人教版数学中考复习《因动点产生的相似三角形问题》

合集下载

中考冲刺班压轴题专项1--因动点产生的相似三角形问题

中考冲刺班压轴题专项1--因动点产生的相似三角形问题

源于名校,成就所托课题因动点产生的相似三角形问题教学目标就初三二模考的24,25题进行专项练习教学内容常规解题思路:1.坐标优先,不知道的坐标先以线段表示,最后再求坐标(如果是图形就是线段长度);2.找到相似的三角形中不变的角;3.以不变的角为夹角,利用S.A.S列比例关系(同一三角形的两边放在一块)列等式求值;4.求坐标的话记住两种方法,一种是相似(利用比例线段);一种是函数方法(两点之间距离公式&一次函数解析式)1.(青浦)如图,在直角梯形ABCD 中,AD // BC,/ A =90°, BD _ DC , BC =10cm,CD =6cm •在线段BC、CD上有动点F、E,点F以每秒2cm的速度,在线段BC上从点B向点C匀速运动;同时点E以每秒1cm的速度,在线段CD上从点C向点D匀速运动.当点F到达点C时,点E同时停止运动.设点F运动的时间为t (秒).(1)求AD的长;(2)设四边形BFED的面积为y,求y关于t的函数关系式,并写出函数定义域;(3)点F、E在运动过程中,如L CEF与二BDC相似,求线段BF的长.匚J轡立方数肓第24题图第24题备用图创新三维学习法让您全面发展源于名校,成就所托24.(徐汇)(本题满分12分,第(1 )、(2)题各6分)如图,已知抛物线y=ax 2,bx ,c 与x 轴交于A 、B 两点,与y 轴交于点C , D 为0C 的中点,直线AD 交抛物线于点 E (2, 6),且厶ABE 与厶ABC 的面积之比为3 : 2. (1) 求直线AD 和抛物线的解析式;(2) 抛物线的对称轴与 x 轴相交于点F ,点Q 为直线AD 上一点,且△ ABQ 与厶ADF 相似,直接写出 点Q 点的坐标.匚J 轡立方数肓源于名校,成就所托k24 .(本题满分12分)Rt^ABC 在直角坐标系内的位置如图所示,反比例函数y = .(k = 0)在第一象限内的x图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),心BDE 的面积为2。

专题03 动点引起的相似三角形存在性问题(解析版)

专题03 动点引起的相似三角形存在性问题(解析版)

专题04 动点引起的相似三角形存在性问题【相似三角形存在性】以A 、B 、C 为顶点的三角形与已知△DEF 相似,其中,∠ABC =∠DEF 分类讨论:①△ABC ∽△DEF ;②△CBA ∽△DEF 可得到:AB BC DE EF =;AB BC EF DE=,特殊地,当∠ABC =∠DEF =90°时,可借助tan ∠BAC =tan ∠DFE 或tan ∠BCA =tan ∠DFE 解答问题.【一题多解 · 典例剖析】例题1. (2021·山东省济宁市中考)如图,直线1322y x =-+分别交x 轴、y 轴于点A ,B ,过点A 的抛物线2y x bx c =-++与x 轴的另一交点为C ,与y 轴交于点()0,3D ,抛物线的对称轴l 交AD 于E ,连接OE 交AB于点F .(1)求抛物线解析式; (2)求证:OE AB ⊥;(3)P 为抛物线上的一动点,直线PO 交AD 于点M ,是否存在这样的点P ,使以A ,O ,M 为顶点的三角形与ACD △相似?若存在,求点P 的横坐标;若不存在,请说明理由.【答案】(1)y =-x 2+2x +3;(2)见解析;(3)存在,点P 113-±或±3 【解析】解:(1)∵直线1322y x =-+分别交x 轴、y 轴于点A ,B∴A (3,0),B (0,32), 又抛物线经过A (3,0),D (0,3),∴22033300b c c ⎧=-++⎨=-++⎩, 解得:23b c =⎧⎨=⎩即抛物线的解析式为y =-x 2+2x +3;(2)由y =-x 2+2x +3得,抛物线对称轴为x =1 设直线AD 的解析式为:y =kx +a , 将A (3,0),D (0,3)代入得:303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩即直线AD 的解析式为:y =-x +3, ∴E (1,2),G (1,0),在Rt △OEG 中,知tan ∠OEG =12OG EG = , 在Rt △OAB 中,tan ∠BAO =12OB OA =, ∴∠OEG =∠BAO , ∵∠OEG +∠EOG =90° ∴∠BAO +∠EOG =90° 即OE ⊥AB . (3)存在.∵A (3,0),抛物线的对称轴为直线x =1,∴C (-1,0), ∴AC =3-(-1)=4, ∵OA =OD =3,∠AOD =90°, ∴232AD OA ==,设直线CD 解析式为y =mx +n ,则:03m n n -+=⎧⎨=⎩,解得33m n =⎧⎨=⎩∴直线CD 解析式为y =3x +3, 易知,∠MAO =∠COD , 分类讨论:①当△AOM ∽△ACD 时,方法一:解析式法欲求P 点坐标,需求直线OP 的解析式,再与抛物线解析式联立即可. 可知,OM ∥CD即直线OP 的解析式为:y =3x , 联立y =3x ,y =-x 2+2x +3得: x 113-±即P 113-±方法二:比例法 易知AM AN AD OA =,AM AOAD AC=,∴=AN AOOA AC 即3=34AN ∴AN =94,ON =34即M (34,94)∴直线OM 解析式为:y =3x 联立y =3x ,y =-x 2+2x +3得: x =1132-±. 方法三:设参数法设M (m ,-m +3),0<m <3,A (3,0) 易知,AM AOAD AC =,即3432AM = 即AM =924∴(3-m )2+(-m +3)2=(924)2解析:m =34或m =214(舍)即M (34,94)∴直线OM 解析式为:y =3x 联立y =3x ,y =-x 2+2x +3得: x =1132-±. ②当△AMO ∽△ACD 时,方法一:比例法易知AM AOAC AD =, 即432AM = ∴AM 2由△AMN 为等腰直角三角形,知MN =AN =2, ∴ON =1,即M (1,2) ∴直线OM 的解析式为y =2x , 联立y =2x ,y =-x 2+2x +3得: x =±3方法二:设参数法 设M (m ,-m +3),0<m <3由AM 2得:(m -3)2+(-m +3)2=(22 解得:m =1或m =5(舍) ∴直线OM 的解析式为y =2x , 联立y =2x ,y =-x 2+2x +3得: x =±3综上所述,点P 113-±±3 【一题多解 · 对标练习】练习1.(2021·湖南省邵阳市中考)如图,在平面直角坐标系中,抛物线C :()20y ax bx c a =++≠经过点()1,1和()4,1.(1)求抛物线C 的对称轴.(2)当1a =-时,将抛物线C 向左平移2个单位,再向下平移1个单位,得到抛物线1C . ①求抛物线1C 的解析式.②设抛物线1C 与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,连接BC .点D 为第一象限内抛物线1C 上一动点,过点D 作DE OA ⊥于点E .设点D 的横坐标为m .是否存在点D ,使得以点O ,D ,E 为顶点的三角形与BOC 相似,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)x=2.5;(2)①y=-x2+x+2;②11+33【解析】解:(1)∵抛物线图像过(1,1)、(4,1)两点,∴抛物线对称轴为:x=(1+4)÷2=2.5;(2)①将点(1,1)、(4,1)向左平移2个单位,再向下平移1个单位,得到(-1,0),(2,0),将点(-1,0),(2,0),a=-1,代入抛物线解析式得:y=-x2+x+2.②根据①中的函数关系式,可得:A(2,0),B(-1,0),C(0,2),D(m,-m2+m+2),其中0<m<2可知∠BOC=∠DEO=90°,以点O,D,E为顶点的三角形与△OBC相似有两种情况,(i)当△ODE∽△BCO时,方法一、比例法则OE DEOB OC=,即2-++2=12m m m,解得m=1或-2(舍),方法二、三角函数tan∠BOC=tan∠ODE即OB OEOC DE=,21=2-++2mm m解得:m=1或-2(舍),(ii)当△ODE∽△CBO时,方法一、比例法则OE DEOC OB=,即2-++2=21m m m,解得:1+331-3344=或(舍)m方法二、三角函数tan∠BOC=tan∠DOE即OB DEOC OE=,21-++2=2m mm解得:1+331-3344=或(舍)m综上所述,满足条件的m的值为1或1+334.【多题一解·典例剖析】例题2.(2021·湖南省怀化市中考)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且2OA=,4OB=,8OC=,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)y=-x2+2x+8;(2)存在,(1,2)或17 1,2⎛⎫ ⎪⎝⎭.【解析】解:(1)∵OA=2,OB=4,OC=8,∴A(-2,0)、B(4,0)、C(0,8),设二次函数的解析式为y=ax2+bx+c,∴84201640c a b c a b c =⎧⎪-+=⎨⎪++=⎩ 解得:812c a b =⎧⎪=-⎨⎪=⎩∴二次函数的解析式为y =-x 2+2x +8;(2)存在以点P 、C 、M 为顶点的三角形与△MNB 相似, 理由如下:由(1)知抛物线对称轴为直线:x =1,设直线BC 的解析式为y =kx +t ,将点B 、C 坐标代入可得:408k b b +=⎧⎨=⎩, 解得:28a b =-⎧⎨=⎩,∴直线BC 的解析式为y =-2x +8, ∴点M (1,6),N (1,0),∴BN =3,MN =6,BM =35,CM =5, 由∠BMN =∠CMP 知,分两种情况讨论: ①当∠CPM =∠MNB =90°时,如图所示:易知CP ∥x 轴,∴点P 坐标为(1,8).②当∠PCM =∠MNB =90°时,如图所示:∴cos ∠CMP =cos ∠MNB 即CM MNPM BM=, 535=∴PM =52,即点P 坐标为171,2⎛⎫⎪⎝⎭.综上所述,符合要求的P 点坐标为(1,8)或171,2⎛⎫ ⎪⎝⎭. 【多题一解 · 对标练习】练习2.(2021·四川省遂宁市中考)如图,已知二次函数的图象与x 轴交于A 和B (-3,0)两点,与y 轴交于C (0,-3),对称轴为直线1x =-,直线y =-2x +m 经过点A ,且与y 轴交于点D ,与抛物线交于点E ,与对称轴交于点F .(1)求抛物线的解析式和m 的值;(2)在y 轴上是否存在点P ,使得以D 、E 、P 为顶点的三角形与△AOD 相似,若存在,求出点P 的坐标;若不存在,试说明理由.【答案】(1)y =(x +1)2-4;m =2;(2)存在,(0,12)或(0,14.5).【解析】解:(1)∵二次函数的图象与x 轴交于A 和B (-3,0)两点,对称轴为直线x =-1, ∴A (1,0),设二次函数解析式为:y =a (x -1)(x +3), 把C (0,-3)代入得: -3=a (0-1)(0+3), 解得:a =1,即二次函数解析式为:y = (x -1)(x +3),即:y =(x +1)2-4, ∵直线y =-2x +m 经过点A , ∴0=-2×1+m ,解得:m =2;(2)由(1)得:直线AF 的解析式为:y =-2x +2, 又直线y =-2x +2与y 轴交于点D ,与抛物线交于点E , ∴当x =0时,y =2,即D (0,2),联立()22214y x y x =-+⎧⎪⎨=+-⎪⎩,解得:11512x y =-⎧⎨=⎩,2210x y =⎧⎨=⎩, ∵点E 在第二象限, ∴E (-5,12),以D 、E 、P 为顶点的三角形与△AOD 相似,由∠EDP =∠ADO 知,分两种情况讨论. ①当∠EPD =∠AOD =90°时, 过点E 作EP ⊥y 轴于点P ,此时P (0,12);②当∠PED =∠AOD =90°时,过点E 作EP ’⊥AE ,则tan ∠ADO =tan ∠PEP’, ∴OA PP OD EP '=,即:125PP '=, 解得:PP ’=2.5,此时P’(0,14.5),综上所述:点P 的坐标为(0,12)或(0,14.5).练习3. (2021·四川省泸州市中考)如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A ,B ,C 三点(1)求证:∠ACB =90°(2)点D 是第一象限内该抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F . ①求DE +BF 的最大值;②点G 是AC 的中点,若以点C ,D ,E 为顶点的三角形与AOG 相似,求点D 的坐标.【答案】(1)(2)①9;②(4,6)或(3,254).【解析】解:(1)在213442y x x =-++中,当x =0,y =4即C (0,4)当y =0时,即2134042x x -++=解得:x =-2或x =8即A (-2,0),B (8,0)∴AB =10,AC 5BC 5则102=(52+(52即AB 2=AC 2+BC 2∴∠ACB =90°(2)①设直线BC 的解析式为:y =kx +b ,将(0,4),(8,0)代入得: 804k b b +=⎧⎨=⎩,解得:k =-0.5,b =4即直线BC 解析式为y =-0.5x +4设D (m ,213442m m -++),则BF =8-m ,DE =2124m m -+∴DE +BF =2124m m -++8-m =()21294m --+ ∵14-<0∴当m =2时DE +BF 取最大值,最大值为9.②∵点G 是AC 的中点,在Rt △AOC 中,OG =AG 5即△AOG 为等腰三角形,∵∠CAO +∠ACO =∠ACO +∠OCB =90°∴∠CAO =∠OCB又OC ∥DF∴∠OCB =∠CED∴∠CAO =∠CED设D (m ,213442m m -++),则E (m ,-0.5m +4),DE =2124m m-+ 当以点C ,D ,E 为顶点的三角形与△AOG 相似, 分两种情况讨论:①△ECD ∽△AOG 则CEDEAO AG =, 即212425m mCE -+=∴CE 21425m m -+又OC ∥DF ∴CEOFBC OB =845m=∴CE 5m21425m m -+5m解得:m =0(舍)或m =3即D (3,254)②△EDC ∽△AOG ,则CE DEAG OA=,212425m m-+=,∴CE=212452m m-+又OC∥DF,知,CE5m∴212452m m-+5m解得:m=0(舍)或m=4 即D(4,6)综上所述,D点坐标为(3,254)或(4,6).。

