用好零点”,证明函数不等式 高考数学压轴题之函数零点问题
【高考数学专题】专题07 函数的零点解题模板-高中数学解题模板
函数的零点问题【考点综述】函数的零点是函数与其他知识具有广泛联系的一个链结点,它从不同的角度,将数与形、函数与方程有机地联系在一起由于函数零点涉及到化归、分类讨论、数形结合、函数与方程等重要的数学思想方法,加之与导数的应用一唱一和,与高等数学相衔接,因此自然成为命题者眼中难以割舍的命题源泉.利用函数零点解决函数问题、方程问题已成为高考命题的一个热点,成为新课程实验后高考的新亮点.【解题方法思维导图预览】【解题方法】解题方法模板一:零点或零点存在区间的确定使用情景:一般函数类型解题模板:第一步 直接根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0; 第二步 若其乘积小于0,则该区间即为存在的零点区间;否则排除其选项即可. 例1 函数()43xf x e x =+-的零点所在的区间为( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫⎪⎝⎭ C .13,24⎛⎫ ⎪⎝⎭ D .3,14⎛⎫ ⎪⎝⎭【答案】B【解析】解题模板选择: 本题中需要确定函数的零点所在的区间,故选取解题方法模板一零点或零点所在区间的确定进行解答.解题模板应用:第一步,直接根据零点的存在性定理验证区间端点处的函數值的乘积是否小于0: 函数()43xf x e x =+-单调递增只有一个零点,而1144113204f e e ⎛⎫=+-=-< ⎪⎝⎭,1102f ⎛⎫=> ⎪⎝⎭; 第二步,若其乘积小于0,则该区间即为存在的零点区间;否则排除其选项即可: 由11042f f ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭可知数的点在11,42⎛⎫ ⎪⎝⎭,故选:B . 【典型例题】1. 函数()2ln f x x x =-的零点所在的大致区间的 A. ()1,2B. ()2,3C. (),3eD. (),e +∞ 【答案】B【解析】【分析】函数是单调递增函数,则只需()()0f a f b <时,函数在区间(a,b,上存在零点.【详解】函数()2ln f x x x=- ,在x>0上单调递增, ()2210f ln =-< ,()23ln303f =-> 函数f (x )零点所在的大致区间是()2,3;故选B【点睛】本题考查利用函数零点存在性定义定理求解函数的零点的范围,属于基础题;解题的关键是首先要判断函数的单调性,再根据零点存在的条件:已知函数在(a,b )连续,若()()[]00,,,f a f b x a b <∃∈ ()00f x = 确定零点所在的区间. 2. 函数()ln 2f x x x =+-的零点所在的大致区间为( )A. (0,1)B. (1,2)C. (2,)eD. (,4)e 【答案】B【解析】【分析】利用导数判断函数()f x 在其定义域(0,)+∞上是增函数,结合函数零点的存在性定理可得函数()f x 零点所在的大致区间.【详解】解:函数()f x 的导函数1()10f x x'=+>, 故()f x 在其定义域(0,)+∞上是增函数,再根据()110f =-<,()2ln20f =>,可得()()120f f ⋅<,故函数()ln 2f x x x =+-零点所在的大致区间为(1,2),故选:B .【点睛】本题主要考查用二分法求函数零点的近似值,函数零点的判定定理,属于基础题.3. 已知实数a >1,0<b <1,则函数f (x )=a x +x -b 的零点所在的区间是( )A. (-2,-1)B. (-1,0)C. (0,1)D. (1,2) 【答案】B【解析】【分析】分别计算()1f -,以及()0f 的函数值,根据零点存在性定理,即可判断.【详解】因为a >1,0<b <1,f (x )=a x +x -b ,所以f (-1)=1a-1-b <0,f (0)=1-b >0,所以f(-1)·f(0)<0,则由零点存在性定理可知f(x)在区间(-1,0)上存在零点.故选:B.【点睛】本题考查利用零点存在性定理判断零点所在区间,属基础题.4. 函数f(x)=log2x-3x-1的零点所在的区间为()A. ()1,2B. ()2,3C. ()3,4D. ()4,5【答案】C【解析】【分析】连续函数f,x,=log2x-3x-1在(0,+∞)上单调递增且f,3,f,4,,0,根据函数的零点的判定定理可求结果.【详解】∵函数f,x,=log2x-3x-1在定义域(0,+∞)上单调递增,∴f,3,=log23-1-1,0,f,4,=2-34-1,0,∴根据根的存在性定理得f,x,=log2x-3x-1的零点所在的一个区间是(3,4,,故选C,【点睛】本题主要考查了函数零点定义及判定的应用,属于基础试题.5. 函数f(x)=23x x+的零点所在的一个区间是A. (-2,-1)B. (-1,0)C. (0,1)D. (1,2)【答案】B【解析】【详解】试题分析:因为函数f(x)=2x+3x在其定义域内是递增的,那么根据f(-1)=153022-=-<,f(0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B.考点:本试题主要考查了函数零点的问题的运用.点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间. 视频解题方法模板二:零点的个数的确定使用情景:由所给的函数确定函数零点的个数解题模板:方法1:定义法使用情景:一般函数类型解题模板:第一步 判断函数的单调性;第二步 根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0;若其乘积小于0,则该区间即为存在唯一的零点区间或者直接运用方程的思想计算出其零点;第三步 得出结论.