或者更小范围内的运动。

● 控制脉冲的低电平持续20毫秒。

每经过20毫秒(50次每秒),就要再次跳变为高电平,否则舵机就可能罢工,难以保持稳定。

不过你要是想让它一瘸一拐的跳舞,倒可以采取这种方法。

这是一个完整的Arduino设计程序,在这个程序下,舵机始终在正中间位置,控制起来很容易I.舵机连接Arduino实验板● 红色和黑色的线分别接到Arduino开发板的5V电源脚和接地脚上。

控制线接到Arduino开发板的数字输入/输出脚9脚上。

● 用Arduino控制舵机也有不太给力的地方,就是Arduino程序把绝大部分时间都浪费在等待延迟命令上,不过童鞋们暂时不要失望,Arduino中内置有舵机函数,你可以用它内置的计数器来同时控制两个舵机(分别在9脚和10脚),是不是又豁然开朗了,这样我们不就能把节省下的编程代码干别的事情了吗。

这是一个调用了舵机函数的程序6 舵机应用:云台网络摄像头J.舵机控制的云台网络摄像头● 看了这么多内容了,是不是有点迫不及待练练手的冲动,那就先来个简单的,材料就是下面这些,两个舵机、一个Arduino板、一个用来装摄像头的可转动基座。

先用热胶把第一个舵机的舵盘固定到摄像头的底部,然后把第二个舵机固定到基座上,同时把它的舵盘固定到第一个舵机的一侧,最后把舵盘套到各自舵机上,哇塞,一个云台网络摄像头就这样诞生了。

● 图中是一个纯手工打造的云台网络摄像机,它用的是OpenWrt Linux系统的华硕wi-fi路由器。

● 网络摄像头和Arduino控制板都是用USB集线器连接到路由器上的。

通过Arduino的USB口同时控制两个舵机的程序● 大致的流程是这样滴,当串口上有两个字节到来时,程序开始工作,赋给第一个字节0-180的值,让它调节摇摆舵机(调左右),同样赋给第二个字节0-180的值,让它调节倾斜舵机(调上下)。

7 如何DIY连续旋转的舵机K.舵机的内部“解剖”结构● 任何舵机都能变成一个双向、可调速的降速齿轮电机。

通常情况下,需要驱动芯片和其他一些零件才能控制电机的转速和方向,这些部件舵机中都会附带,所以要想得到一个用到机器人上的数控连续旋转舵机,最简单也最便宜的的方法就是自己动手改造一个,哈哈,考验动手能力的时候又来了。

L.拿掉金属挡板● 需要改动的是部分的电路模块和机械模块,电路模块中,我们要找两个阻值相同的电阻来充当电位计,机械模块中,则要去掉防止电机过速的挡板。

M.卸下塑料挡板● 下面我们就开始吧,首先,卸开舵机外壳,HTX500舵机的外壳由3个塑料部分扣在一起。

你可以用个小一字改锥或是类似的片状工具把他撬开,然后从轴上取下齿轮组,(记得标记好各个小齿轮的位置哦),再从下面小心的取出舵机的电路板。

● 舵机上有两个机械制动挡板,用尖嘴钳卸下驱动轴基座上的金属挡板(图L),用斜嘴钳卸下外壳顶部的塑料挡板(图M)。

N.焊上电阻O.缠上胶带● 用两个阻值相加约5 kΩ的电阻来替代5 kΩ的电位计,实际制作中,选一对2.2kΩ的电阻就能满足要求了。

把电位计上的3根线焊下来,像图N那样焊到电阻上。

再把这个重新组装成的家伙用绝缘胶带或是绝缘管缠好(图O),最后再和电路板一起重新塞进舵机外壳中,扣好外壳,一个改造好的舵机就呈现在我们面前了。

● 手工制作阶段到此就结束了,但是现在还能高兴的太早,因为只有找到基准点才能算是大功告成。

在理想条件下,如果两个电阻完全相同,舵机就能精确的停到90度的位置上。

不过呢,理想和现实总是会差那么一点点,因此舵机就没像理想中那样么精确。

为了使舵机控制更精确,我们要找到一个基准点,方法是把上面编的程序灌进电路中,通过实验来看舵机究竟停在哪个角度,这个角度每个舵机都不相同,所以得出结果后要记录下来。

● 我们业余爱好者常用的舵机一般是用电位计来检测驱动轴转动到的角度,而用在工业机器人、电脑数控机床等大型系统中的舵机一般则要用旋转编码器来确定位置。

光学旋转编码器的原理是这样的,把一个带有窄缝的圆盘固定在转轴上,然后用一个LED灯和一个光敏元件来记录光通过窄缝照到光敏器件上的次数来计算当前旋转到的位置。

其实生活中这种技术也很常见,我们每天都要用的光电鼠标就是用的这个原理制作成的。

注:如果你不想撬开你心爱的舵机,Parallax公司(BASIC Stamp微处理器的制造商)有一款即用型,标准尺寸的连续转动舵机可供你使用。

8 连续旋转舵机的应用:5分钟的绘图机器人•P.安装好的绘图机器人*● 想做个会画画的的机器人吗,那就去找两个连续旋转舵机来吧,我们这就开始。

图O这个绘图机器人中包含了舵机两个,9V电池,面包板,Arduino电路板,三福记号笔各一个,外加一对塑料轮子。

● 它的电路和云台摄像头一样,我们直接拿来用,而且它的部件都可以用热胶粘到一起。

关于轮子的选择,更是简单,只要是直径在1到3英寸的圆东西都能用,比如塑料瓶盖之类的。

为了减小摩擦,增大牵引力,我们在车轮上缠上塑料胶带。

● 这样组装阶段就完成了。

接下来就是程序了,它的程序用一个包含基准点的变量来制动舵机,这个基准点我们上面已经通过实验测出(你的基准点可能不同)。

程序的控制流程为,先让一个舵机朝一个方向运动一段时间,然后换成另一个舵机转动,这样就能得到一个螺线形的图画了。

● 代码在此:#includeServo servoL;Servo servoR;int servoLZero = 83; // experimentally found to stop L motor int servoRZero = 91; // experimentally found to stop R motor boolean turnleft = false;void setup() {servoL.attach(9);servoR.attach(10);servoL.write(servoLZero); // start out not moving servoR.write(servoRZero); // start out not moving}void loop() {turnleft = !turnleft;if( turnleft ) {servoL.write( servoLZero - 10 );servoR.write( servoRZero );delay(1000);} else {servoL.write( servoLZero );servoR.write( servoRZero + 10 );delay(4000); // turn more one way than the other }}Q.运动中的绘图机器人● 注意:永久记号笔画的痕迹不好清除,童鞋们千万小心哈,最好让绘图机器人在硬纸板或其他不透水的纸的画画,或者索性换成支水溶性的记号笔。

相关文档
最新文档