中考数学动点之相似三角形问题

中考数学动点之相似三角形问题

动点之相似三角形问题【例4】在边长为4的正方形ABCD 中,动点E 以每秒1个单位长度的速度从点A 开始沿边AB 向点B 运动,动点F 以每秒2个单位长度的速度从点B 开始沿边BC 向点C 运动,动点E 比动点F 先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F 的运动时间为t 秒.()1如图1,连接DE ,AF ,若DE AF ⊥,求t 的值()2如图2,连接,EF DF ,当t 为何值时,?EBF DCF【答案】(1)t=1;(2) 当t 为秒时,EBF DCF【解析】(1)利用正方形的性质及条件,得出ABF DAE ≌,由BF=AE ,列出方程解方程即可(2)EBF DCF ~,得到EB BF DC CF =,用t 表示出BF 、AE 、FC 、BE 列出方程解方程即可,最后对t 的取值进行取舍【详解】解:()1四边形ABCD 是正方形,90AB AD ABF DAE ︒∴=∠=∠=90ADE AED ︒∴∠+∠=DE AF ⊥90BAF AED ︒∴∠+∠=BAF ADE ∴∠=∠ABF DAE ∴≌由题意得,2,1BF t AE t ==+21t t ∴=+解得:1t =()2若EBF DCF ~ 则EB BF DC CF = 1,2AE t BF t =+=413BE t t ∴=-+=-,42CF t =-32442t t t -∴=-解得129922t t == 由题意知:2t ≤92t -∴=∴当t 为秒时,EBF DCF ~【点睛】本题考查正方形基本性质、全等三角形的判定与性质、相似三角形的判定与性质,第二问的关键在于能够写出比例式列出方程,最后要记得对方程的解进行取舍【变式4-1】已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,点A ,C 的坐标分别为A(﹣3,0),C(1,0),BC =34AC(1)求过点A ,B 的直线的函数表达式;(2)在x 轴上找一点D ,连接DB ,使得△ADB 与△ABC 相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P ,Q 分别是AB 和AD 上的动点,连接PQ ,设AP =DQ =m ,问是否存在这样的m ,使得△APQ 与△ADB 相似?如存在,请求出m 的值;如不存在,请说明理由.【答案】(1)y=34x+94;(2)D点位置见解析,D(134,0);(3)符合要求的m的值为125 36或25 9.【解析】(1)先根据A(−3,1),C(1,0),求出AC进而得出BC=3求出B点坐标,利用待定系数法求出直线AB的解析式即可;(2)运用相似三角形的性质就可求出点D的坐标;(3)由于△APQ与△ADB已有一组公共角相等,只需分△APQ∽△ABD和△APQ∽△ADB 两种情况讨论,然后运用相似三角形的性质建立关于m的方程,就可解决问题.【详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵BC=34AC,∴BC=34×4=3,∴B(1,3),设直线AB的解析式为y=kx+b,∴303k bk b-+=⎧⎨+=⎩,∴3494kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=34x+94;(2)若△ADB与△ABC相似,过点B作BD⊥AB交x轴于D,∴∠ABD=∠ACB=90°,如图1,此时ABAC=ADAB,即AB2=AC•AD.∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴25=4AD,∴AD=25 4,∴OD=AD﹣AO=254﹣3=134,∴点D的坐标为(134,0);(3)∵AP=DQ=m,∴AQ=AD﹣QD=254﹣m.Ⅰ、若△APQ∽△ABD,如图2,则有APAB=AQAD,∴AP•AD=AB•AQ,∴254m=5(254﹣m),解得m=25 9;Ⅱ、若△APQ∽△ADB,如图3,则有APAD=AQAB,∴AP•AB=AD•AQ,∴5m=254(254﹣m),解得:m=125 36,综上所述:符合要求的m的值为12536或259.【点睛】此题是相似形综合题,主要考查了是待定系数法,相似三角形的判定与性质、勾股定理等知识,也考查了分类讨论的数学思想,属于中档题,解本题的关键是根据相似建立方程求解.【变式4-2】如图,已知抛物线2y ax bx c =++经过A(-3,0)、B(8,0)、C(0,4)三点,点D 是抛物线上的动点,连结AD 与y 轴相交于点E ,连结AC ,CD .(1)求抛物线所对应的函数表达式;(2)当AD 平分∠CAB 时.①求直线AD 所对应的函数表达式;②设P 是x 轴上的一个动点,若△PAD 与△CAD 相似,求点P 的坐标.【答案】(1)215466y x x =-++;(2)①1322y x =+;②(2,0)或(13,0). 【解析】(1)将()30A -,、()8,0B 、()0,4C 点坐标代入抛物线2y ax bx c =++,化简计算即可;(2)①设()0,E t ,根据AD 平分CAB ∠,EH AC ⊥,EO x ⊥轴,求得5AC =,并证得CHE ∽ COA ,利用A EH OA CE C = 可的32t =,可得E 点坐标,把()30A -,,30,2E ⎛⎫ ⎪⎝⎭代入y kx b =+,化简可得AD 所对应的函数表达式;②因为P 是x 轴上的一个动点,且PAD △与CAD 相似,并且ACD 是腰长为5的等腰三角形,所以P 点有两种情况:AD 为等腰三角形的斜边,或者以AD 为腰,2P A 为底,分别讨论求解即可.【详解】解(1)∵抛物线经过()30A -,、()8,0B 、()0,4C 三点,∴93064804a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:16564a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的表达式为215466y x x =-++;(2)①作EH AC ⊥于点H ,如图,设()0,E t .∵AD 平分CAB ∠,EH AC ⊥,EO x ⊥轴,∴EH EO t ==,4CE t =-,在Rt OAC △中,5AC ==.∵90CHE COA ∠=∠= HCE OCA ∠=∠,∴CHE ∽ COA , ∴A EH OA CE C =∴435t t -=,解得:32t =, ∴30,2E ⎛⎫ ⎪⎝⎭,设直线AD 的表达式为y kx b =+,把()30A -,,30,2E ⎛⎫ ⎪⎝⎭代入, 得0332k b b =-+⎧⎪⎨=⎪⎩,解得:1232k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AD 所对应的函数表达式为1322y x =+; ②直线AD 与二次函数相交于点D , ∴2154661322y x x y x ⎧=-++⎪⎪⎨⎪=+⎪⎩解得30x y =-⎧⎨=⎩或54x y =⎧⎨=⎩, 点D 在第一象限,∴点D 坐标为()5,4,∴5DC AC ==,且DC AB ∥,∴ACD 是腰长为5的等腰三角形, P 是x 轴上的一个动点,且PAD △与CAD 相似,∴PAD △也为等腰三角形,如上图示,当AD 为等腰三角形的斜边时,115P A PD ==,()3,0A - ∴点1P 的坐标为()2,0;当以AD 为腰,2P A 为底时,作2DF AP ⊥ 点D 坐标为()5,4,()30A -,∴358AF OA OF =+=+=∴2216AP AF ==,2216313OP AP OA =-=-=,∴点P 的坐标为()13,0.综上所述点P 的坐标为()2,0或()13,0.【点睛】本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征和角平分线的性质;会利用待定系数法求二次函数和一次函数解析式;灵活利用相似比表示线段之间的关系;理解坐标与图形性质.。

人教版初三数学下册中考复习之因动点产生的相似问题

人教版初三数学下册中考复习之因动点产生的相似问题

C因动点产生的相似问题【内容分析】所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想、函数思想、方程思想、数形结合思想、转化思想,动态几何题已成为初中生毕业考数学试题的一大热点题型。

在近几年各地的中考试卷中,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力。

“动点问题”在我们的教材中没有安排单独的章节分析,所以需要通过这样的专题课对题型的特点以及解题的策略适当分析,以帮助学生掌握解决动态几何题的策略。

【教学目的】通过观察了解因动点产生的相似形问题的特点,熟悉对应的解题方法,掌握“动中取静,以静窥动”的处理策略。

培养学生对图形的直觉能力以及从变化中看到不变实质的数学洞察力。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

【教学方法】用几何画板制作课件让学生观察到由于点的运动引起图形的形状的改变,去发现一些基本图形中存在的相似关系,引导学生用已有的数学知识解决动态问题。

【教学过程】例1.△ABC 中,AB=AC ,∠BAC=120°,BC=3,点P 为BC 上一动点,∠APQ=30°(1)找出图中的相似三角形(2)求CQ 的最大值(3)若△PQC 与△ABC 相似,求BP 的长一个动点:本题中的基本图形简称“一线三等角”,不管点P 动到什么位置,图中有两组相似三角形。

相似,函数建模、分类讨论。

中考—动点产生的相似三角形、等腰三角形、直角三角形、平行四边形问题 含答案

中考—动点产生的相似三角形、等腰三角形、直角三角形、平行四边形问题 含答案

一、动点产生的相似三角形问题1、 满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM,x AM -=4.如果2==CO AOPM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意.如果21==COAOPM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6,2、 满分解答(1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m =-⨯-.解得m =4. (2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4, 0),E (0, 2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小. 设对称轴与x 轴的交点为P ,那么HP EOCP CO=. 因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2. (4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′.由于∠BCE =∠FBC ,所以当CE BC CB BF=,即2BC CE BF =⋅时,△BCE ∽△FBC . 设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+.解得x =m +2.所以F ′(m +2, 0).由'CO BF CE BF =4m BF +=.所以BF =. 由2BC CE BF =⋅,得2(2)m +=整理,得0=16.此方程无解.图2 图3 图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,所以BE BC BC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC . 在Rt △BFF ′中,由FF ′=BF ′,得1(2)()2x x m x m+-=+.解得x =2m .所以F ′(2,0)m .所以BF ′=2m +2,2)BF m =+.由2BCBE BF =⋅,得2(2)2)m m +=+.解得2m =±综合①、②,符合题意的m为2+考点伸展第(4)题也可以这样求BF 的长:在求得点F ′、F 的坐标后,根据两点间的距离公式求BF 的长.二、因动点产生的等腰三角形问题 满分解答(1)因为抛物线与x 轴交于A (-1,0)、B (3, 0)两点,设y =a (x +1)(x -3), 代入点C (0 ,3),得-3a =3.解得a =-1.所以抛物线的函数关系式是y =-(x +1)(x -3)=-x 2+2x +3. (2)如图2,抛物线的对称轴是直线x =1.当点P 落在线段BC 上时,P A +PC 最小,△P AC 的周长最小. 设抛物线的对称轴与x 轴的交点为H . 由BH PHBO CO=,BO =CO ,得PH =BH =2. 所以点P 的坐标为(1, 2).(3)点M 的坐标为(1, 1)、、(1,)或(1,0).设点M 的坐标为(1,m ).在△MAC 中,AC 2=10,MC 2=1+(m -3)2,MA 2=4+m 2.①如图3,当MA =MC 时,MA 2=MC 2.解方程4+m 2=1+(m -3)2,得m =1. 此时点M 的坐标为(1, 1).②如图4,当AM =AC 时,AM 2=AC 2.解方程4+m 2=10,得m =此时点M 的坐标为或(1,.③如图5,当CM =CA 时,CM 2=CA 2.解方程1+(m -3)2=10,得m =0或6. 当M (1, 6)时,M 、A 、C 三点共线,所以此时符合条件的点M 的坐标为(1,0).图3 图4 图54.思路点拨1.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备. 2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C . 满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当P A =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H . 三、①因动点产生的直角三角形问题5、满分解答(1)设抛物线的函数表达式为2(1)y x n =-+,代入点C (0,-3),得4n =-.所以抛物线的函数表达式为22(1)423y x x x =--=--.(2)由223(1)(3)y x x x x =--=+-,知A (-1,0),B (3,0).设直线BC 的函数表达式为y kx b =+,代入点B (3,0)和点C (0,-3),得30,3.k b b +=⎧⎨=-⎩ 解得1k =,3b =-.所以直线BC 的函数表达式为3y x =-.(3)①因为AB =4,所以334PQ AB ==.因为P 、Q 关于直线x =1对称,所以点P 的横坐标为12-.于是得到点P 的坐标为17,24⎛⎫-- ⎪⎝⎭,点F 的坐标为70,4⎛⎫- ⎪⎝⎭.所以75344FC OC OF =-=-=,522EC FC ==.进而得到51322OE OC EC =-=-=,点E 的坐标为10,2⎛⎫- ⎪⎝⎭.直线BC:3y x =-与抛物线的对称轴x =1的交点D 的坐标为(1,-2).过点D 作DH ⊥y 轴,垂足为H .在Rt △EDH 中,DH =1,13222EH OH OE =-=-=,所以tan ∠CED 23DH EH ==.②1(12)P -,25(1)2P -.图2 图3 图4②动点产生的平行四边形问题 2 满分解答(1) 因为抛物线与x 轴交于A (-4,0)、C (2,0)两点,设y =a (x +4)(x -2).代入点B (0,-4),求得12a =.所以抛物线的解析式为211(4)(2)422y x x x x =+-=+-. (2)如图2,直线AB 的解析式为y =-x -4.过点M 作x 轴的垂线交AB 于D ,那么2211(4)(4)222MD m m m m m =---+-=--.所以2142MDA MDB S S S MD OA m m ∆∆=+=⋅=--2(2)4m =-++.因此当2m =-时,S 取得最大值,最大值为4.(3) 如果以点P 、Q 、B 、O 为顶点的四边形是平行四边形,那么PQ //OB ,PQ =OB =4. 设点Q 的坐标为(,)x x -,点P 的坐标为21(,4)2x x x +-.①当点P 在点Q 上方时,21(4)()42x x x +---=.解得2x =-±此时点Q 的坐标为(2-+-(如图3),或(2--+(如图4). ②当点Q 在点P 上方时,21()(4)42x x x --+-=. 解得4x=-或0x =(与点O 重合,舍去).此时点Q 的坐标为(-4,4) (如图5).。

相似三角形之动点问题(解析版)九年级数学下册常考点微专题提分精练(人教版)

相似三角形之动点问题(解析版)九年级数学下册常考点微专题提分精练(人教版)