方法2:数形结合法使用情景:一般函数类型解题模板:第一步 在同一直角坐标系中,分别画出函数()y f x =和()y m x =的图像;第二步 观察并判断函数()y f x =和()y m x =的图像的交点个数;第三步 由()y f x =和()y m x =图像的交点个数等于函数()0g x =的零点即可得出结论. 例2A 函数()3xf x e x =+的零点个数是( )A .0B .1C .2D .3【答案】B解析】解题模板选择:本题需要确定函数的零点个数,故选取解题方法模板二定义法进行解答.解题模板应用:第一步,判断函数的单调性:由已知得()30x f x e '=+>,所以()f x 在R 上单调递增;第二步,根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0;若其乘积小于0,则该区间即为存在唯一的零点区间:又因为1(1)30f e --=-<,(1)30f e =+>,所以(1)(1)0f f ⋅-<第三步,得出结论:所以()f x 的零点个数是1,故选B .例2B 方程31()|log |3xx =的解的个数是( )A .3B .2C .1D .0【答案】B【解析】解题模板选择:本题中很明显在考查两个函数交点个数问题,故选取解题方法模板二数形结合法进行解答. 解题模板应用:第一步,在同一直角坐标系中,分别画出函数()y f x =和()y m x =的图像: 绘制函数13xy ⎛⎫= ⎪⎝⎭和函数3log y x =的图像如图所示:第二步,观察并判断函数()y f x =和()y m x =的图像的交点个数 : 由图象可知,函数1()3x y =与函数3log y x =有2个交点; 第三步,由()y f x =和()y m x =图像的交点个数等于函数()0g x =的零点即可得出结论:所以方程有2个解.故选:B .【典型例题】6. 函数()212log 6y x x =-++的零点个数为( ) A. 0个B. 1个C. 2个D. 3个【答案】C【解析】 【分析】令0y =,判断对数方程根的个数即可.【详解】令0y =,则()212log 60x x -++=, 即250x x -++=,又Δ1200=+>,故该方程有两根,且均满足函数定义域.故该函数有两个零点.故选:C【点睛】本题考查函数零点的求解,属简单题.7. 函数()22,026ln ,0x x f x x x x ⎧-≤=⎨-+>⎩的零点个数是( ) A. 0B. 1C. 2D. 3【答案】C【解析】【分析】当0x ≤时,直接解方程()0f x =得x =当0x >时,用函数的图象交点个数判断即可零点个数,两类情况合起来即可得选项.【详解】解:当0x ≤时,直接解方程()0f x =,即220x -=,解得:x = 当0x >时,()0f x =等价于26ln 0x x -+=,即ln 62x x =-,故设1ln y x =,262y x =-,做函数图象如图,故方程26ln 0x x -+=有一个根,所以函数()0f x =有一个实数根.综上,函数()f x 有两个零点.故选:C.【点睛】本题考查函数的零点个数,考查数形结合思想和方程思想,是基础题.8. 函数3()||x f x e x =-的零点个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】根据绝对值的性质,分类讨论,结合导数、零点存在原理进行求解即可.【详解】当0x ≤时,3()x f x e x =+,因为2'(30)x f x e x =+>,所以函数此时单调递增,而110,(0))0(11f e f --<==>-,所以此时函数3()x f x e x =+有唯一零点;当0x >时,令3(0)x f x e x =-=, 解得33ln x x e x x ⇒==,此时原函数的零点为函数()3ln g x x x =-零点,'3()1g x x =-,因此当3x >时,'3()10g x x=->,函数单调递增, 当30x >>时,'3()10g x x =-<,函数单调递减, (3)33ln33(1ln3)0g =-=-<,(1)10g =>,(6)63ln 63(2ln 2)0g =-=->,所以函数在30x >>和0x >各有一个零点,所以一共有3个零点.故选:C【点睛】本题考查了求函数零点个数问题,考查了导数的应用,考查了数学运算能力.9. 函数121()()2x f x x =-的零点个数为( ) A. 0B. 1C. 2D. 3【答案】B【解析】【分析】将问题转化为2个函数的交点问题,化成函数图象即可得出结论. 【详解】函数121()()2x f x x =-的零点,即令121()()02x f x x =-=,根据此题可得121()2x x =,在平面直角坐标系中分别画出幂函数y =12xy ⎛⎫= ⎪⎝⎭的图象,可得交点只有一个,所以零点只有一个,故选:B.【点睛】本题主要考查函数零点,意在考查学生的化归于转化的数学思想,属基础题.10. 已知函数()1cos 2xf x x ⎛⎫=- ⎪⎝⎭,则()f x 在0,2π上的零点的个数为( )A. 1B. 2C. 3D. 4【答案】C 【解析】 【分析】将函数零点转换为两函数的交点,通过图像即可得到答案.【详解】∵()1cos 02xf x x ⎛⎫=-= ⎪⎝⎭∵1cos 2xx ⎛⎫⎪=⎝⎭设1()cos 2()xg h x x x ⎛⎫= ⎪=⎝⎭,,画出图像可得在图像上的零点的个数为3. 故选:C.【点睛】本题考查函数零点的知识点,涉及到将零点的问题转换为函数的交点,考查了数形结合的思想,属于简单题型.考点:函数的零点.解题方法模板三:与分段、复合函数零点有关的参数取值范围问题使用情景:由分段函数或者复合函数确定参数取值范围解题模板:方法一:内外层分步讨论法 第一步 作出函数的图形第二步 讨论外层复合函数的性质,从而为讨论内层函数奠定基础 第三步 讨论内层复合函数的性质确定结论 方法二:利用组合坐标系处理复合函数的零点问题 第一步 利用组合坐标系作出函数图像第二步 结合组合坐标系综合讨论得到参数的取值范围.例3A 已知函数()()3lg ,064,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若关于x 的函数()()21y f x bf x =-+有8个不同的零点,则实数b 的取值范围是 . 【答案】172,4⎛⎤⎥⎝⎦【解析】 解题模板选择:本题中涉及到分段函数和复合函数问题,故选取解题方法模板三内外层分布讨论法进行解答.解题模板应用:第一步 作出函数的图形 根据题意作出函数f (x )的简图:第二步 讨论外层复合函数的性质,从而为讨论内层函数奠定基础由图可得当f (x )∈(0,4]时,有四个不同的x 与f (x )对应,再结合题中“关于x 的函数有8个不同的零点”,问题转化为“关于t 的方程t 2-bt +1=0在t ∈(0,4]上有两个不同的实数根”, 第三步 讨论内层复合函数的性质确定结论即211t b t t t+==+在t ∈(0,4]上有两个不同的实数根,而当t ∈(0,4]时,1172,4t t ⎛⎤+∈ ⎥⎝⎦.【名师点睛】对于复合函数问题,一定要弄清内函数、外函数以及它们各自的属性,尤其要注意内函数的值域与外函数的定义域之间的区别与联系.例3B 设定义域为R 的函数()lg 1,10,1x x f x x ⎧-≠⎪=⎨=⎪⎩,则关于x 的方程()()20f x bf x c ++=有7个不同实数解的充要条件是( )A .b <0,目c >0B .b >0且c <0C .b <0且c =0D .b ≥0且c =0 【答案】C 【解析】 解题模板选择:本题中涉及到分段函数和复合函数问题,故选取解题方法模板三利用组合坐标系处理复合函数的零点问题进行解答. 解题模板应用:第一步 利用组合坐标系作出函数图像令u =f (x ),则有g (u )=u 2+bu +c ,如图作出组合坐标系.第二步 结合组合坐标系综合讨论得到参数的取值范围.可知只有当u 2+bu +c =0的两个根120,0u u =>.此时,在左图中过()()12,0,,0u u 作u 轴的垂线与右图u =f (x )的图像才有可能恰有7个交点,(以右图中的交点的横坐标x 0为例,()01f x u =,又()10g u =,故x 0是方程g (f (x ))=0的一个根).故这7个交点的横坐标1237,,x x x x ⋯能使得()()0,(1,2,37)i g f x i ==⋯,即为1237,,x x x x ⋯为方程g (f (x ))=0的7个根. 故由韦达定理可知12120,0u u b u u c +=->==. 故选:C .【典型例题】11. 已知函数12,0()21,0x e x f x x x x -⎧>⎪=⎨--+≤⎪⎩,若关于x 的方程2()3()0()f x f x a a R -+=∈有6个不等的实数根,则a 的值是( ) A. 0 B. 1 C. 6 D. 2【答案】D 【解析】 【分析】采用数形结合,利用换元法令()f x t =,然后可知230-+=t t a 的两根11t =,22t =,然后利用韦达定理可得a .【详解】函数12,0()21,0x e x f x x x x -⎧>⎪=⎨--+≤⎪⎩的图象如图所示,令()f x t =,因为2()3()0()f x f x a a R -+=∈有6个不等的实数根,所以方程230-+=t t a 有两个不同的实数根1(1,2)t ∈,2(2,)t e ∈ 或11t =,22t =,由于123t t +=,故11t =,22t =,所以122a t t ==.故选:D【点睛】本题考查根据方程的根的个数求参,本题难点在于根据图形找到方程230-+=t t a 的两个不同的实数根,同时结合换元法的使用,使问题更加清晰,属中档题.12. 若函数()()()34020xa a x f x x ax x ⎧-≤⎪=⎨-+>⎪⎩,有三个不同的零点,则实数a 的取值范围是( ) A. (]1,2 B. (]2,4C. (]3,4D. ()3,5【答案】C 【解析】 【分析】由题意可知0a >且1a ≠,故函数()()3g x x ax 2x 0=-+>最多两个零点,故函数()()x h x 4a a x 0=-≤必须有零点,而函数()()x h x 4a a x 0=-≤是单调函数,故函数()()x h x 4a a x 0=-≤最多有一个零点,所以得出函数()()x h x 4a a x 0=-≤必须有一个零点,函数()()3g x x ax 2x 0=-+>必须有两个零点,再结合图象,根据函数零点存在定理得出a 的范围. 【详解】由题意可知0a >且1a ≠, 当0x >时,函数()3g x x ax 2=-+的导函数为()2g x 3x a '=-,所以函数()3g x x ax 2=-+在为减函数,在)+∞为增函数, 故函数()()3g x x ax 2x 0=-+>最多两个零点;而当0x ≤时,函数()()x h x 4a a x 0=-≤是单调函数, 故函数()()x h x 4a a x 0=-≤最多有一个零点;根据上述分析可以得出:函数()()3g x x ax 2x 0=-+>必须有两个零点,函数()()x h x 4a a x 0=-≤必须有一个零点. 当0x >时,在函数()3g x x ax 2=-+中, 因为(0)20g =>,故3g a 20=-⋅+<,解得3a >, 当0x ≤时,当01a <<时,函数()x h x 4a a =-是单调递减,()h 04a 0=->,不满足题意,当1a >时,函数()x h x 4a a =-是单调递增, 因为()x h x 4a a =-在0x ≤时有一个零点,则()h04a 0=-≥,解得:4a ≤ 综上:34a <≤, 故选:C .