专题15 相似三角形之动点问题1.如图,在Rt ABC 中,9034C AC BC ∠=︒==,,,点E 是直角边AC 上动点,点F 是斜边AB 上的动点(点F 与A B 、两点均不重合).且EF 平分Rt ABC 的周长,设AE 长为x .(1)试用含x 的代数式表示AF = ;(2)若AEF △的面积为165,求x 的值; (3)当AEF △是等腰三角形时,求出此时AE 的长. 证明FDA BCA ∽,根据相似三角形的性质得出即可求解; AE =,②AE EF =,③Rt ABC 中,由勾股定理得:∴ABC 的周长512=.AE AF +=6AF AE =-故答案为:(2)过点AC .∴BC AC FD AC ⊥⊥,,∴FDA BCA ∽.BC DF AB AF =,即456=2445x DF -=, AEF △的面积为165∴90EMA C EAM CAB ∠=∠=︒∠=∠,,∴EAM BAC ∽,AE AM AB AC=, 1(6)253x x -=,同理FAN BAC∽,ANAC=,123xx=,3611,.如图,在ABC中,秒5个单位长度的速度向终点B运动,当点P不与点A、B重合时,作点P关于直线AC的对称点Q,连结PQ,以PQ、PB为边作PBMQ.设PBMQ与ABC重叠部分图形的面积为S,点P的运动时间为t秒.(1)直接用含t的代数式表示线段PQ的长并写出t的取值范围;(2)当点M落在边AC上时,求t的值及此时PBMQ的面积;(3)求S与t之间的函数关系式;(4)当PBMQ的对角线的交点到ABC的两个顶点的距离相等时,直接写出t的值.由意得5AP t =,PO QO =,在Rt ABC △中,AB =4,BC =3,11ABC S =△AB BM ∴=∴四边形PQMB PQ BM ∴=PBMQ S BM =3)当0<4196PQMB S S -△BT AC⊥125AB BCBTAC∴==22AT AB BT∴=-=AOP ABC∽△△::AP OA OP AC∴=3OP t∴=OT AT∴=∴(12S OP=则AK CK=,设AK CK x==.Rt CBK中,(234=+-258x=,=,∴OL AB∥,QO OB-+=x x14480根,连结BD,动点P从B出发,以1个单位每秒速度,沿BD方向运动,同时,动点Q从点D出发,以同样的速度沿射线DA运动,当点P到达点D时,点Q即停止运动,设运动时∆,使点M落在线段BD上.间为t秒.以PQ为斜边作Rt PQM(1)求线段BD 的长度;(2)求PDQ ∆面积的最大值;(3)当PQM ∆与BCD ∆相似时,求t 的值. DBA ∆4t 50BDC ∆时PM BC958t - 50DBC ∆时PM DC956t - 40DBC ∆时BDC ∆时综上,当5013t =或【点睛】本题考查相似三角形的动点问题,别注意分类讨论..如图,在ABC 中,P A B 2cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4cm /s 的速度移动,如果P Q , 分别从A B , 同时出发,问经过几秒钟,△△PBQ ABC .△ABC ,△ABC ,则20cm BC =420t ,解方程得,△ABC ,则2t ,解方程得,或5s 2时,△△ABC ,故答案是:1s 或5s 2【点睛】本题主要考查相似三角形性质的应用,掌握相似三角形的性质是解题的关键..如图,在ABC 中,90C ∠=︒,一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED 的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED 相似,求BED 的面积.在ABC 中,2AB AC =E 为AB 上动点可与5x =时,C 到AB 的距离为AC CB h AB ⨯=BEH BAC ∴∽EH BE AC AB= 35AC BE EH x AB ⋅== 12DEBS BD EH =⋅=6165y x =(2)由题意知90BEF ∠≠︒,故可以分两种情况.为顶点的三角形与BED 相似,又知EH BC H ⊥于综上所述,BED 的面积是【点睛】本题主要考查了相似三角形的性质,函数关系式.注意(2)中都要分情况进行讨论:要分BEF ∠时钝角还是锐角进行分类讨论,不要丢掉任何一种情况. 6.如图,矩形ABCD 中,AD AB ==25 , ,P 为CD 边上的动点,当ADP △与BCP 相似时,求DP 长.【答案】1DP = 或4 或2.5PBC ∽分两类情况讨论即可;PBC ∽时,2x 1 或4x = 1= 或4 本题考查了相似三角形与动点问题;在ABC 中,的速度向终点A 运动,另一动点Q 同时从点A 出发沿着AC 方向以1cm/s 的速度向终点C 运动,P 、Q 两点同时到达各自的终点,设运动时间为t (s ).APQ 的面积为2cm S .(1)求BC的长;(2)求S与t的函数关系式,并写出的取值范围;(3)当t为多少秒时,以P、C、Q为顶点的三角形和ABC相似?∴APH ABC ∆∆,PH BC, 6cm AB ==,2106t PH =, 486t -,AQ AC.如图,在ABC中,同时点Q从C出发,以3cm/s的速度向A运动,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为s t,(1)则AP=;AQ=____ (用含t的代数式表示)(2)求运动时间t的值为多少时,以A、P、Q为顶点的三角形与ABC相似?为顶点的三角形与ABC 相似,为顶点的三角形与ABC 相似.相似三角形的动点问题,=8cm BC ,,动点边上以每秒5cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4cm 的速度向点B 匀速运动,运动时间为t 秒()02t <<,连接PQ .(1)若BPQ 与ABC 相似,求t 的值;(2)直接写出BPQ 是等腰三角形时t 的值;(3)如图2,连接AQ 、CP ,若AQ CP ⊥,求t 的值.(2)BPQ 是等腰三角形时78t =【分析】(1)根据勾股定理可得①BPQ BAC ~,②BPQ BCA ~,根据相似三角形的性质将10cm 8cm BC =,代入计算即可得;BGQ BCA ~,得到比例式进而即可求解;(3)设AQ ,CP 交于点得3cm PM t =,BM ,再证出ACQ CMP ~,根据相似三角形的性质即可得.(1)解:∴=90ACB AC ∠︒,当BPQ BAC ~时,84=8t -, =1;当BPQ BCA ~时,BP BC 84=10t -, 4132=, 综上,t 的值为1或4132;15∴BGQ BCA ~,BG BQ BC BA =即582=810t -解得:6457t =; 综上所述:BPQ 是等腰三角形时解:如图,设AQ ,CP∴=90PM BC ACB ⊥∠︒,,BAC △,PM BM AC BC =,即3cm t =,BM (=8BC BM -+=90NCA ∠∠∴ACQ CMP ~,AC CQ CM MP=,即68-解得78t =, 经检验78t =是该分式方程的解.,在ABC 中,线PD PE ⊥,分别交AC 、BC 于点D ,E .(1)问题产生∴若P 为AB 中点,当,PD AC PE BC ⊥⊥时,PD PE= ; (2)问题延伸:在(1)的情况下,将若∴DPE 绕着点P 旋转到图2的位置,PD PE 的值是否会发生改变?如果不变,请证明;如果改变,请说明理由;(3)问题解决:如图3,连接DE,若PDE与ABC相似,求BP的值.是ABC的中位线,利用中位线定理即可得解;PM BC PN∥是ABC的中位线,得到,PNE,得到,即可得证;︒=︒,CAB∽△,利用90180,利用相似比即可得解,当(3)如图3,当PDE CBA △∽△时,则PDE B ∠=∠,165段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)当t为何值时,∴APQ与∴AOB相似?(2)当t为何值时,∴APQ的面积为24 5∴QE∴AO,BO∴AO,以1cm/s的速度沿DC、BA向终点C、A运动,点G、H分别为AE、CF的中点,设运动时间为t(s).(1)求证:四边形EGFH是平行四边形.(2)填空:①当t为______s时,四边形EGFH是菱形;②当t为______s时,四边形EGFH是矩形.∴四边形EGFH是菱形,G是AE的中点.点,连结DE ,点P 从点B 出发,沿折线BD -DE -EA 运动,到点A 后立即停止.点P 在BD 的速度运动,在折线DE -EA 上以1cm/s 的速度运动.在点P 的运动过程中,过点P 作PQ ∴BC 于点Q ,以PQ 为边作正方形PQMN ,点M 在线段BQ 上.设点P 的运动时间为t (s ).(1)当点P 在线段DE 上时,求正方形PQMN 的边长.(2)当点N 落在边AB 上时,求t 的值.(3)在点P 的整个运动过程中,记正方形PQMN 与∴ABC 重叠部分图形面积为S (cm ²),求S 与t 的函数关系式,写出相应t 的取值范围.(2)(3)∴PQ∥AC,∴DP=t-2,PQ=MQ=2,20∴PE=t-2-4=t-6,∴PE =t-6,P A 的速度向点B 匀速移动,动点Q 从点D 出发,沿DA 边以1/s cm 的速度向点A 匀速移动,一个动点到达端点时,另一个动点也停止运动,点P ,Q 同时出发,设运动时间为s t .(1)当t 为何值时,APQ △的面积为216cm(2)t 为何值时,以A ,P ,Q 为顶点的三角形与ABC 相似.为顶点的三角形与ABC APQ 的面积为(12102t ∴⋅⋅解得2t =或07.5t<< ABC∠=∴当BCAB=为顶点的三角形与ABC相似,1010 152∴=解得307t=为顶点的三角形与ABC相似.一元二次方程的解法等知识,角形的判定是解题的关键,同时注意分类讨论思想的运用.如图是两位同学对一道习题的交流,请认真阅读下列对话并完成相应的任务.解决问题:(1)写出正确的比例式及后续解答.(2)指出另一个错误,并给出正确解答.拓展延伸:(3)如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,是否存在时刻t,使以A,M,N为顶点的三角形与∴ACD相似?若存在,直接写出t的值;若不存在,请说明理由.DE AD )根据题意可知有两种情况分别是AMNDCA 和AMN DAC ,然后列出方程进行∴ADEABC 正确比例式是:DE BC =AD AB BC AB ⋅=()AB BD AB -5⨯5 另一个错误是没有进行分类讨论,如图,过点DE AD 第一种:当AMN DCA 时,,则AN =6-2t ,第二种:当AMN DAC时,AN,DC,,向点A以1厘米/秒的速度移动,点Q从点B开始沿BO向点O以1厘米/秒的速度移动.当一点运动到终点时,另一点也随之停止.如果P、Q同时出发,用t(秒)表示移动的时间(0<t<6),求当POQ与AOB相似时t的值.【答案】4或2∴ 当t=4或t=2时,∴POQ与∴AOB相似.【点睛】本题考查相似三角形的性质、解一元一次方程,熟练掌握相似三角形的对应边成比例是解答的关键.17.如图,△ABC中,AB=AC=10cm.BC=16cm,动点P从点C出发沿线段CB以2cm/s 的速度向点B运动,同时动点Q从点B出发沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也停止运动,设运动时间为t(单位:s),以点Q为圆心,BQ长为半径的∴Q与射线BA、线段BC分别交于点D,E,连接DP.(1)当t为何值时,线段DP与∴Q相切;(2)若∴Q与线段DP只有一个公共点,求t的取值范围;(3)当△APC是等腰三角形时,直接写出t的值.1 DE AN∴AB=AC=10cm,BC=16cm,AN∴BC,则2t =10,5个单位长度的速度沿折线BA ﹣AC 运动,点Q 以每秒3个单位长度的速度沿折线BC ﹣CA 运动,当点P ,Q 相遇时,两点同时停止运动,设点P 运动的时间为t 秒,∴PBQ 的面积为S .(1)当P ,Q 两点相遇时,t = 秒;(2)求S 关于t 的函数关系式,并直接写出t 的取值范围.2(02)824(2)3896(3)3t t t t <+<+.02t <时,当823t <时,当833t 时,利用三角形相似和三角形的的关系式.90C ∠=6AC =, AB ∴=53t t ∴+3.∴当P ,两点相遇时,3t =秒,故答案为:(2)02t <时,当823t <时,ABC ∆中,过点P 作PH ⊥90PHB C ∴∠=∠=︒,B ∠∠=ΔABC ∴∽∴PH BP AC AB=5BP t =,3PH t ∴=3BQ t =,132S ∴=⨯当823t <时,如图,165PCt =-,833t 时,如图,248PQ t =-,2(02)824(2)3896(3)3t t t t <+<+. 【点睛】本题主要考查了动点问题的函数图象,解决问题的关键是理清图象的含义即会识图.通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、中,∴C =90°以每秒 2 个单位长度的速度向终点 A 运动,同时动点 Q 从点 A 出发,沿折线 AC —CB 以每秒 2 个单位长度的速度向点 B 运动.当点 P 到达终点时,点 Q 也停止运动.设运动的时间为 t 秒.(1)AB = ;(2)用含 t 的代数式表示线段 CQ 的长;(3)当Q 在AC 上运动时,若以点A、P、Q为顶点的三角形与∴ABC 相似,求t 的值;(4)设点O 是P A 的中点,当OQ 与∴ABC 的一边垂直时,请直接写出t 的值.∴(4)OP OB =∴QP QB =点 O 是12OP ∴=B B ∠=∠BOQ BCA ∴∽,BQ OB AB BC∴=, ()1202222016t t -∴=, 解得50t =, AC BC ⊥OQ AC ∴∥BOQ BAC ∴∽,BQ OB BC AB∴=, ()1202221620t t -∴=, ∴207t =,AOQ ABC ∴∽,AQ AO AC AB∴=, 2AQ AC BC t =+-=122AO AP PB t =+=+2821012t t -+∴解得11013t =【点睛】本题考查了勾股定理,动点问题,相似三角形的性质与判定,分类讨论是解题的关20.如图,抛物线3y ax bx =+-交轴于,两点,与轴交于点.C 连接AC ,BC .(1)求抛物线的解析式;(2)如图1,点P 为抛物线在第三象限的一个动点,PM x ⊥轴于点M ,交AC 于点G ,PE AC ⊥于点E ,当PGE 的面积为1时,求点P 的坐标;(3)如图2,若Q 为抛物线上一点,直线OQ 与线段AC 交于点N ,是否存在这样的点Q ,使得以A ,O ,N 为顶点的三角形与ABC 相似.若存在,请求出此时点Q 的坐标;若不存在,请说明理由. 若AON ABC ∽,②若AON ACB ∽,由相似三角形的性质可求出点坐标,联立直线ON 和抛物线的解析式可求出答案.交x 轴于()30A -,,()10,两点,S=PEG12PG4PG=2为顶点的三角形与ABC相似,可分两种情况:∽,若AON ABCOA=,AB3=,49∽,若AON ACBOA=,AC3=,32=,22)--,,12。

中考专题练习-函数中因动点产生的相似三角形问题(含答案)

中考专题练习-函数中因动点产生的相似三角形问题(含答案)

- 一 -综合题讲解 函数中因动点产生的相似三角形问题例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。

⑴求抛物线的解析式;(用顶点式...求得抛物线的解析式为x x 41y 2+-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。

分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。

根据未知三角形中已知边与已知三角形的可能对应边分类讨论。

②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。

③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

练习1、已知抛物线2y ax bx c =++经过02P E ⎛⎫⎪ ⎪⎝⎭,及原点(00)O ,. (1)求抛物线的解析式.(由一般式...得抛物线的解析式为223y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理- 二-由.(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?练习2、如图,四边形OABC 轴上,点C 在y 轴上,将边BC 折叠,使点B 落在边OA 的点DCE =3tan 4EDA ∠=。

1.初三C专题(动点产生的相似三角形3星)

1.初三C专题(动点产生的相似三角形3星)

决以下问题:
(1)可用来证明线段成比例、角相等、线段相等、垂直、
平行等;
(2)可用来计算周长、边长、角度等;
(3)用来证明线段的平方比、图形面积的比等。
3
一、【分类讨论常见问题】 例 1.如图,在梯形 ABCD 中,AB‖CD,∠A=90 ,AB=3,CD=6, BE⊥BC 交直线 AD 于点 E。问:是否可能使△ABE、△CDE 与 △BCE 都相似?若能,请求出此时 AD 的长;若不能,请说明 理由。(★★★★)
A
B
E
D
C
练 1.如图,AB=16cm,AC=12cm,动点 P、Q 分别以每秒 2cm 和 1cm 的速度同时开始运动,其中点 P 从点 A 出发沿 AC 边 一直移到点 C 为止,点 Q 从点 B 出发沿 BA 边一直移动 到点 A 为止。(★★★★) (1) 写出 AP 的长 y1 和 AQ 的长 y 2 关于时间 t 的函数; (2) 经过多少时间后,△APQ 与△ABC 相似?
当点 E 在边 AD 上时,(如图 1) 易知∠EBC=∠A=∠D=90 , 考虑∠1 的对应角,容易得到∠1 ABE ,∠1 DCE , 所以必有∠1=∠2=∠3= 60 , 于是在△ABE、△CDE 中,易得 AE = 3 , DE = 2 3 , ∴ AD = 3 3 , 此时, BE = 2 3 , CE = 4 3 , BC=6, 即能使△ABE、△CDE 与△BCE 都相似; 当点 E 在边 AD 的延长线上时,(如图 2) 类似分析可得∠1=∠2=∠3=30 ,可求得 AD = 3 , 同样能使△ABE、△CDE 与△BCE 都相似.
A
B
D
ADC ∽ ACB ∽ CDB
① ADC ∽ ACB AD = AC = BD BC2 = BD AB

中考数学压轴题因动点产生的相似三角形问题专项练习(含答案)

中考数学压轴题因动点产生的相似三角形问题专项练习(含答案)

中考数学压轴题因动点产生的相似三角形问题专项练习1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45° 后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q 为顶点的三角形与△PAT相似时,求所有满足条件的t的值.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC 交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB 时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条件的所有k2的值.4.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB 于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;(3)当△BGE和△BAF相似时,求线段AF的长参考答案一.解答题(共36小题)【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠ PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.【解答】解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得解得.,故直线AB的解析式为y=x+2;22(2)如图①,过点Q 作x 轴的垂线QC ,交AB 于点C ,再过点Q 作直线AB 的垂线,垂足为D ,根据条件可知△QDC 为等腰直角三角形,则QD=QC .设Q (m ,m 2),则C (m ,m+2).∴QC=m+2﹣m 2=﹣(m﹣ )+ ,QD= QC= [﹣(m﹣ )+ ].故当m= 时,点Q 到直线AB的距离最大,最大值为;(3)∵∠APT=45°,∴△PBQ 中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B 作x 轴的平行线,与抛物线和y 轴分别交于点Q′、F .此时满足∠PBQ′=45°.∵Q′(﹣2,4),F (0,4),∴此时△BPQ′是等腰直角三角形,由题意知△PAT 也是等腰直角三角形.(i )当∠PTA=90°时,得到:PT=AT=1,此时t=1;(ii )当∠PAT=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F 为圆心,FB 为半径作圆,则P 、B 、Q′都在圆F 上,设圆F 与y 轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.设Q″(n ,n 2)(﹣2<n <0),由FQ″=2,得n 2+(4﹣n 2)2=22,即n 4﹣7n 2+12=0.解得n 2=3或n 2=4,而﹣2<n <0,故n=﹣,即Q″(﹣,3).可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.则ET= AE= ,OE=1,所以OT=﹣1,解得t=1﹣;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG= TG= a,AP=,∴ a+a= ,解得PT= a=﹣1,∴OT=OP﹣PT=3﹣,∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.2.【分析】(1)由AD⊥BC,BH⊥AO,利用垂直的定义得到一对直角相等,再由一对公共角,且半径相等,利用AAS得到三角形ADO与三角形BHO全等,利用全等三角形对应边相等得到OH=OD,利用等式的性质化简即可得证;(2)连接AB,AF,如图1所示,利用HL得到直角三角形ADB与直角三角形BHA全等,利用全等三角形对应角相等得到一对角相等,再由公共角相等得到三角形ABE与三角形AFB相似,由相似得比例即可确定出y与x的函数解析式;(3)连接OF,如图2所示,利用两对角相等的三角形相似得到三角形AFO与三角形FOG相似,由相似得比例求出BD的长即可.【解答】(1)证明:∵AD⊥BC,BH⊥AO,∴∠ADO=∠BHO=90°,在△ADO与△BHO中,,∴△ADO≌△BHO(AAS),∴OH=OD,又∵OA=OB,∴AH=BD;(2)解:连接AB、AF,如图1所示,∵AO是半径,AO⊥弦BF,∴∴AB=AF,∴∠ABF=∠AFB,在Rt△ADB与Rt△BHA中,,∴Rt△ADB≌Rt△BHA(HL),∴∠ABF=∠BAD,∴∠BAD=∠AFB,又∵∠ABF=∠EBA,∴△BEA∽△BAF,∴= ,∴BA2=BE•BF,∵BE•BF=y,∴y=BA2,∵∠ADO=∠ADB=90°,∴AD2=AO2﹣DO2,AD2=AB2﹣BD2,∴AO2﹣DO2=AB2﹣BD2,∵直径BC=8,BD=x,∴AB2=8x,则y=8x(0<x<4);方法二:∵BE•BF=y,BF=2BH,∴BE•BH=y,∵△BED∽△BOH,∴= ,∴OB•BD=BE•BH,∴4x=y,∴y=8x(0<x<4);(3)解:连接OF,如图2所示,∵∠GFB是公共角,∠FAE>∠G,∴当△FAE∽△FBG时,∠AEF=∠G,∵∠BHA=∠ADO=90°,∴∠AEF+∠DAO=90°,∠AOD+∠DAO=90°,∴∠AEF=∠AOD,∴∠G=∠AOD,∴AG=AO=4,∵∴∠AOD=∠AOF,∴∠G=∠AOF,又∵∠GFO是公共角,∴△FAO∽△FOG,∴= ,∵AB 2=8x ,AB=AF ,∴,∴AF=2x,=解得:x=3±,∵3+>4,舍去,∴BD=3﹣.3.【分析】(1)先通过解直角三角形求得A 的坐标,然后根据待定系数法即可求得直线AB 的解析式;(2)作DE ∥OA ,根据题意得出= = ,求得DE ,即D 的横坐标,代入AB 的解析式求得纵坐标,然后根据反比例函数图象上点的坐标特征即可求得k 1;(3)根据勾股定理求得AB 、OE ,进一步求得BE ,然后根据相似三角形的性质求得EF 的长,从而求得FM 的长,得出F 的坐标,然后根据反比例函数图象上点的坐标特征即可求得k 2.【解答】解:(1)∵A (3,0)、B (0,m )(m >0),∴OA=3,OB=m ,∵tan ∠BAO==2,∴m=6,设直线AB 的解析式为y=kx+b ,代入A (3,0)、B (0,6)得:解得:b=6,k=﹣2∴直线AB的解析式为y=﹣2x+6;(2)如图1,∵AD=2DB,∴= ,作DE∥OA,∴==,∴DE=OA=1,∴D的横坐标为1,代入y=﹣2x+6得,y=4,∴D(1,4),∴k1=1×4=4;(3)如图2,∵A(3,0),B(0,6),∴E(,3),AB==3,∵OE是Rt△OAB斜边上的中线,∴OE= AB=,BE=,∵EM⊥x轴,∴F的横坐标为,∵△OEF∽△OBE,∴=,∴,∴EF=,∴FM=3﹣=.∴F(,),∴k2=×=.。

因动点产生的相似三角形问题(解析版)-2024年中考数学压轴题重难点

因动点产生的相似三角形问题(解析版)-2024年中考数学压轴题重难点

因动点产生的相似三角形问题(解析版)通用的解题思路:第一类:设点法,当三角形的边长能用距离公式、铅垂高、水平宽表示出来时,一般采用设点法,先设点,再表示出边长,然后再用对应线段成比例来列出比例方程求出设点法中所包含的参数值;第二类:求点法,当三角形的边长不好用距离公式、铅垂高、水平宽表示出来时,一般采用数形结合的方法,根据平行、垂直、对称等位置关系,求出动点所在的直线方程,再与二次函数解析式联立,求出符合条件的交点。

第Ⅰ类:设点法1.如图,在平面直角坐标系中,抛物线2y x bx c =−++与x 轴交于A 、D 两点,与y 轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4),已知点(,0)E m 是线段DO 上的动点,过点E 作PE x ⊥轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式;(2)当点P 在直线BC m 的代数式表示PG 的长度;(3)在(2)的条件下,是否存在这样的点P ,使得以P 、B 、G 为顶点的三角形与DEH ∆相似?若存在,求出此时m 的值;若不存在,请说明理由.【解答】解:(1) 四边形OBCD 是矩形,点B 坐标为(0,4),D ∴点的坐标是(4,0)−,点B 和点D 在抛物线上,∴4164c b c =−−+ ,∴34b c =− = ,∴该抛物线的解析式为:234y x x =−−+;(2)2434m m =−−+ ,解得3m =−或0,∴抛物线与直线BC 的交点为(3−,4)(0,4),∴点P 在直线BC 上方时,m 的取值范围是:30m −<<,(,0)E m ,(0,4)B ,PE x ⊥ 轴交抛物线于点P ,交BC 于点G ,2(,34)P m m m ∴−−+,(,4)G m ,223443PG m m m m ∴=−−+−=−−,(3) 抛物线的解析式为:234y x x =−−+;设点2(,34)P m m m −−+,BG m ∴=,4DE m =+, //DO BC ,∴BG GHDE HE=,4GH = ,BG GH m ∴==−,4HE DE m ==+, 以P 、B 、G 为顶点的三角形与DEH ∆相似且90PGB DEH ∠=∠=°,PGB DEH ∴∆∆∽,∴PG GBDE HE=, GB PG ∴=,23m m m ∴−=−−,2m ∴=−或0m =(舍),即:2m =−。

中考数学重难点(函数图象的点) 因动点产生的相似三角形问题 (精选大题6例)

中考数学重难点(函数图象的点) 因动点产生的相似三角形问题 (精选大题6例)

因动点产生的相似三角形问题例1 2013年上海市中考第24题如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式; (2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图1动感体验请打开几何画板文件名“13上海24”,拖动点C 在x 轴上运动,可以体验到,点C 在点B 的右侧,有两种情况,△ABC 与△AOM 相似.请打开超级画板文件名“13上海24”,拖动点C 在x 轴上运动,可以体验到,点C 在点B 的右侧,有两种情况,△ABC 与△AOM 相似.点击按钮的左部和中部,可到达相似的准确位置。

思路点拨1.第(2)题把求∠AOM 的大小,转化为求∠BOM 的大小.2.因为∠BOM =∠ABO =30°,因此点C 在点B 的右侧时,恰好有∠ABC =∠AOM . 3.根据夹角相等对应边成比例,分两种情况讨论△ABC 与△AOM 相似. 满分解答(1)如图2,过点A 作AH ⊥y 轴,垂足为H . 在Rt △AOH 中,AO =2,∠AOH =30°, 所以AH =1,OH =3.所以A (1,3)-.因为抛物线与x 轴交于O 、B (2,0)两点, 设y =ax (x -2),代入点A (1,3)-,可得3a =. 图2 所以抛物线的表达式为23323(2)333y x x x x =-=-. (2)由2232333(1)y x x x =-=--,得抛物线的顶点M 的坐标为3(1,)3-.所以3tan 3BOM ∠=. 所以∠BOM =30°.所以∠AOM =150°. (3)由A (1,3)-、B (2,0)、M 3(1,)3-, 得3tan ABO ∠=,23AB =,23OM =.所以∠ABO =30°,3OAOM=. 因此当点C 在点B 右侧时,∠ABC =∠AOM =150°. △ABC 与△AOM 相似,存在两种情况:①如图3,当3BA OA BC OM ==时,23233BC ===.此时C (4,0). ②如图4,当3BC OABA OM==时,33236BC BA ==⨯=.此时C (8,0).图3 图4考点伸展在本题情境下,如果△ABC 与△BOM 相似,求点C 的坐标.如图5,因为△BOM 是30°底角的等腰三角形,∠ABO =30°,因此△ABC 也是底角为30°的等腰三角形,AB =AC ,根据对称性,点C 的坐标为(-4,0).图5例2 2012年苏州市中考第29题如图1,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1动感体验请打开几何画板文件名“12苏州29”,拖动点B 在x 轴的正半轴上运动,可以体验到,点P 到两坐标轴的距离相等,存在四边形PCOB 的面积等于2b 的时刻.双击按钮“第(3)题”,拖动点B ,可以体验到,存在∠OQA =∠B 的时刻,也存在∠OQ ′A =∠B 的时刻.思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上. 满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0, 4b).(2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .所以S四边形PCOB=S△PCO+S△PBO=1152428bx b x bx⨯⋅+⨯⋅==2b.解得165x=.所以点P的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444by x b x x x b=-++=--,得A(1, 0),OA=1.①如图4,以OA、OC为邻边构造矩形OAQC,那么△OQC≌△QOA.当BA QAQA OA=,即2QA BA OA=⋅时,△BQA∽△QOA.所以2()14bb=-.解得843b=±.所以符合题意的点Q为(1,23+).②如图5,以OC为直径的圆与直线x=1交于点Q,那么∠OQC=90°。

中考数学复习考点知识与题型专题讲义20---因动点产生的相似三角形问题(提高篇)

中考数学复习考点知识与题型专题讲义20---因动点产生的相似三角形问题(提高篇)