【点睛】本题考查了分段函数的零点问题,解题时运用了数形结合、还考查了分类讨论等思想方法和运算求解的能力,属于较难题. 13. 已知函数231,0()2,0x x f x x x ⎧--≥=⎨-+<⎩,函数()g x mx =,若函数()2()y f x g x =-恰有三个零点,则实数m 的取值范围是( ) A. 11(,)62 B. 1(,1)3-C. 1(,)6-+∞D. 1(,)2-∞【答案】A【分析】根据所给函数()231,02,0x x f x x x ⎧--≥=⎨-+<⎩,画出函数图象,根据()g x mx =及()()2y f x g x =-恰有三个零点,即可根据图象判断m 的取值范围. 【详解】由题意,画出函数()231,02,0x x f x x x ⎧--≥=⎨-+<⎩的图象如下图所示:()()2y f x g x =-恰有三个零点,即()()2f x g x =有三个不同交点,即()2f x mx =有三个不同交点,由图象可知,当直线斜率在OA k ,OB k 之间时,有三个交点,即2OA OB k m k << 所以1213m -<<,可得1162m -<<.故选:A.【点睛】本题考查了函数图象的画法,根据零点个数求参数的取值范围,属于中档题.14. 已知()11x f x e =-+,若函数2()[()](2)()2g x f x a f x a =+--有三个零点,则实数a 的取值范围是( ) A. (2,1)-- B. (1,0)-C. (0,1)D. (1,2)【答案】A【分析】【分析】利用十字相乘法解()0g x =,得()2f x =或()f x a =-,利用函数与方程之间的关系转化为两个图象的交点个数问题进行求解即可.【详解】解:若2()[()](2)()2[()2][()]g x f x a f x a f x f x a =+--=-+有三个零点, 即()[()2][()]0g x f x f x a =-+=有三个根, 即()2f x =或()f x a =-.当()2f x =时,由|1|12x e -+=,即|1|1x e -=,则11x e -=或11x e -=-, 即2x e =或0x e =,则2x ln =或x 无解,此时方程只有一个解, 则()f x a =-.有两个不同的根, 作出()f x 的图象如图:由图象知,则12a <-<,即21a -<<-, 即实数a 的取值范围是(2,1)--, 故选:A .【点睛】本题主要考查函数零点个数的应用,利用数形结合转化为两个函数图象的交点个数问题是解决本题的关键.15. 若函数222,0(),0x x x x f x e a x +⎧->⎪=⎨-≤⎪⎩有3个零点,则实数a 的取值范围是( ). A. ()2,e +∞B. {}()21,e ⋃+∞C. 2[1,e ] D. [)1,+∞【答案】B 【解析】 【分析】结合题意,将零点问题转化为函数交点问题,计算a 的范围,即可.【详解】当0x >时,由2()2x f x x =-得2x =或4x =(画图确定只有两个解),故()222,0,0x x x x f x e a x +⎧->⎪=⎨-≤⎪⎩有3个零点等价于()200x e a x +-=≤有1个零点,画出()20x y ex +=≤的图像,数形结合可得实数a 的取值范围是{}()21,e ⋃+∞.故选:B.【点睛】本道题考查了函数的性质,考查了数形结合思想,难度中等.解题方法模板四:由函数零点个数分类讨论,各个击破使用情景:函数的零点问题不易确定,需要分类讨论 解题模板:第一步 确定需要讨论的对象和它的取值范围;第二步 逐类进行讨论,得出各类结果 第三步 归纳各类结论,得出结论.例4 设m ,k 为整数,方程mx 2-kx +2=0在区间(0,1)内有两个不同的根,则m +k 的最小值为( )A.-8B.8C.12D.13 【答案】D 【解析】 解题模板选择:本题中所给的零点问题比较复杂,需要分类讨论,故选取解题方法模板四由函数零点个数分类讨论进行解答.解题模板应用:第一步 确定需要讨论的对象和它的取值范围;记f (x )=mx 2-kx +2,则:2(0)20(1)(2)001280mf m mf m m k k m k m =>⎧⎪=-+>⎪⎪⎨<<⎪⎪∆=->⎪⎩,据此可得:022m m k k m⎧>⎪+>⎨⎪<<⎩,所以2m >m >2,又m 为整数,故m ≥3. 需要对参数m 进行分类讨论.第二步 逐类进行讨论,得出各类结果 当m =3时,5k <<,无整数k ; 当m =4时,6k <<,无整数k ; 当m =5时,7k <<,无整数k ;当m =6时,8k <,整数k =7,方程mx 2-kx +2=6x 2-7x +2=0的根为12,23满足题意.又当m 增大时,k 的值不会减少,所以m +k 的最小值为13, 第三步 归纳各类结论,得出结论. 综上可得,m +k 的最小值为13. 故选:D .【名师点睛】分类讨论是我们求解含参问题最常用的策略对于含参的函数零点问题也不例外若我们无法通过等价转化的思想将原问题化归为相对容易的问题,那也只能报据题设要求合理地对参教的取值进行分类,并逐一对每种情况进行仔细斟酌求解利用该策略求解一般要求我们能深思熟虑严而不漏,这对培养学生思维的严密性很有好处. 解题方法模板五:参变分离处理零点问题使用情景:参数易于分离,且分离后所得函数的性质容易讨论解题模板:第一步 将需要求值(求范围)的变量放置在等式的一侧,其余变量放置在等式另一侧 第二步 利用导函数或者其他工具讨论不含所求变量一侧函数的性质 第三步 确定所求参数的值(或范围)例5 已知函数2()22ln f x x ax a x =--,当a >0时,若函数y =f (x )存在唯一零点,求a 的值. 