中考数学复习考点知识与题型专题讲义 20 因动点产生的相似三角形问题(提高篇)1.如图,在△ABC 中,AB =12cm ,BC =9cm ,动点P 从点A 开始沿AB 边以4cm /s 的速度向点B 运动;动点Q 从点B 开始沿BC 边以2cm /s 的速度向点C 运动.点P 和点Q 同时出发,当其中一个点到达终点时,另一点随之停止运动.设动点的运动时间为ts ,请问当△QBP 与△ABC 相似时,t 的值是多少?【分析】分两种情形:当BP BA=BQ BC时,两三角形相似,当BP BC=BQ BA时,两三角形相似,分别构建方程求解即可.【解答】解:由题意AB =12cm <BC =9cm ,AP =4t ,BQ =2t ,则BP =(12﹣4t )cm . 当BP BA=BQ BC时,两三角形相似,∴12−4t 12=2t 9,解得t =95. 当BP BC =BQ BA时,两三角形相似,∴12−4t9=2t12,解得t =2411,综上所述,当△QBP 与△ABC 相似时,t 的值是95或2411.【点评】本题考查相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,在Rt △ABC 中,∠ACB =90°,AC =5cm ,∠BAC =60°,动点M 从点B 出发,在BA 边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒√3cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若△MBN与△ABC相似,求t的值.(2)当t为何值时,四边形ACNM的面积最小?并求出最小值.【分析】(1)分两种情况:①当△MBN∽△ABC时,由相似三角形的对应边成比例得出比例式,即可得出t的值;②当△NBM∽△ABC时,由相似三角形的对应边成比例得出比例式,即可得出t的值;(2)过M作MD⊥BC于点D,则MD∥AC,证出△BMD∽△BAC,得出比例式求出MD=t.四边形ACNM的面积y=△ABC的面积﹣△BMN的面积,得出y是t的二次函数,由二次函数的性质即可得出结果.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,∴∠B=30°,∴AB=2AC=10,BC=5√3.分两种情况:①当△MBN∽△ABC时,则MBAB=BNBC,即2t10=√3−√3t5√3,解得:t=5 2.②当△NBM∽△ABC时,同理可得:t =157, 综上所述:当t =52或157时,△MBN 与△ABC 相似;(2)过M 作MD ⊥BC 于点D ,则MD ∥AC ,∴△BMD ∽△BAC , ∴MD AC=BM AB,即MD 5=2t10,解得:MD =t .设四边形ACNM 的面积为y ,y =12×5×5√3−12(5√3−√3t )t =√32(t ﹣2.5)2+758√3. 根据二次函数的性质可知,当t =2.5时,y 的值最小值为75√38. 【点评】本题是相似形综合题目,考查了相似三角形的判定与性质、含30°角的直角三角形的性质、三角形面积的计算;本题综合性强,证明三角形相似是解决问题的关键.3.如图,△ABC 中,∠C =90°,AC =3cm ,BC =4cm ,动点P 从点B 出发以2cm /s 速度向点c 移动,同时动点Q 从C 出发以1cm /s 的速度向点A 移动,设它们的运动时间为t 秒. (1)根据题意知:CQ = t cm ,CP = (4﹣2t ) cm ;(用含t 的代数式表示) (2)t 为何值时,△CPQ 与△ABC 相似.【分析】(1)结合题意,直接得出答案即可;(2)设经过t秒后两三角形相似,则可分下列两种情况进行求解:①若Rt△ABC∽Rt△QPC,②若Rt△ABC∽Rt△PQC,然后列方程求解.【解答】解:(1)经过t秒后,CQ=t,CP=4﹣2t,故答案为:t;(4﹣2t).(2)设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则ACBC=QCPC,即34=t4−2t,解得t=1.2;②若Rt△ABC∽Rt△PQC则PCQC=ACBC,即4−2tt=34,解得t=1611;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.答:要使△CPQ与△CBA相似,运动的时间为1.2或1611秒.【点评】本题考查动点问题,相似三角形的判定和性质,掌握相似三角形的性质是解决问题的关键;特别是(2)注意分类讨论.4.在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB向点B方向运动,如果点P的速度是4cm/s,点Q的速度是2cm/s,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:(1)当t=3时,这时,P,Q两点之间的距离是多少.(2)当t为多少时,PQ的长度等于4√10?(3)当t为多少时,以点C,P,Q为顶点的三角形与ABC相似?【分析】先由运动知,CQ=2tcm,CP=(20﹣4t)cm,再确定出0≤t≤5;(1)先求出CP=8cm,CQ=6cm,最后用勾股定理求出PQ,即可得出结论;(2)利用勾股定理得出(4√10)2=(20﹣4t)2+(2t)2,解方程,即可得出结论;(3)分①△CPQ∽△CAB和②△CPQ∽△CBA,利用相似三角形得出比例式,建立方程求解,即可得出结论.【解答】解:由运动知,AP=4tcm,CQ=2tcm,∵AC=20cm,∴CP=(20﹣4t)cm,∵点P在AC上运动,∴4t≤20,∴t≤5,∵点Q在BC运动,∴2t≤15,∴t≤7.5,∴0≤t≤5,(1)当t=3时,CP=8cm,CQ=6cm,在Rt△PCQ中,根据勾股定理得,PQ=√CP2+CQ2=10(cm);(2)在Rt △PCQ 中,根据勾股定理得,PQ 2=CP 2+CQ 2, ∵PQ =4√10,∴(4√10)2=(20﹣4t )2+(2t )2, 解得,t =2或t =6(舍去),即当t 为2时,PQ 的长度等于4√10;(3)∵以点C ,P ,Q 为顶点的三角形与ABC 相似,且∠C =∠C =90°, ∴①△CPQ ∽△CAB , ∴CP AC=CQ BC,∴20−4t 20=2t15,∴t =3,②△CPQ ∽△CBA , ∴CP BC=CQ AC,∴20−4t 15=2t20,∴t =4011, 即当t 为3或4011时,以点C ,P ,Q 为顶点的三角形与ABC 相似.【点评】此题是相似形综合题,主要考查了勾股定理,相似三角形的性质,用方程的思想解决问题是解本题的关键.5.在Rt △ABC 中,∠C =90°,AC =8cm ,BC =6cm .现有动点P 从点A 出发,沿AC 向点C 方向运动,动点Q 从点C 出发,沿线段CB 向点B 方向运动.如果点P 的速度是2cm /秒,点Q 的速度是1cm /秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动,设运动的时间为t 秒.(1)用含t 的代数式表示Rt △CPQ 的面积S ; (2)当t =2秒时,P ,Q 两点之间的距离是多少?(3)当t 为多少秒时,以点C ,P ,Q 为顶点的三角形与△ABC 相似?【分析】(1)先由运动知,AP =2t ,CQ =t ,得出CP =8﹣2t ,最后用三角形的面积公式,即可得出结论;(2)先求出CP =4cm ,CQ =2cm ,最后用勾股定理求解,即可得出结论;(3)分Rt △CPQ ∽Rt △CAB 或Rt △CPQ ∽Rt △CBA 两种情况,利用相似三角形的性质得出比例式,建立方程求解,即可得出结论.【解答】解:(1)由题意得:AP =2t ,CQ =t ,则CP =8﹣2t ,∴Rt △CPQ 的面积为S =12CP ×CQ =12×(8−2t)×t =4t −t 2(0≤t ≤4);(2)由题意得:AP =2t ,CQ =t ,则CP =8﹣2t , 当t =2秒时,CP =8﹣2t =4cm ,CQ =2cm .在Rt △CPQ 中,由勾股定理得:PQ =√CP 2+CQ 2=√42+22=2√5cm ;(3)由题意得:AP =2t ,CQ =t ,则CP =8﹣2t ,∵以点C ,P ,Q 为顶点的三角形与△ABC 相似,且∠ABC =∠PCQ =90°, ∴分Rt △CPQ ∽Rt △CAB 或Rt △CPQ ∽Rt △CBA 两种情况: ①当Rt △CPQ ∽Rt △CAB 时,则CP CA=CQ CB,∴8−2t8=t6,解得:t=125秒;②当Rt△CPQ∽Rt△CBA时,则CPCB =CQCA,∴8−2t6=t8,解得:t=3211秒;因此t=125秒或t=3211秒时,以点C、P、Q为顶点的三角形与△ABC相似.【点评】此题是相似形综合题,主要考查了勾股定理,三角形的面积公式,相似三角形的性质,用分类讨论的思想解决问题是解本题的关键.6.如图,在平面直角坐标系中,点B(12,10),过点B作x轴的垂线,垂足为A.作y轴的垂线,垂足为C点D从O出发,沿y轴正方向以每秒1个单位长度运动;点E从O出发,沿x轴正方向以每秒3个单位长度运动;点F从B出发,沿BA方向以每秒2个单位长度运动.当E点运动到点A时,三点随之停止运动.设运动时间为t.(1)用含t的代数式分别表示点E,点F的坐标.(2)若△ODE与以点A,E,F为顶点的三角形相似,求t的值.【分析】(1)由题可得OE=3t,OD=t,BF=2t,易证四边形OABC是矩形,从而可得AB=OC =10,BC=OA=12,从而可求出OE、AF,即可得到点E、F的坐标;(2)只需分两种情况(①△ODE∽△AEF,②△ODE∽△AFE)讨论,然后运用相似三角形的性质就可解决问题【解答】解:(1)由题可得OE=3t,OD=t,BF=2t.∵BA ⊥x 轴,BC ⊥y 轴,∠AOC =90°, ∴∠AOC =∠BAO =∠BCO =90°, ∴四边形OABC 是矩形, ∴AB =OC ,BC =OA . ∵B (12,10),∴BC =OA =12,AB =OC =10, ∴AF =10﹣2t ,AE =12﹣3t ,∴点E 的坐标为(3t ,0),点F 的坐标为(12,10﹣2t );(2)①当△ODE ∽△AEF 时, 则有OD AE =OE AF,∴t 12−3t=3t10−2t,解得t 1=0(舍),t 2=267; ②当△ODE ∽△AFE 时, 则有OD AF =OE AE,∴t 10−2t=3t12−3t,解得t 1=0(舍),t 2=6.∵点E 运动到点A 时,三点随之停止运动, ∴3t ≤12, ∴t ≤4. ∵6>4, ∴t =6舍去,综上所述:t 的值为267.【点评】本题主要考查了相似三角形的判定与性质、矩形的判定与性质、轴对称的性质等知识,运用分类讨论的思想是解决本题的关键.7.如图(1),在△ABC 中,∠C =90°,AC =8cm ,BC =6cm .点P 由点B 出发沿BA 方向向点A 匀速运动,同时点Q 由点A 出发沿AC 方向向点C 匀速运动,它们的速度均为2cm /s .作PD ⊥AC 于D ,连接PQ ,设运动时间为t (s )(0<t <4),解答下列问题:(1)设△APQ 的面积为S ,求S 与t 之间的函数关系式,并求出S 的最大值; (2)当t 的值为52或2513或4013时,△APQ 是等腰三角形.【分析】(1)根据垂直的定义得到∠PDA =∠C =90°,根据相似三角形的性质得到AP AB=PD BC,求得PD =6−65t ,根据三角形的面积公式得到S =12AQ ⋅PD =12⋅2t ⋅(6−6t5)=−65t 2+6t =−65(t −52)2+152,根据二次函数的性质即可得到结论;(2)当AP =AQ 时,即10﹣2t =2t ,当AQ =QP 时,如图1,过Q 作QE ⊥AP 于E ,根据相似三角形的性质得到5−t 8=2t 10,当AP =PQ 时,如图2,∵PD ⊥AC ,根据相似三角形的性质得到10−2t 10=t8,解方程即可得到结论.【解答】解:(1)∵PD ⊥AC , ∴∠PDA =∠C =90°,又∵∠A=∠A,∴△ADP∽△ACB,∴APAB=PDBC,∵AC=8cm,BC=6cm,∠C=90°,∴AB=10cm,∴AP=10﹣2t,AQ=2t,∴10−2t10=MD6,∴PD=6−65 t,∴S=12AQ⋅PD=12⋅2t⋅(6−6t5)=−65t2+6t=−65(t−52)2+152,∵0<t<4,∴t=52时,S有最大值是152;(2)当AP=AQ时,即10﹣2t=2t,解得:t=5 2,当AQ=QP时,如图1,过Q作QE⊥AP于E,∴AE=12AP=5﹣t,∵∠A=∠A,∠AEQ=∠C=90°,∴△AEQ∽△ACB,∴AEAC=AQAB,∴5−t8=2t10,解得:t=25 13,当AP=PQ时,如图2,∵PD⊥AC,∴AD=12AQ=t,∵△ADP ∽△ACB ,∴AP AB =AD AC , ∴10−2t 10=t 8, 解得:t =4013, 综上所述,当t 的值为52或2513或4013 时,△APQ 是等腰三角形, 故答案为:52或2513或4013.【点评】本题考查了相似三角形的判定和性质,勾股定理,等腰三角形的性质,(3)分类讨论是解题的关键.8.如图,在△ABC 中,BA =BC =12cm ,AC =16cm ,点P 从A 点出发,沿AB 以每秒3cm 的速度向B 点运动,同时点Q 从C 点出发,沿CA 以每秒4cm 的速度向A 点运动,设运动的时间为x 秒.(1)当x 为何值时,△APQ 与△CQB 相似?(2)当S △BCQS △ABC =14时,请直接写出S △BPQ S △ABC 的值.【分析】(1)分两种情况,根据相似三角形的性质列比例式求解即可:①当△APQ ∽△CQB 时;②当△APQ ∽△CBQ 时;(2)先由S △BCQS △ABC =14得出CQ 的长,从而可得AQ 的长,再由点P 和点Q 的速度,可得AP 的长,从而BP 的长可求,根据等高三角形的面积比等于高所在的底边之比,可求的答案.【解答】(1)解:由题意得:AP =3x ,QC =4x ,AQ =16﹣4x∴BA =BC∴∠A =∠C .①当△APQ ∽△CQB 时CQ AP =BC AQ∴4x 3x =1216−4x解得:x =74.②当△APQ ∽△CBQ 时CQ AQ =BC AP∴4x 16−4x =123x解得:x 1=﹣2+2√5,x 2=﹣2﹣2√5(舍去)综上所述,当x =74或﹣2+2√5时,△APQ 与△CQB 相似.(2)由图形可知,当S △BCQ S △ABC =14时,CQ AC =14 ∵AC =16cm∴CQ =4cm ,AQ =12cm∵BA =BC =12cm ,点P 从A 点出发,沿AB 以每秒3cm 的速度向B 点运动,同时点Q 从C 点出发,沿CA 以每秒4cm 的速度向∴AP=3cm,BP=9cm∴S△BPQS△AQB=912=34∵S△BCQS△ABC=14,∴S△AQBS△ABC=34∴S△BPQS△ABC=S△BCQS△ABC•S△AQBS△ABC=34×34=916∴S△BPQS△ABC的值为916.【点评】本题考查了相似三角形的判定与性质、等高三角形的面积问题等知识点,熟练掌握相关性质定理并数形结合,是解题的关键.9.如图1,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒3cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒2cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)(如图2)连接AQ,CP,若AQ⊥CP,求t的值.【分析】(1)根据勾股定理求出AB,分△BPQ∽△BAC、△BPQ∽△BCA两种情况,根据相似三角形的性质列出比例式,计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,BQ=8﹣4t,根据△ACQ ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解答】解:(1)①当△BPQ∽△BAC时,∵BPBA=BQBC,BP=3t,QC=2t,AB=10cm,BC=8cm,∴3t10=8−2t8,∴t=20 11,②当△BPQ∽△BCA时,∵BPBC=BQBA,∴8−2t10=3t8,∴t=32 23;∴t=3223或2011时,△BPQ与△ABC相似;(2)如图所示,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=3t,PM=95t,BM=125t,MC=8−125t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,∴△ACQ∽△CMP,∴ACCM=CQMP,∴68−125t=2t95t解得:t=13 12;【点评】此题是相似形综合题,主要考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,等腰三角形的性质,由三角形相似得出对应边成比例是解题的关键.10.如图所示,在等腰△ABC 中,AB =AC =10cm ,BC =16cm .点D 由点A 出发沿AB 方向向点B 匀速运动,同时点E 由点B 出发沿BC 方向向点C 匀速运动,它们的速度均为1cm /s .连接DE ,设运动时间为t (s )(0<t <10),解答下列问题:(1)当t 为何值时,△BDE 的面积为7.5cm 2;(2)在点D ,E 的运动中,是否存在时间t ,使得△BDE 与△ABC 相似?若存在,请求出对应的时间t ;若不存在,请说明理由.【分析】(1)根据等腰三角形的性质和相似三角形的判定和性质求三角形BDE 边BE 的高即可求解;(2)根据等腰三角形和相似三角形的判定和性质分两种情况说明即可.【解答】解:(1)分别过点D 、A 作DF ⊥BC 、AG ⊥BC ,垂足为F 、G如图∴DF ∥AG ,DF AG =BD AB∵AB =AC =10,BC =16∴BG =8,∴AG =6.∵AD =BE =t ,∴BD =10﹣t ,∴DF 6=10−t 10解得DF =35(10﹣t )∵S △BDE =12BE •DF =7.5∴35(10﹣t )•t =15 解得t =5.答:t 为5秒时,△BDE 的面积为7.5cm 2.(2)存在.理由如下:①当BE =DE 时,△BDE ∽△BCA ,∴BE AB =BD BC 即t 10=10−t 16,解得t =5013, ②当BD =DE 时,△BDE ∽△BAC ,BE BC =BD AB 即t 16=10−t 10,解得t =8013.答:存在时间t 为5013或8013秒时,使得△BDE 与△ABC 相似.【点评】本题考查了相似三角形的判定和性质、等腰三角形的性质,解决本题的关键是动点变化过程中形成不同的等腰三角形.11.如图,平面直角坐标系中,菱形OABC 的边OA 在x 轴正半轴上,OA =10,cos ∠COA =35.一个动点P 从点O 出发,以每秒1个单位长度的速度沿线段OA 方向运动,过点P 作PQ ⊥OA ,交折线段OC ﹣CB 于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线OA 上,当P 点到达A 点时,运动结束.设点P 的运动时间为t 秒(t >0).(1)C 点的坐标为 (6,8) ,当t = 307 时N 点与A 点重合;(2)在整个运动过程中,设正方形PQMN 与菱形OABC 的重合部分面积为S ,直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)如图2,在运动过程中,过点O 和点B 的直线将正方形PQMN 分成了两部分,请问是否存在某一时刻,使得被分成的两部分中有一部分的面积是菱形面积的15?若存在,请求出对应的t 的值;若不存在,请说明理由.【分析】(1)根据菱形的性质得出OA =OC ,再根据三角函数求出点C 的坐标即可,根据OA =10,构建方程求解即可.(2)根据面积公式列出函数关系式,注意动点运动时的几种情况,得出自变量的取值范围;(3)根据被分成的两部分中有一部分的面积是菱形面积的15,画出图示,分几种情况进行讨论解答.【解答】解:(1)∵菱形OABC 中,OA =10,∴OC =10,∵cos ∠COA =35,∴点C 的坐标为:(6,8),∵动点P 从点O 出发,以每秒1个单位长度的速度沿线段OA 方向运动,∵cos ∠COA =35=OP OQ ,OP =t ,∴OQ =53t ,∴QP =43t ,∵OA =10,N 点与A 点重合,∴43t +t =10, ∴t =307∴t =307时,N 点与A 点重合; (2)①0<t ≤307,S =169t 2, ②307<t ≤6,S =−5027t 2+2809t −2003, ③6<t ≤8,S =−23t 2+83t +1843, ④8<t ≤10,S =104﹣8t ; (3)S 菱形=80,直线OB 过原点(0,0),B 点(16,8),故直线OB 解析式为y =x 2,直线OB 与PQ 、MN 分别交于E 、F 点,如图:①当0<t ≤6,EP =t 2,EQ =5t 6,FN =7t 6,FM =t 6,若S 四边形QEFM =15S 菱形,则12(5t 6+t 6)⋅4t 3=16,t 1=2√6, 若S 四边形EPNF =15S 菱形,则12(t 2+7t 6)⋅4t 3=16,t 2=65√10, ②当6<t ≤8,EP =t 2,EQ =8−t 2,FN =t 2+4,FM =4−t 2, 若S 四边形EPNF =15S 菱形则12(t +4)⋅8=16,t =0(舍),若S 四边形QEFM =15S 菱形,则12(12−t)⋅8=16,t 3=8; ③8<t ≤10,不存在符合条件的t 值.【点评】此题考查的是函数综合题,难度比较大,关键是运用四边形的性质和面积公式进行分析,注意出现的几种情况讨论,不能漏解.12.如图,Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,动点P 从点B 出发,在BA 边上以每秒5cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4cm 的速度向点B 匀速运动,运动时间为t 秒(0<t <2),连接PQ .(1)若△BPQ 与△ABC 相似,求t 的值;(2)连接AQ 、CP ,若AQ ⊥CP ,求t 的值.【分析】(1)分两种情况:①当△BPQ ∽△BAC 时,BP :BA =BQ :BC ;当△BPQ ∽△BCA 时,BP :BC =BQ :BA ,再根据BP =5t ,QC =4t ,AB =10cm ,BC =8cm ,代入计算即可;(2)过P 作PM ⊥BC 于点M ,AQ ,CP 交于点N ,则有PB =5t ,PM =3t ,MC =8﹣4t ,根据△ACQ ∽△CMP ,得出AC :CM =CQ :MP ,代入计算即可.【解答】解:根据勾股定理得:BA =√62+82=10;(1)分两种情况讨论:①当△BPQ ∽△BAC 时,BP BA =BQ BC ,∵BP =5t ,QC =4t ,AB =10,BC =8,∴5t 10=8−4t 8,解得,t =1,②当△BPQ ∽△BCA 时,BP BC =BQ BA , ∴5t 8=8−4t 10,解得,t =3241; ∴t =1或3241时,△BPQ ∽△BCA ;(2)过P 作PM ⊥BC 于点M ,AQ ,CP 交于点N ,如图所示:则PB =5t ,PM =3t ,MC =8﹣4t ,∵∠NAC +∠NCA =90°,∠PCM +∠NCA =90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴ACCM=CQMP,∴68−4t=4t3t,解得t=78.【点评】本题考查了相似三角形的判定与性质;由三角形相似得出对应边成比例是解题的关键.13.如图,在平面直角坐标系中,点C在x轴上,∠OCD=∠D=90°,AO=OC=10cm,CD=6cm.(1)请求出点A的坐标.(2)如图2,动点P、Q以每秒1cm的速度分别从点O和点C同时出发,点P沿OA、AD、DC 运动到点C停止,点Q沿CO运动到点O停止.设P、Q同时出发t秒.①是否存在某个时间t(秒),使得△OPQ为直角三角形?若存在,请求出t的值;若不存在,请说明理由.②若记△POQ的面积为y(cm2),求y(cm2)关于t(秒)的函数关系式.【分析】(1)做AE⊥OC,根据平行线的性质推出OM的长度,然后运用勾股定理即可推出MA的长度,即可推出A 点的坐标;(2)①作AN ⊥OA ,设与OC 的延长线交于N 点,延长DA 到y 轴,设与y 轴交于点M ,通过求证△OMA ∽△NAO ,推出AN =152cm ,ON =252cm ,再分情况进行讨论.若∠OPQ =90°,则△OPQ 为直角三角形,由PQ ∥AN ,推出OP OA=OQON,即可求出t =409;若∠OQP =90°,则△OPQ 为直角三角形,通过求证∠AON ∽△QOP ,推出OP ON=OQ OA,即可求出t =509cm ,所以当t =409cm 或者t =509cm 时,△OPQ 为直角三角形; ②作QH ⊥OA ,把OP 视作底边,由QH ∥AN ,推出QH AN=OQ ON,再由OQ =10﹣t ,AN =152,ON =252,推出高QH 的长度,然后根据OP =t ,即可推出S =−310t 2+3t (0<t <10). 【解答】解:(1)如图1,作AE ⊥OC 于E .∴AE ∥CD ,∵∠OCD =∠D =90°, ∴AD ∥OC , ∵CD =6cm , ∴AE =DC =6cm , ∵OA =OC =10cm , ∴OE =8cm , ∴A (8,6);(2)作AN ⊥OA ,设与OC 的延长线交于N 点,延长DA ,与y 轴交于点M .①如图2,∵AD∥OC,∴AM⊥OM,∴DM∥OC,∵A(8,6),∴AM=8cm,OM=CD=6cm,∴∠AON=∠MAO,∵∠AMO=∠OAN=90°,∴△OMA∽△NAO,∴OMAN=MAAO=OAON,∵OM=6cm,AM=8cm,OA=10cm,∴AN=152cm,ON=252cm,如图,若∠OPQ=90°,则△OPQ为直角三角形,∴PQ∥AN,∴OPOA=OQON,∵P,Q两点的运动时间为t秒,OC=OA=10cm,∴t10=10−t252,∴t=40 9,如图,若∠OQP=90°,则△OPQ为直角三角形,∵∠AON=∠QOP,∴∠AON∽△QOP,∴OPON=OQOA,∴t252=10−t10,∴t=509cm,∴当t=409cm或者t=509cm时,△OPQ为直角三角形;②如图3,作QH⊥OA于H.∵AN⊥OA,∴QH∥AN,∴QHAN=OQON,∵OQ=10﹣t,AN=152,ON=252,∴QH=30−3t5cm,∵OP=t,∴S△OPQ=QH⋅OP2=30t−3t210,∴S=−310t2+3t(0<t<10).【点评】本题主要考查直角三角形的性质,勾股定理,点的坐标,相似三角形的判定及性质,关键在于根据题意画出辅助线,构建直角三角形,运用数形结合的思想推出相关的三角形相似,求出相关线段的长度,正确的进行分析.14.如图,已知矩形ABCD 的边长AB =4cm ,BC =8cm ,动点M 从A 出发在边AB 上以1cm /s 的速度向B 点匀速运动,同时,动点N 从D 出发在边DA 上以2cm /s 的速度向A 点匀速运动,MN 与AC 相交于点Q ,设运动时间为t .(1)经过多少时间,△AMN 的面积等于矩形ABCD 面积的18?(2)是否存在时刻t ,使以A 、M 、N 为顶点的三角形与△ACD 相似?若存在,求t 的值;若不存在,请说明理由.(3)当t =1时,求NQ 的长.【分析】(1)先由运动得出AM =tcm ,DN =2tcm ,再由△AMN 的面积等于矩形ABCD 面积的18,建立方程求解,即可得出结论;(2)分两种情况,利用相似三角形的对应边成比例建立方程求解,即可得出结论;(3)先根据勾股定理求出MN ,再利用相似三角形的性质求出NE ,最后用△AQM ∽△EQN 得出比例式,即可得出结论.【解答】解:(1)在矩形ABCD 中,AB =4cm ,BC =8cm , ∴AD =BC =8cm ,∠BAD =90°,由运动知,AM =tcm ,DN =2tcm (0<t <4), ∴AN =AD ﹣DN =(8﹣2t )(cm ), ∵△AMN 的面积等于矩形ABCD 面积的18,∴12AM •AN =18AB •BC ,∴12t (8﹣2t )=18×4×6, ∴t =1或t =3,即经过1秒或3秒,△AMN 的面积等于矩形ABCD 面积的18;(2)存在时间t ,t 为2秒或165秒时,以A 、M 、N 为顶点的三角形与△ACD 相似,理由:在矩形ABCD 中,AB =4cm ,BC =8cm ,∴AD =BC =8cm ,CD =AB =4cm ,∠ADC =∠BAD =90°,∵以A 、M 、N 为顶点的三角形与△ACD 相似,且∠ADC =∠MAN =90°, ∴①当△MAN ∽△ADC 时, ∴AM AD =AN CD ,∴t 8=8−2t4,∴t =165,②当△NAM ∽△ADC 时, ∴AN AD =AM CD ,∴8−2t8=t 4,∴t =2;(3)如图,在矩形ABCD 中,AB =4cm ,BC =8cm , ∴CD =AB =4cm ,AD =BC =8cm , CD ∥AB ,当t =1时,DN =2,AM =1,∴AN=AD﹣DN=6,在Rt△MAN中,MN=√AN2+AM2=√37,过点N作NE∥AM,则NE∥CD,∴△ANE∽△ADC,∴NECD=ANAD,∴NE4=68,∴NE=3cm,∵AM∥NE,∴△AQM∽△EQN,∴QMQN=AMNE=13,∴MNQN=43,∴QN=34MN=3√374.【点评】此题是相似形综合题,主要考查了矩形的性质,勾股定理,相似三角形的判定和性质,求出NE是解本题的关键.15.如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿CB方向平移得到的,连接AE,AC和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,并证明你的结论;(2)如图2,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AE于点Q,QR ⊥BD,垂足为点R.①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;②当线段BP的长为何值时,以点P、Q、R为顶点的三角形与△BOC相似?【分析】(1)四边形ABCE是菱形.证明:∵△ECD是△ABC沿BC方向平移得到的,∴EC∥AB,EC=AB.∴四边形ABCE是平行四边形.又∵AB=BC,∴四边形ABCE是菱形.(2)①由菱形的对称性知,△PBO≌△QEO,可得S△PBO=S△QEO,由△ECD是由△ABC平移得到的,可得ED∥AC,ED=AC=6.又∵BE⊥AC,∴BE⊥ED,可得S四边形PQED=S△QEO+S四边形POED=S△PBO+S四边形POED=S△BED=12×BE×ED=12×8×6=24.②如图,∵∠2是△OBP的外角,∴∠2>∠3.∴∠2不与∠3对应.∴∠2与∠1对应.即∠2=∠1,∴OP=OC=3.过O作OG⊥BC于G,则G为PC的中点.可证△OGC∽△BOC.可得CG:CO=CO:BC.从而可求解.【解答】解:(1)四边形ABCE是菱形.证明:∵△ECD是△ABC沿BC方向平移得到的,∴EC∥AB,EC=AB.∴四边形ABCE是平行四边形.又∵AB=BC,∴四边形ABCE是菱形.(2)①四边形PQED的面积不发生变化,理由如下:由菱形的对称性知,△PBO≌△QEO,∴S△PBO=S△QEO∵△ECD是由△ABC平移得到的,∴ED∥AC,ED=AC=6.又∵BE⊥AC,∴BE⊥EDBD=5+5=10,BE=√102−62=8,∴S四边形PQED=S△QEO+S四边形POED=S△PBO+S四边形POED=S△BED=12×BE×ED=12×8×6=24.②如图,当点P在BC上运动,使以点P、Q、R为顶点的三角形与△COB相似.∵∠2是△OBP的外角,∴∠2>∠3.∴∠2不与∠3对应.∴∠2与∠1对应.即∠2=∠1,∴OP=OC=3.过O作OG⊥BC于G,则G为PC的中点.可证△OGC∽△BOC.∴CG:CO=CO:BC.即CG:3=3:5.∴CG=9 5.∴PB=BC﹣PC=BC﹣2CG=5﹣2×95=75.【点评】本题考查了相似三角形的判定与性质及菱形的判定与性质,难度较大,关键是掌握相似三角形及菱形的判定定理.16.如图,已知A、B两点的坐标分别为(4,0)和(0,3),动点P从点A出发,以每秒2个长度单位的速度沿AO向O运动,在点P出发的同时,动直线EF从x轴出发,以每秒1个长度单位沿y轴方向向上平移,分别与y轴、线段AB交于EP、FP.设运动时间为ts(0<t≤2).(1)在运动过程中,是否存在某一时刻t,使得△EOP与△AOB相似?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.(2)若△PEF是等腰三角形,求t的值.【分析】(1)分两种情况,由相似三角形的性质得出比例式,即可得出答案;(2)分三种情况,根据等腰三角形的性质、相似三角形的性质和勾股定理进行解答即可.【解答】解:(1)存在,理由如下:∵A、B两点的坐标分别为(4,0)和(0,3),∴OA=4,OB=3,当∠EPO=∠BAO时,△EOP∽△BOA,∴OP OA=OE OB ,即4−2t 4=t3,解得:t =65;当∠EPO =∠ABO 时,△EOP ∽△AOB , ∴OP OB=OE OA,即4−2t 3=t4,解得:t =1611;综上所述,存在某一时刻t ,使得△EOP 与△AOB 相似,t 的值为65s 或1611s ;(2)分三种情况:①当PE =PF 时,如图1所示:作PG ⊥EF 于G ,则FG =EG =OP , ∴EF =2EG =2OP , ∵EF ∥OA ,∴△BEF ∽△BOA , ∴EF OA =BE BO , 即EF 4=3−t3,解得:EF =43(3﹣t ), ∴43(3﹣t )=2(4﹣2t ),解得:t =32;②当EP =EF 时,t 2+(4﹣2t )2=[43(3﹣t )]2,整理得:29t 2﹣48t =0,解得:t =0(不合题意舍去),或t =4829;③当FE =FP 时,作FG ⊥OA 于G ,如图3所示:则OG =EF =43(3﹣t ),PG =OG ﹣OP =43(3﹣t )﹣(4﹣2t ), ∵FE 2=FP 2,∴[43(3﹣t )]2=t 2+[43(3﹣t )﹣(4﹣2t )]2,解得:t =16+4√13(不合题意舍去),或t =16﹣4√13; 综上所述,若△PEF 是等腰三角形,t 的值为4829s 或32s 或(16﹣4√13)s .【点评】本题考查了相似三角形的判定与性质、坐标与图形性质、平移的性质、等腰三角形的性质、勾股定理等知识;熟练掌握等腰三角形的性质和相似三角形的性质是解题的关键.17.如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,交AB的延长线于点E,AC平分∠DAB.且OA=3,AC=3√3.(1)求证:AD⊥DE;(2)若点P为线段CE上一动点,当△PBE与△ACE相似时,求EP的长.【分析】(1)根据等腰三角形的性质得出∠OAC=∠OCA,根据角平分线的定义得出∠DAC=∠OAC,求出∠DAC=∠OCA,推出OC∥AD,根据切线的性质得出OC⊥DE即可;(2)解直角三角形求出∠BAC=30°,BC=3,推出△BCO为等边三角形,求出EC=AC=3√3,BE=BC=BO=AO=3,根据相似三角形的性质和判定求出答案即可.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,又∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴OC∥AD,又∵DE是⊙O的切线,∴OC⊥DE,∴AD⊥DE;(2)解:连接BC,∵AB为⊙O直径,∴∠ACB=90°,又∵AB=2OA=6,AC=3√3,∴cos∠BAC=ACAB=3√36=√32,∴∠BAC=30°,BC=3,∴△BCO为等边三角形,∴∠ECB=30°,∠BEC=30°,∴EC=AC=3√3,BE=BC=BO=AO=3,①当BP∥AC时,△BPE∽△ACE,∴PECE=BEAE,即3√3=39,∴PE=√3;②当点P与点C重合时,△PBE∽△ACE,∴PE=CE=3√3;综上:当△PBE与△ACE相似时,EP=3√3或√3.【点评】本题考查了圆周角定理,切线的性质,平行线的性质和判定,等腰三角形的性质,解直角三角形,相似三角形的性质和判定等知识点,能综合运用知识点进行推理和计算是解此题的关键.18.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分别是AC、AB的中点.连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:(1)请直接用含t的代数式表示PE、QE的长;(2)当t为何值时,以点E、P、Q为顶点的三角形与△ADE相似?(3)当t为何值时,△EPQ为等腰三角形?(直接写出答案即可)【分析】(1)根据勾股定理求出AB,根据三角形中位线定理求出DE,根据题意用含t的代数式表示PE、QE的长;(2)分△EQP∽△EDA、△EQP∽△EAD两种情况,根据相似三角形的性质列式计算即可;(3)分EP=EQ、EQ=QP、PQ=EP三种情况,根据等腰三角形的性质列式计算即可.【解答】解:(1)由勾股定理得,AB=√AC2+BC2=10(cm),∵D、E分别是AC、AB的中点,BC=8cm,∴DE=12BC=4cm,AE=BE=5cm,由题意得,DP =tcm ,BQ =2tcm ,∴PE =(4﹣t )cm ,QE ={5−2t(0<t <2.5)2t −5(2.5≤t <4);(2)如图2,当PQ ⊥AB 时,△EQP ∽△EDA ,∴EQ ED=EP EA,即2t−54=4−t 5,解得,t =4114;如图3,当PQ ⊥DE 时,△EQP ∽△EAD ,∴EQ EA=EP ED,即2t−55=4−t 4,解得,t =4013, 综上所述,当t 为4114秒4013秒时,以点E 、P 、Q 为顶点的三角形与△ADE 相似;(3)如图4,当EP =EQ 时,4﹣t =5﹣2t ,解得,t =1;如图5,当EP =EQ 时,4﹣t =2t ﹣5,解得,t =3;如图6,当EQ =QP 时,12(4﹣t ):(2t ﹣5)=4:5,解得,t =207; 如图7中,当PQ =EP 时,12(2t ﹣5):(4﹣t )=4:5,解得,t =196, 综上所述,t =1或3或207或196秒时,△PQE 是等腰三角形.【点评】本题考查的是相似三角形的判定和性质、等腰三角形的性质、三角形中位线定理的应用,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.19.如图,在矩形ABCD 中,AB =12厘米,BC =6厘米,点P 沿AB 边从A 开始向点B 以2cm /s 的速度移动:点Q 沿DA 边从点D 开始向点A 以1cm /s 的速度移动.如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t ≤6),那么: (1)当t 为何值时,AP =2AQ ;(2)计算四边形QAPC 的面积,并提出一个与计算结果有关的结论. (3)当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?【分析】(1)根据题意分析可得:因为对于任何时刻t ,AP =2t ,DQ =t ,QA =6﹣t .当AP =2AQ 时,可得方程式,解可得答案;(2)根据(1)中.在△CPB 中,BP =12﹣2t ,由三角形的面积公式可得关系式,计算可得四边形QAPC 的面积始终保持不变;(3)根据题意,在矩形ABCD 中,可分为AQ BC=AP AB、AQ AB=AP BC两种情况来研究,列出关系式,代入数据可得答案.【解答】解:(1)对于任何时刻t ,AP =2t ,DQ =t ,QA =6﹣t . 当AP =2AQ 时,即:2(6﹣t )=2t , 解得:t =3(s ),所以,当t =3s 时,AP =2AQ . (2)在△CPB 中,BP =12﹣2t ,∴S 四边形QAPC =S 矩形ABCD ﹣S △CDQ ﹣S △PBC =72−12×12t −12×6(12−2t)=36(cm 2). 由计算结果发现:四边形QAPC 的面积始终保持不变; (3)根据题意,可分为两种情况来研究,在矩形ABCD 中: ①当AQ BC=AP AB时,△AQP ∽△BCA ,那么有:6−t 6=2t12,解得t =3(s ),即当t =3s 时,△AQP ∽△BCA ; ②当AQ AB=AP BC时,△AQP ∽△BAC ,那么有:6−t 12=2t 6,解得t =65(s ),即当t =65s 时,△AQP ∽△BAC ;所以,当t =1.2s 或3s 时,以点Q 、A 、P 为顶点的三角形与△ABC 相似.【点评】本题比较复杂,考查了等腰三角形、相似三角形的判定定理与性质,是一道具有一定综合性的好题,关键是根据相似三角形的判定和性质解答.20.矩形ABCD 中,AB =6cm ,BC =8cm ,设运动时间为t (单位:s ).(1)如图1,若动点P 从矩形ABCD 的顶点A 出发,沿A →B →C 匀速运动到点C ,图2是点P 运动时,△APC 的面积S (cm 2)随时间t (秒)变化的函数图象. ①点P 的运动速度是 2 cm /s ,m +n = 27 ; ②若PC =2PB ,求t 的值;(2)如图3,若点P ,Q ,R 分别从点A ,B ,C 三点同时出发,沿矩形的边按逆时针方向匀速运动,当点Q 到达点C (即点Q 与点C 重合)时,三个点随之停止运动;若点P 运动速度与(1)中相同,且点P ,Q ,R 的运动速度的比为2:4:3,是否存在t ,使△PBQ 与△QCR 相似,若存在,求出所有的t 的值;若不存在,请说明理由.【分析】(1)①由图象2可知,点P 从B 到C 的运动时间为4s ,故点P 的运动速度为84=2(cm /s ).再求出点P 在AB 的运动时间即可解决问题.②证明∠PCB =30°,解直角三角形求出PB 即可解决问题.。