【答案】12【解析】 解题模板选择: 本题中由0f x 易于分类参变量,故选取解题方法模板五参变分离处理零点问题进行解答.解题模板应用:第一步 将需要求值(求范围)的变量放置在等式的一侧,其余变量放置在等式另一侧由f (x )=0,得()22ln x a x x =+,显然0x lnx +≠,从而22(ln )x a x x =+. 第二步 利用导函数或者其他工具讨论不含所求变量一侧函数的性质记2()2(ln )x g x x x =+,则()2(2ln 1)'2(ln )x x x g x x x +-=+,令ln 0x x +=的解为x 0,则当()00,x x ∈时,g (x )<0,当()0,1x x ∈时,2ln 10x x +-<,()'0g x <,g (x )单调递减, 当x ∈(1,+∞)时,2ln 10x x +->,()'0g x >,g (x )单调递增, 所以g (x )的极小值为()112g =. 从而画出g (x )的草图,第三步 确定所求参数的值(或范围)当a >0时,函数y =f (x )存在唯一零点,则只能()112a g ==. 【名师点睛】本题命题组给出的答案构造函数求出函数零点,对能力有较高的要求本题通过将原函数中的变参数进行分高后变形为a =g (x ),则原函数的零点问题化归为与y 轴垂直的直线y =a 和函数y =g (x )图像的交点问题而迎刃而解利用该方法求解零点问题的显著优势在于既可以回避对参数取值情况的复杂讨论,又形象直观,一目了然,参变分高,演绎了角色转换.【典型例题】16. 已知函数24,0()(2)1,0x x f x x x x ⎧+>⎪=⎨⎪+-≤⎩,若方程()20f x m -=恰有三个不同的实数根,则实数m 的取值范围是( ) A. (2,)+∞ B. (4,)+∞C. (2,4)D. (3,4)【答案】A 【解析】 【分析】画出函数()f x 的图象,设()2g x m =,数形结合得24m >,即得解. 【详解】画出函数()f x 的图象,如图所示.当0x >时,4()4f x x x=+. 设()2g x m =,则方程()20f x m -=恰有三个不同的实数根, 即()f x 和()2g x m =的图象有三个交点.由图象可知,24m >,即2m >, 故实数m 的取值范围是(2,)+∞. 故选:A【点睛】本题主要考查函数的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.17. 已知函数()24sin54π=--+f x x x a x 有唯一的零点,则常数a =( )A. 14- B. 1C.14D. 1-【答案】B 【解析】 【分析】()24sin 54π=--+f x x x a x 有唯一的零点可转化为()245g x x x =-+与()sin 4π=h x a x 有唯一交点问题,在同一坐标系作出函数图象即可得出结果.【详解】()24sin54π=--+f x x x a x 有唯一的零点,设()245g x x x =-+,()sin4π=h x a x ,∴()245g x x x =-+与()sin4π=h x a x 有唯一交点,在同一坐标系作出函数图象,如图所示:由图可知当2x =时,1a =,有唯一交点. 故选:B【点睛】本题考查函数的零点,同时考查三角函数的图像,体现了转化思想,数形结合思想的应用,属于中档题.18. 已知()2sin(2)6f x x m π=--在[0,]2x π∈上有两个零点,则m 的取值范围为 A. (1,2) B. [1,2]C. [1,2)D. (1,2]【答案】C 【解析】 【详解】【分析】由题意()2sin 26f x x m π⎛⎫=-- ⎪⎝⎭在0,2x π⎡⎤∈⎢⎥⎣⎦上有两个零点可转化为2sin 26y x π⎛⎫=- ⎪⎝⎭与y m = 在]2[0x π∈, 上有两个不同交点,作出如图的图象,由于右端点的坐标是,12π⎛⎫⎪⎝⎭ 由图知,[)1,2m ∈故选C【点睛】本题考查正弦函数的图象,解答本题关键是将函数有两个零点的问题转化为两个函数有两个交点的问题,作出两函数的图象,判断出参数的取值范围,本题以形助数,是解此类题常用的方法,熟练作出相应函数的图象对解答本题很重要19. 已知函数3ln ,0()2,0x x x f x x x x ->⎧=⎨+≤⎩,若()()g x f x ax =-有3个零点,则实数a 的取值范围为________.【答案】()11,12,e ⎛⎫-+∞ ⎪⎝⎭【解析】 【分析】【分析】首先根据题意等价于函数()f x 与y ax =的图象有3个交点,利用导数得到函数的单调性,分别画出函数()f x 与y ax =的图象,根据两图象的交点有3个,结合图象即可得到答案.【详解】由题可知:()()g x f x ax =-有3个零点 等价于函数()f x 与y ax =的图象有3个交点 当0x >时,()ln f x x x =-,则()111x f x x x-'=-= 可知()0,1x ∈,()0f x '<,则函数单调递减 若()1,x ∈+∞,()0f x '>,则函数单调递增当0x ≤时,()32=+g x x x ,则()2320'=+>g x x则函数()g x 在(],0-∞单调递增. 又直线y ax =恒过原点 如图当直线y ax =与()ln f x x x =-相切时,设切点为()00,A x y ,()1x f x x-'=,()0001x f x ax -'==,又因为00y ax =,000ln =-y x x ,所以00000001ln x y x x x x x --==,解得0x e =,即()0111e a f x e e-='==-. 当直线y ax =与()32=+g x x x 相切时,切点为原点. 