人教版数学中考复习《因动点产生的相似三角形问题》

人教版数学中考复习《因动点产生的相似三角形问题》

因动点产生的相似三角形问题例12018上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1例22017年武汉市中考第24题如图1,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1图2如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1例42018年黄冈市中考模拟第25题如图1,已知抛物线的方程C 1:1(2)()y x x m =-+-(m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2,2),求实数m 的值;(2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.图1如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM 运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q 两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1图2例62017年临沂市中考第26题如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1因动点产生的相似三角形问题答案例12018上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线(k ≠0)与直线y =x +2都经过点A (2,m ).(1)求k 与m 的值;(2)此双曲线又经过点B (n ,2),过点B 的直线BC 与直线y =x +2平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;(3)在(2)的条件下,设直线y =x +2与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E 在射线CB 上运动,可以体验到,△ACE 与△ACD 相似,存在两种情况.思路点拨1.直线AD //BC ,与坐标轴的夹角为45°.2.求△ABC 的面积,一般用割补法.3.讨论△ACE 与△ACD 相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A (2,m )代入y =x +2,得m =4.所以点A 的坐标为(2,4).将点A (2,4)代入k y x=,得k =8.(2)将点B (n ,2),代入8y x=,得n =4.所以点B 的坐标为(4,2).设直线BC 为y =x +b ,代入点B (4,2),得b =-2.所以点C 的坐标为(0,-2).由A (2,4)、B (4,2)、C (0,-2),可知A 、B 两点间的水平距离和竖直距离都是2,图2B 、C 两点间的水平距离和竖直距离都是4.所以AB =,BC =ABC =90°.所以S △ABC =12BA BC ⋅=12⨯=8.(3)由A (2,4)、D (0,2)、C (0,-2),得AD =,AC =.由于∠DAC +∠ACD =45°,∠ACE +∠ACD =45°,所以∠DAC =∠ACE .所以△ACE 与△ACD 相似,分两种情况:①如图3,当CE AD CA AC=时,CE =AD =.此时△ACD ≌△CAE ,相似比为1.②如图4,当CE ACCA AD ==CE =.此时C 、E 两点间的水平距离和竖直距离都是10,所以E (10,8).图3图4考点伸展第(2)题我们在计算△ABC 的面积时,恰好△ABC 是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC 的外接矩形HCNM ,MN //y 轴.由S 矩形HCNM =24,S △AHC =6,S △AMB =2,S △BCN =8,得S △ABC =8.图5例22017年武汉市中考第24题如图1,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1图2动感体验请打开几何画板文件名“14武汉24”,拖动点P运动,可以体验到,若△BPQ可以两次成为直角三角形,与△ABC相似.当AQ⊥CP时,△ACQ∽△CDP.PQ的中点H在△ABC的中位线EF上.思路点拨1.△BPQ与△ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程.2.作PD⊥BC于D,动点P、Q的速度,暗含了BD=CQ.3.PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然.满分解答(1)Rt△ABC中,AC=6,BC=8,所以AB=10.△BPQ与△ABC相似,存在两种情况:①如果BP BABQ BC=,那么510848tt=-.解得t=1.②如果BP BCBQ BA=,那么588410tt=-.解得3241t=.图3图4(2)作PD⊥BC,垂足为D.在Rt△BPD中,BP=5t,cos B=45,所以BD=BP cos B=4t,PD=3t.当AQ⊥CP时,△ACQ∽△CDP.所以AC CDQC PD=,即68443tt t-=.解得78t=.图5图6(3)如图4,过PQ的中点H作BC的垂线,垂足为F,交AB于E.由于H是PQ的中点,HF//PD,所以F是QD的中点.又因为BD=CQ=4t,所以BF=CF.因此F是BC的中点,E是AB的中点.所以PQ的中点H在△ABC的中位线EF上.考点伸展本题情景下,如果以PQ为直径的⊙H与△ABC的边相切,求t的值.如图7,当⊙H与AB相切时,QP⊥AB,就是BP BCBQ BA=,3241t=.如图8,当⊙H与BC相切时,PQ⊥BC,就是BP BABQ BC=,t=1.如图9,当⊙H与AC相切时,直径PQ=半径等于FC=48=.解得12873t=,或t=0(如图10,但是与已知0<t<2矛盾).图7图8图9图10例32017年苏州市中考第29题如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1动感体验请打开几何画板文件名“12苏州29”,拖动点B 在x 轴的正半轴上运动,可以体验到,点P 到两坐标轴的距离相等,存在四边形PCOB 的面积等于2b 的时刻.双击按钮“第(3)题”,拖动点B ,可以体验到,存在∠OQA =∠B 的时刻,也存在∠OQ ′A =∠B 的时刻.思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上.满分解答(1)B 的坐标为(b ,0),点C 的坐标为(0,4b ).(2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC .因此PD =PE .设点P 的坐标为(x,x).如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1,0),OA =1.①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA .当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA .所以2()14b b =-.解得843b =±Q 为(1,23).②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。

数学人教版九年级下册相似练习之动点产生的相似三角形

数学人教版九年级下册相似练习之动点产生的相似三角形

相似练习:动点形成的相似三角形一、内容和内容解析1、内容动点形成的相似三角形2、内容解析动点形成的相似三角形是历年中考的热点也是难点,本节课是在学生学习相似三角形的性质和判定的基础上,借助二次函数的图像对相似三角形进行分类讨论,并运用对应边成比例求线段的长度和点的坐标。

二、学习目标知识与技能:1、对于给出对应点的两个三角形相似,能利用相似性质求出线段长度。

2、对于未给出对应点的两个三角形相似,知道分类讨论,并掌握怎么分类讨论,从而求边长。

3、对于添加平面直角坐标系后的相似,在以上2种技能的基础上,求出点的坐标。

过程与方法:从有对应点的相似到无对应点的相似;从单纯的几何图形到平面直角坐标系中的数形结合,由“易”到“难”,体会分类讨论和数形结合的数学思想。

情感态度与价值观:不积跬步,无以至千里;不积小流,无以成江河。

重点:对于未给出对应点的两个三角形相似,知道分类讨论,并掌握怎么分类讨论,从而求边长。

难点:添加平面直角坐标系后的相似,未给出对应点的相似,要分类讨论,数形结合的求出点的坐标。

三、学情分析学习已经学习了相似的定义、性质和判定,学习了二次函数的定义、图像和性质。

为本节课的学习奠定了基础。

但运用分类讨论思想分析对应点,解决对应边长成比例的问题,对学生说,有一定难度;与二次函数的结合对学生来说难度更大。

所以,在教学过程中要层层递进,不能着急,给学生足够的思考的时间和空间。

四、教法和学法教法:启发、引导、讲授、给学生足够的时间和空间思考。

学法:积极思考,认真倾听,自主学习,合作交流。

五、教学过程设计1、创设情境,激发兴趣问题1:已知抛物线y=-x2+2x+3,交x轴于A、B(A在B的左侧)交y轴于C,顶点为D,点P在抛物线的对称轴上,且以C、D、P为顶点的三角形与ΔABC相似,求点P的坐标师生活动:教师提出问题,学生尝试用已有知识解决此问题。

教师追问1:这是一道中考题,大家有思路吗?通过今天的学习相信同学们会有一定的思路解决这类问题。

中考数学复习考点知识专题训练20--- 因动点产生的相似三角形问题(基础篇)

中考数学复习考点知识专题训练20--- 因动点产生的相似三角形问题(基础篇)

中考数学复习考点知识专题训练20 因动点产生的相似三角形问题(基础)1.如图,在矩形ABCD中,AB=6cm,BC=8cm,动点P以2cm/s的速度从点A出发,沿AC向点C 移动,同时动点Q以1cm/s的速度从点C出发.沿CB向点B移动,设P、Q两点移动ts(0<t <5)后,△CQP的面积为Scm2(1)在P、Q两点移动的过程中,△CQP的面积能否等于3.6cm2?若能,求出此时t的值;若不能,请说明理由;(2)当运动时间为多少秒时,△CPQ与△CAB相似.2.如图1,在Rt△ABC中,AB=8,∠C=90°,∠ABC=60°,动点M从点A出发,沿斜边AB以每秒2个单位长度的速度向点B匀速运动,同时点N从点C出发,沿直角边CA以每秒√3个单位长度的速度向点A匀速运动,连接BN,MN,过点M作MD⊥CA于点D,当点M运动到点B时,动点N也随之停止运动.设运动时间为t秒(t>0).(1)填空:当BN平分∠ABC时,MD的长度为;(2)如图2,点E为BC的中点,连接EN,EM,设△EMN的面积为y,求y关于t的函数关系式,并求出y的最小值;(3)在动点M,N的运动过程中,是否存在t的值,使得以D,M,N为顶点的三角形与△BCN相似?若存在,求出所有t的值,若不存在,说明理由.3.如图,A,B,C,D是矩形的四个顶点,AB=12cm,BC=6cm,动点P从点A出发,以2cm/s的速度向点B运动,运动到点B停止;动点Q同时从点C出发,以1cm/s的速度向点D运动,当点P停止运动时,点Q也立即停止运动.(1)设点P运动的时间为t,请用t的代数式表示BP和CQ:BP=,CQ=;(2)是否存在某一时刻,以A,P,D为顶点的三角形与△BCQ相似?如果存在,请求出t的值;(3)是否存在某一时刻,使得△BPQ为等腰三角形?如果存在,请求出点P运动的时间.4.如图所示,在矩形MBCN中,点A是边MN的中点,MB=6cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)求证:△AMB≌△ANC;(2)当t为何值时,△BDE的面积为7.5cm2;(3)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动时间(0≤t≤6).(1)当t为何值时,△QAP为等腰三角形?(2)当t为何值时,以Q、A、P为顶点的三角形与△ABC相似?(3)设△QCP的面积为S,求S与t之间的函数关系式,并求出当t为何值时,△QCP的面积有最小值?最小值是多少?6.如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿边BC向点C运动,动点E比动点F 先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动设点F的运动时间为t秒.(1)如图1,连接DE,AF.若DE⊥AF,求t的值;(2)如图2,连结EF,DF.当t为何值时,△EBF∽△DCF?7.如图,AB⊥BD,CD⊥BD,AB=3,CD=8,BD=10,一动点P从点B向右D运动,问当点P 离点B多远时,△P AB与△PCD是相似三角形?8.已知,在平行四边形OABC中,OA=5,AB=4,∠OCA=90°,动点P从O点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q从A点出发沿射线AB方向以每秒1个单位的速度移动.设移动的时间为t秒.(1)求直线AC的解析式;(2)试求出当t为何值时,△OAC与△P AQ相似.9.如图,已知:在△ABC 中,BC ═12,AC =8√2,∠C =45°,P 是BC 边上的一个动点,过点P 作PD ∥AB 与AC 相交于点D ,连接AP ,设线段BP 的长为x ,△APD 的面积为y .(1)求y 与x 之间的函数关系式,并指出函数的定义域;(2)是否存在一个位置的点P ,使△APD 的面积等于△APB 的面积的13?如果存在,求出BP 的长;如果不存在,请说明理由.10.如图,在直角三角形ABC 中,角B 等于90度,AB 等于6厘米,BC 等于8厘米,点P 从A 点开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动,如果P ,Q 分别从A ,B 同时出发,当点P 或点Q 到达终点时停止运动.则当运动几秒时,以QBP 为顶点的三角形与三角形ABC 相似?11.如图,在矩形ABCD 中,AB =5cm ,BC =7cm ,点E 从点A 出发,沿AB 方向以1cm /s 的速度向点B移动,同时,点F从点B出发,沿BC方向以2cm/s的速度向点C移动,当点F到达点C时,两点同时停止运动,设运动时间为t秒.(1)当t为何值时,△BEF的面积为5cm2?(2)当t为何值时,△BEF与△ABD相似?12.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.其中,点M沿OA向终点A运动,点N沿BN向终点C运动.过点M 作MP⊥OA,交AC于P,连接NP,设M、N运动的时间为t秒(0<t<4).(1)P点的坐标为(,),PC=(用含x的代数式表示);(2)求当t为何值时,以C、P、N为顶点的三角形与△ABC相似;(3)在平面内是否存在一个点E,使以C、P、N、E为顶点的四边形是菱形,若存在,请直接写出t的值,若不存在,说明理由.13.如图,已知△ABC是边长为12cm的等边三角形,动点P,Q同时从AB两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是2cm/s,点Q运动的速度是4cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ.14.如图,OA=OB=10,AB=12,点A在x轴正半轴上,过点O作OC⊥AB于点C,作BD垂直y 轴于D,若动点E从原点O出发,沿线段OC向终点C运动,动点F从点D出发,沿线段DO向终点O运动,两点同时出发,速度均为每秒1个单位长度,设运动的时间为t秒.(1)请直接写出点A,点D的坐标.(2)用含t的表达式表示△OEF的面积.(3)设EF与OB相交于点P,当t为何值时,△OPF与△OBD相似?15.如图,已知Rt△ABC中,∠A=90°,AB=8,AC=6,点Q以每秒1个单位的速度从B向A运动,同时点P以每秒2个单位的速度从B→C→A方向运动,它们到A点后都停止运动,设点P,Q运动的时间为t秒.(1)当点P在线段BC上运动时,求点P到直线AB的距离d与时间t的函数关系式;(2)在运动过程中,求P,Q两点间距的最大值;(3)P,Q两点在运动过程中,是否存在时间t,使得△PQB与△APB相似?若存在,求出此时的t值;若不存在,请说明理由.16.如图,直线y=−43x+4与x轴交于A点,与y轴交于点B,动点P从A点出发,以每秒2个单位速度沿射线AO匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿射线BA方向向点A 匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动的时间为t(秒).(1)直接写出A、B两点的坐标;(2)请求出t为何值时,△APQ与△ABO相似?(3)若点C为为平面直角坐标系内一点,是否存在t值,使得以A、P、Q、C为顶点的四边形为菱形?若存在,请直接写出C点坐标,若不存在,请说明理由.17.如图,平面直角坐标系中,直线AB与x轴,y轴分别交于A(6,0),B(0,3)两点,点C为线段AB上的一动点,过点C作CD⊥x轴于点D.(1)求直线AB的解析式;(2)若S矩形OECD=2,求点C的坐标;(3)在第一象限内是否存在点P,使得以P,O,B为顶点的三角形与△OBA相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.18.如图,在Rt△ABC中,直角边AC=3cm,BC=4cm.设P,Q分别为AB,BC上的动点,在点P 自点A沿AB方向向点B作匀速移动的同时,点Q自点B沿BC方向向点C作匀速移动,它们移动的速度均为每秒1cm,当Q点到达C点时,P点就停止移动.设点P,Q移动的时间为t秒.△PBQ能否与△ABC相似?若能,求t的值;若不能,说明理由.19.如图,AB 是⊙O 的直径,C 为⊙O 上一点,作CE ⊥AB 于点E ,BE =2OE ,延长AB 至点D ,使得BD =AB ,P 是弧AB (异于A ,B )上一个动点,连接AC 、PE .(1)若AO =3,求AC 的长度;(2)求证:CD 是⊙O 的切线;(3)点P 在运动的过程中是否存在常数k ,使得PE =k •PD ,如果存在,求k 的值,如果不存在,请说明理由.20.如图,在△ABC 中,∠C =90°,AC =8cm ,BC =6cm .点P 从点A 出发,沿AB 边以2cm /s 的速度向点B 匀速移动;点Q 从点B 出发,沿BC 边以1cm /s 的速度向点C 匀速移动,当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t (s ).(1)当PQ ∥AC 时,求t 的值;(2)当t 为何值时,△PBQ 的面积等于245cm 2.。