所以()232'=+g x x ,则()02a g ='=.由函数()ln f x x x =-在()0,1单调递减,在()1,+∞单调递增, 所以()()110≥=>f x f ,所以ln x x >又函数()f x 与y ax =的图象有3个交点,则11,1(2,)⎛⎫∈-⋃+∞ ⎪⎝⎭a e .故答案为:11,1(2,)e ⎛⎫-⋃+∞ ⎪⎝⎭【点睛】本题考查利用导数研究函数零点个数求参问题,常常使用等价转化的思想,转化为两个函数交点个数问题,数形结合,解决问题,属中难题. 20. 若关于x 的方程210x x a ---=在[]1,1-上有解,则实数a 的取值范围是________.【答案】5,14⎡⎤-⎢⎥⎣⎦【解析】【分析】由210x x a ---=可得21a x x =--,求得二次函数21y x x =--在区间[]1,1-上的值域,由此可得出实数a 的取值范围. 【详解】由210x x a ---=可得21a x x =--,由题意可知,实数a 的取值范围是函数21y x x =--在区间[]1,1-上的值域,当[]1,1x ∈-时,221551,1244y x x x ⎛⎫⎡⎤=--=--∈- ⎪⎢⎥⎝⎭⎣⎦.因此,实数a 的取值范围是5,14⎡⎤-⎢⎥⎣⎦.故答案为:5,14⎡⎤-⎢⎥⎣⎦.【点睛】本题考查利用方程在区间上有解求参数的取值范围,考查参变量分离法的应用,考查计算能力,属于中等题.解题方法模板六:一分为二,等价转化处理零点问题使用情景:可以将一个函数零点的问题转化为两个函数交点的问题 解题模板:第一步 将零点问题转化为两个函数交点个数的问题第二步 绘制相应的函数图像,结合临界值确定参数的值(或范围). 例6 对实数a 与b ,定义新运算“⊗”:,1,1a a b a b b a b -≤⎧⊗=⎨->⎩,设函数()()22()2,f x x x x x R =-⊗-∈,若函数y =f (x )-c 的图像与x 轴恰有两个公共点,则实数c 的取值范围是( )A .3(,2]1,2⎛⎫-∞-⋃- ⎪⎝⎭ B .3(,2]1,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭【答案】B 【解析】解题模板选择:本题中所给的函数式整理之后是一个分段函数的形式,需要绘制函数图像进行讨论,故选取解题方法模板六等价转化处理零点问题进行解答. 解题模板应用:第一步 将零点问题转化为两个函数交点个数的问题 函数的解析式即:()f x =()()2222222,21,21x x x x x x x x x ⎧----≤⎪⎨---->⎪⎩=2232,123,1, 2x x x x x x ⎧--≤≤⎪⎪⎨⎪-<->⎪⎩或,由y =f (x )-c 的图像与x 轴恰有两个公共点可知f (x )与y =c 的图像恰有两个公共点, 第二步 绘制相应的函数图像,结合临界值确定参数的值(或范围). 绘制函数图像如图所示,由图像知c ≤-2,或314c -<<-. 故选:B .【名师点睛】对于函数F (x )的零点问题,我们常会将F (x )分解成两个相对简单的函数即F (x )=f (x )-g (x ),借助f (x )和g (x )的图像交点来求解F (x )的零点,克服了直接求解F (x )零点带来的技术难题.利用一分为二求解,精彩演绎了等价转化.31。
高考数学《函数零点的个数问题》知识讲解与例题讲解
高考数学《函数零点的个数问题》知识讲解与例题讲解一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。
(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提 (2)零点存在性定理中的几个“不一定”(假设()f x 连续) ① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个 ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点 ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =−,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。
由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。
(详见方法技巧) 二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。
例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫⎪⎝⎭中 2、函数的零点,方程的根,两函数的交点在零点问题中的作用 (1)函数的零点: 工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。
专题06 重温高考压轴题----函数零点问题集锦-2019年高考数学压轴题之函数零点问题(原卷版)
专题六 重温高考压轴题----函数零点问题集锦函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题精选高考压轴题及最新高考模拟压轴题,形成函数零点问题集锦,例题说法,高效训练,进一步提高处理此类问题的综合能力.【典型例题】类型一 已知零点个数,求参数的值或取值范围例1.【2018年理新课标I 卷】已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 例2.【2018年理数全国卷II 】已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求.类型二 利用导数确定函数零点的个数 例3.【2018年全国卷II 文】已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.类型三 挖掘“隐零点”,证明不等式例4.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202ef x --<<.类型四 利用函数单调性,确定函数零点关系例5.【2016高考新课标1理】已知函数2()(2)e (1)xf x x a x =-+-有两个零点. (I )求a 的取值范围;(II )设x 1,x 2是()f x 的两个零点,证明:122x x +<. 类型五 借助导函数零点,解答综合性问题例6.【2016高考新课标2文】已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 例7.【2016高考新课标Ⅲ文】设函数()ln 1f x x x =-+. (I )讨论()f x 的单调性; (II )证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)xc x c +->. 例8.【2018年理数天津】已知函数,,其中a >1.(I )求函数的单调区间;(II )若曲线在点处的切线与曲线在点处的切线平行,证明;(III )证明当时,存在直线l ,使l 是曲线的切线,也是曲线的切线.【规律与方法】1.研究方程根的情况时,通过导数研究函数的单调性、最大(小)值、函数图象的变化趋势等,根据题目画出函数图象的草图,通过数形结合的思想去分析问题,使问题的解决有一个直观的形象,然后在此基础上再转化为不等式(组)的问题,通过求解不等式可得到所求的参数的取值(或范围).2. 利用导数证明不等式常见类型及解题策略(1) 构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.3. 导数中函数的含参数的问题的讨论,需要考虑下面的几个方面:(1)把导函数充分变形,找出决定导数符号的核心代数式,讨论其零点是否存在,零点是否在给定的范围中;(2)零点不容易求得时,需要结合原函数的形式去讨论,有时甚至需要把原函数放缩去讨论,常见的放缩有1,ln 1xe x x x ≥+≤-等;(3)如果导数也比较复杂,可以进一步求导,讨论导函数的导数.4. 对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要通过论坛和联系多加体会.5. 函数有零点等价于相应的方程有实根,然后将方程进行适当的变形,转化为两个函数图象有交点.交点的个数就是函数零点个数.在实际解题中,通常先求出()/f x ,然后令()/0f x =,移项,转化为判断两个函数图象的交点个数.【提升训练】1.【2019届高三第一次全国大联考】若函数恰有三个零点,则的取值范围为( )A .B .()C .D .()2.【2017课标3,理11】已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .13.【2018年理数天津卷】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________. 4.【2018年江苏卷】若函数在内有且只有一个零点,则在上的最大值与最小值的和为________. 5.【2018年天津卷文】设函数,其中,且是公差为的等差数列. (I )若 求曲线在点处的切线方程;(II )若,求的极值;(III )若曲线与直线有三个互异的公共点,求d 的取值范围.6.【江西省南昌市2019届高三一模】已知函数(为自然对数的底数),,直线是曲线在处的切线.(Ⅰ)求的值;(Ⅱ)是否存在,使得在上有唯一零点?若存在,求出的值;若不存在,请说明理由.7.【2016年高考四川理数】设函数f (x )=ax 2-a -ln x ,其中a ∈R. (Ⅰ)讨论f (x )的单调性;(Ⅱ)确定a 的所有可能取值,使得11()xf x e x->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).8.【2017年新课标1】已知函数2()e(2)e xx f x a a x =+--.(1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.9.【2017江苏,20】 已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围. 10.【2016高考山东理】已知()221()ln ,R x f x a x x a x-=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立. 11.【2016高考新课标2理数】(Ⅰ)讨论函数xx 2f (x)x 2-=+e 的单调性,并证明当0x >时,(2)20x x e x -++>;(Ⅱ)证明:当[0,1)a ∈时,函数2x =(0)x e ax ag x x-->()有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.12.【辽宁省大连市2019届高三3月测试】已知函数.(1)讨论函数 的单调性;(2)若曲线上存在唯一的点,使得曲线在该点处的切线与曲线只有一个公共点,求实数的取值范围.。
浅谈中学数学中的零点问题
浅谈中学数学中的零点问题杨志斌摘要:本文从数学零点问题出发,讨论了如何运用零点求解不等式和函数零点的求解方法以及怎么利用零点解决一些实际问题。
关键词:零点定义;函数;不等式在数学领域里,求零点是个常见的问题。
我们可以用已知条件求出零点,也可以用零点去解决问题,比如解不等式,方程的有关问题,还有函数问题等等。
用零点问题解有些不等式可以把问题简单化,而解方程实际上就是求零点,通过零点问题可以把函数问题形象化。