中考数学压轴试题复习1.1因动点产生的相似三角形问题

中考数学压轴试题复习1.1因动点产生的相似三角形问题

§1.1 因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DEAC DF=和AB DFAC DE=两种情况列方程.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.图1例 1 湖南省衡阳市中考第28题二次函数y =a x 2+b x +c (a ≠0)的图象与x 轴交于A (-3, 0)、B (1, 0)两点,与y 轴交于点C (0,-3m )(m >0),顶点为D .(1)求该二次函数的解析式(系数用含m 的代数式表示);(2)如图1,当m =2时,点P 为第三象限内抛物线上的一个动点,设△APC 的面积为S ,试求出S 与点P 的横坐标x 之间的函数关系式及S 的最大值;(3)如图2,当m 取何值时,以A 、D 、C 三点为顶点的三角形与△OBC 相似?图1 图2动感体验请打开几何画板文件名“14衡阳28”,拖动点P 运动,可以体验到,当点P 运动到AC 的中点的正下方时,△APC 的面积最大.拖动y 轴上表示实数m 的点运动,抛物线的形状会改变,可以体验到,∠ACD 和∠ADC 都可以成为直角.思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP ,△APC 可以割补为:△AOP 与△COP 的和,再减去△AOC .3.讨论△ACD 与△OBC 相似,先确定△ACD 是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD 存在两种情况.图文解析(1)因为抛物线与x 轴交于A (-3, 0)、B (1, 0)两点,设y =a (x +3)(x -1). 代入点C (0,-3m ),得-3m =-3a .解得a =m .所以该二次函数的解析式为y =m (x +3)(x -1)=mx 2+2mx -3m .(2)如图3,连结OP .当m =2时,C (0,-6),y =2x 2+4x -6,那么P (x , 2x 2+4x -6). 由于S △AOP =1()2P OA y ⨯-=32-(2x 2+4x -6)=-3x 2-6x +9, S △COP =1()2P OC x ⨯-=-3x ,S △AOC =9, 所以S =S △APC =S △AOP +S △COP -S △AOC =-3x 2-9x =23273()24x -++.所以当32x =-时,S 取得最大值,最大值为274. 图3 图4 图5 (3)如图4,过点D 作y 轴的垂线,垂足为E .过点A 作x 轴的垂线交DE 于F . 由y =m (x +3)(x -1)=m (x +1)2-4m ,得D (-1,-4m ).在Rt △OBC 中,OB ∶OC =1∶3m .如果△ADC 与△OBC 相似,那么△ADC 是直角三角形,而且两条直角边的比为1∶3m . ①如图4,当∠ACD =90°时,OA OC EC ED =.所以331m m =.解得m =1. 此时3CA OC CD ED ==,3OC OB =.所以CA OC CD OB =.所以△CDA ∽△OBC . ②如图5,当∠ADC =90°时,FA FD ED EC =.所以421m m=.解得22m =. 此时222DA FD DC EC m===,而3232OC m OB ==.因此△DCA 与△OBC 不相似. 综上所述,当m =1时,△CDA ∽△OBC .考点伸展第(2)题还可以这样割补:如图6,过点P 作x 轴的垂线与AC 交于点H .由直线AC :y =-2x -6,可得H (x ,-2x -6).又因为P (x , 2x 2+4x -6),所以HP =-2x 2-6x .因为△PAH 与△PCH 有公共底边HP ,高的和为A 、C 两点间的水平距离3,所以 S =S △APC =S △APH +S △CPH=32(-2x 2-6x ) =23273()24x -++. 图6例 2 湖南省益阳市中考第21题如图1,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.2·1·c·n·j·y(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值. 动感体验图1请打开几何画板文件名“14益阳21”,拖动点P在AB上运动,可以体验到,圆心O的运动轨迹是线段BC的垂直平分线上的一条线段.观察S随点P运动的图象,可以看到,S有最小值,此时点P看上去象是AB的中点,其实离得很近而已.思路点拨1.第(2)题先确定△PCB是直角三角形,再验证两个三角形是否相似.2.第(3)题理解△PCB的外接圆的圆心O很关键,圆心O在确定的BC的垂直平分线上,同时又在不确定的BP的垂直平分线上.而BP与AP是相关的,这样就可以以AP为自变量,求S的函数关系式.图文解析(1)如图2,作CH⊥AB于H,那么AD=CH.在Rt△BCH中,∠B=60°,BC=4,所以BH=2,CH=23.所以AD=23.(2)因为△APD是直角三角形,如果△APD与△PCB相似,那么△PCB一定是直角三角形.①如图3,当∠CPB=90°时,AP=10-2=8.所以APAD=823=433,而PCPB=3.此时△APD与△PCB不相似.图2 图3 图4②如图4,当∠BCP=90°时,BP=2BC=8.所以AP=2.所以APAD=223=33.所以∠APD=60°.此时△APD∽△CBP.综上所述,当x=2时,△APD∽△CBP.(3)如图5,设△ADP的外接圆的圆心为G,那么点G是斜边DP的中点.设△PCB 的外接圆的圆心为O ,那么点O 在BC 边的垂直平分线上,设这条直线与BC 交于点E ,与AB 交于点F .设AP =2m .作OM ⊥BP 于M ,那么BM =PM =5-m .在Rt △BEF 中,BE =2,∠B =60°,所以BF =4.在Rt △OFM 中,FM =BF -BM =4-(5-m )=m -1,∠OFM =30°,所以OM =3(1)3m -. 所以OB 2=BM 2+OM 2=221(5)(1)3m m -+-. 在Rt △ADP 中,DP 2=AD 2+AP 2=12+4m 2.所以GP 2=3+m 2.于是S =S 1+S 2=π(GP 2+OB 2)=22213(5)(1)3m m m π⎡⎤++-+-⎢⎥⎣⎦=2(73285)3m m π-+. 所以当167m =时,S 取得最小值,最小值为1137π.图5 图6考点伸展关于第(3)题,我们再讨论个问题.问题1,为什么设AP =2m 呢?这是因为线段AB =AP +PM +BM =AP +2BM =10.这样BM =5-m ,后续可以减少一些分数运算.这不影响求S 的最小值.问题2,如果圆心O 在线段EF 的延长线上,S 关于m 的解析式是什么?如图6,圆心O 在线段EF 的延长线上时,不同的是FM =BM -BF =(5-m )-4=1-m .此时OB 2=BM 2+OM 2=221(5)(1)3m m -+-.这并不影响S 关于m 的解析式.例 3 湖南省湘西市中考第26题如图1,已知直线y=-x+3与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c 经过A、B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒2个单位的速度匀速运动,连结PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE//y轴,交AB于点E,过点Q作QF//y轴,交抛物线于点F,连结EF,当EF//PQ时,求点F的坐标;(4)设抛物线顶点为M,连结BP、BM、MQ,问:是否存在t的值,使以B、Q、M为顶点的三角形与以O、B、P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“15湘西26”,拖动点P在OA上运动,可以体验到,△APQ有两个时刻可以成为直角三角形,四边形EPQF有一个时刻可以成为平行四边形,△MBQ与△BOP有一次机会相似.思路点拨1.在△APQ中,∠A=45°,夹∠A的两条边AP、AQ都可以用t表示,分两种情况讨论直角三角形APQ.2.先用含t的式子表示点P、Q的坐标,进而表示点E、F的坐标,根据PE=QF列方程就好了.3.△MBQ与△BOP都是直角三角形,根据直角边对应成比例分两种情况讨论.图文解析(1)由y=-x+3,得A(3, 0),B(0, 3).将A(3, 0)、B(0, 3)分别代入y=-x2+bx+c,得930,3.b cc-++=⎧⎨=⎩解得2,3.bc=⎧⎨=⎩所以抛物线的解析式为y=-x2+2x+3.(2)在△APQ中,∠PAQ=45°,AP=3-t,AQ=2t.分两种情况讨论直角三角形APQ:①当∠PQA=90°时,AP=2AQ.解方程3-t=2t,得t=1(如图2).②当∠QPA=90°时,AQ=2AP.解方程2t=2(3-t),得t=1.5(如图3).图2 图3(3)如图4,因为PE//QF,当EF//PQ时,四边形EPQF是平行四边形.所以EP=FQ.所以y E-y P=y F-y Q.因为x P=t,x Q=3-t,所以y E=3-t,y Q=t,y F=-(3-t)2+2(3-t)+3=-t2+4t.因为y E-y P=y F-y Q,解方程3-t=(-t2+4t)-t,得t=1,或t=3(舍去).所以点F的坐标为(2, 3).图4 图5(4)由y=-x2+2x+3=-(x-1)2+4,得M(1, 4).由A(3, 0)、B(0, 3),可知A、B两点间的水平距离、竖直距离相等,AB=2.由B(0, 3)、M(1, 4),可知B、M两点间的水平距离、竖直距离相等,BM2.所以∠MBQ=∠BOP=90°.因此△MBQ与△BOP相似存在两种可能:①当BM OBBQ OP=23322tt=-.解得94t=(如图5).②当BM OPBQ OB=23322tt=-.整理,得t2-3t+3=0.此方程无实根.考点伸展第(3)题也可以用坐标平移的方法:由P(t, 0),E(t, 3-t),Q(3-t, t),按照P→E 方向,将点Q向上平移,得F(3-t, 3).再将F(3-t, 3)代入y=-x2+2x+3,得t=1,或t =3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因动点产生的相似三角形问题例1 2018上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1例2 2017年武汉市中考第24题如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1 图2例3 2017年苏州市中考第29题如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1例4 2018年黄冈市中考模拟第25题如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2, 2),求实数m 的值;(2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.图1例5 2017年义乌市中考第24题如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM 运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q 两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2例6 2017年临沂市中考第26题如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1因动点产生的相似三角形问题答案例1 2018上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A (2, m )代入y =x +2,得m =4.所以点A 的坐标为(2, 4).将点A (2, 4)代入k y x=,得k =8. (2)将点B (n , 2),代入8y x =,得n =4. 所以点B 的坐标为(4, 2).设直线BC 为y =x +b ,代入点B (4, 2),得b =-2.所以点C 的坐标为(0,-2).由A (2, 4) 、B (4, 2) 、C (0,-2),可知A 、B 两点间的水平距离和竖直距离都是2,B 、C 两点间的水平距离和竖直距离都是4.所以AB=BC=ABC =90°. 所以S △ABC =12BA BC ⋅=12⨯8. (3)由A (2, 4) 、D (0, 2) 、C (0,-2),得AD=AC=.由于∠DAC +∠ACD =45°,∠ACE +∠ACD =45°,所以∠DAC =∠ACE . 所以△ACE 与△ACD 相似,分两种情况:①如图3,当CE AD CA AC=时,CE =AD= 此时△ACD ≌△CAE ,相似比为1.②如图4,当CE AC CA AD ==CE=.此时C 、E 两点间的水平距离和竖直距离都是10,所以E (10, 8).图3 图4考点伸展第(2)题我们在计算△ABC 的面积时,恰好△ABC 是直角三角形.图2一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图5例2 2017年武汉市中考第24题如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1 图2动感体验请打开几何画板文件名“14武汉24”,拖动点P运动,可以体验到,若△BPQ可以两次成为直角三角形,与△ABC相似.当AQ⊥CP时,△ACQ∽△CDP.PQ的中点H在△ABC的中位线EF上.思路点拨1.△BPQ与△ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程.2.作PD⊥BC于D,动点P、Q的速度,暗含了BD=CQ.3.PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然.满分解答(1)Rt△ABC中,AC=6,BC=8,所以AB=10.△BPQ与△ABC相似,存在两种情况:①如果BP BABQ BC=,那么510848tt=-.解得t=1.②如果BP BCBQ BA=,那么588410tt=-.解得3241t=.图3 图4 (2)作PD⊥BC,垂足为D.在Rt△BPD中,BP=5t,cos B=45,所以BD=BP cos B=4t,PD=3t.当AQ⊥CP时,△ACQ∽△CDP.所以AC CDQC PD=,即68443tt t-=.解得78t=.图5 图6(3)如图4,过PQ的中点H作BC的垂线,垂足为F,交AB于E.由于H是PQ的中点,HF//PD,所以F是QD的中点.又因为BD=CQ=4t,所以BF=CF.因此F是BC的中点,E是AB的中点.所以PQ的中点H在△ABC的中位线EF上.考点伸展本题情景下,如果以PQ 为直径的⊙H 与△ABC 的边相切,求t 的值.如图7,当⊙H 与AB 相切时,QP ⊥AB ,就是BP BC BQ BA =,3241t =. 如图8,当⊙H 与BC 相切时,PQ ⊥BC ,就是BP BA BQ BC=,t =1.如图9,当⊙H 与AC 相切时,直径PQ半径等于FC =48=. 解得12873t =,或t =0(如图10,但是与已知0<t <2矛盾).图7 图 8 图9 图10例3 2017年苏州市中考第29题如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1动感体验请打开几何画板文件名“12苏州29”,拖动点B 在x 轴的正半轴上运动,可以体验到,点P 到两坐标轴的距离相等,存在四边形PCOB 的面积等于2b 的时刻.双击按钮“第(3)题”,拖动点B ,可以体验到,存在∠OQA =∠B 的时刻,也存在∠OQ ′A =∠B 的时刻.思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上.满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC .因此PD =PE .设点P 的坐标为(x, x).如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b . 解得165x =.所以点P 的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA .所以2()14b b =-.解得8b =±Q 为(1,2. ②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。

相关文档
最新文档