我们了解零点在函数中所反映出来的特点,并且要学会通过零点去解决相应的问题。
一、零点的有关定义函数零点的定义是:对于函数()=的零f x=的实数x叫做函数()y f xy f x=使()0点。
零点的特征是:零点附近两侧的函数值异号。
当()0f x>时,在坐标轴上显示的是图象在x轴的上方部分的图象;当()0f x<时,在坐标轴上显示的是图象在x轴的下方部分的图象。
而()0f x=时,在坐标轴上显示的是图象在x轴的上的x的取值。
对于零点还有一个重要的定理,就是零点存在定理。
2004年教育部推出的高中新课程的数学配套教材必修1中就引入了零点存在定理。
零点存在定理:连续函数()=y f x=在[],a b的端点处的函数值符号相反,则()y f x在(),a b内至少有一个零点存在。
交点存在定理:两连续函数()=在[],a b的端点处的函数的函数值大y g xy f x=与()小相反,则()=在(),a b内至少存在一个交点。
y g xy f x=与()在中学,很多的问题都可以用零点问题的方法来解决的,有时通过用零点问题的解法可以让问题变得简单化和形象化。
通过学习和对照中学教材的要求,在不等式中,零点问题有它的独特解法。
二、利用零点解不等式在中学数学课本中,不等式解法都是用不等式的运算法则去求解。
这里,我向大家介绍另外一种方法去解不等式,就是利用零点去解不等式。
它的一般步骤可以分为:(1)求零点:变不等式的不等号为等号,求出等值中未知数的值。
高中数学-函数零点问题及例题解析
高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。
(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。
分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。
热点15 函数的零点问题处理策略与解题技巧-2022年高考数学核心热点突破
当 时, ,
当 时, ,
则函数 的最大值 ,最小值 ,
则 ,符合题意,
所以 ;
当 时, ,
则函数 的最大值 ,最小值 ,
则 ,符合题意,
所以 ;
当 时, ,
则函数 的最大值 ,最小值 ,
则 ,解得则 ,(舍去);
当 时, ,
则函数 的最大值 ,最小值 ,
则 ,解得 ,(舍去),
所以函数 .当 时,函数 的最大值 与最小值 的差为2, 或 ,
综上: .
【点睛】函数零点的求解与判断方法:
(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.
(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.
(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.
在 时有2个交点,符合题意;
若 ,直线 与 的图象在 时有1个交点,
在 时有2个交点,不符合题意;
若 ,直线 与 的图象在 时有1个交点,
在 时无交点,不符合题意;
若 ,,直线 与 的图象至多有一个交点,不符合题意.
所以只有 符合题意.
故选:D.
7.函数 , 的图象与直线 ( 为常数)的交点可能有()
一、单选题
5.函数 的一个零点在区间 内,则实数 的取值范围是()
A. B. C. D.
【答案】D
【解析】
【分析】先判断出 在 上是增函数,利用零点存在定理列不等式,即可求a的范围.
【详解】∵ 和 在 上是增函数,
专题05 挖掘“隐零点”,破解导数压轴题-2121年高考数学压轴题之函数零点问题(解析版)
【答案】(Ⅰ)0;(Ⅱ)见解析.
【解析】(Ⅰ)解:因为 f (x) ex+m x3 , 所以 f (x) ex+m 3x2 .……………………………………………………………1 分
因为曲线 y f x 在点 0,f 0 处的切线斜率为1, 所以 f 0 em 1,解得 m 0 .…………………………………………………2 分
(Ⅱ)证法一:因为 f (x) ex+m x3 , g x ln x 1 2 ,
精品公众号:学起而飞
所以 f x g (x) x3 等价于 ex+m ln x 1 2 0 .
当 m 1时, ex+m ln x 1 2 ex1 ln x 1 2 .
要证 ex+m ln x 1 2 0 ,只需证明 ex1 ln(x 1) 2 0 .………………4 分
,解得: ,
由
,解得:
,
故 在 递减,在
递增;
2 由 1 知要使 存在最小值,
则且
,
精品公众号:学起而飞
令
,
,
则
在
递减,
又
,
,
故存在
使得
故在
递增,在
,
故
,
故
, 递减, ,
,
又
,
,
故
.
2.【广东省汕头市 2019 届高三上学期期末】已知函数
.
讨论 的单调性;
若 , 是 的两个极值点,证明:
.
【答案】(1)答案不唯一,具体见解析(2)见解析 【解析】
解问题决定,因此必要时尽可能缩小其范围;
第二步:以零点为分界点,说明导函数 f′(x)的正负,进而得到 f(x)的最值表达式;这里应注意,进行代
高中数学解题方法技巧:函数零点问题
高中数学解题技巧剖析:函数零点问题作者:xbomath 倾情分享今天跟大家分享一下每日一题:函数零点问题。
本题难度中等偏上,对于同学们的综合能力有较高要求,着重考察数形结合、绝对值的意义等思想。
数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。
本道题目的主旨在于将一个未知函数拆分为两个常见的函数,然后运用数形结合的思想来解决问题。
令f (x )=0,将等式移项变换,可以得到两个新函数, g (x )=1x和ℎ(x )=|2x −m |的绝对值型一次函数,最后画图求交点,根据图像 数m 的取值范围即可。
解析:易知 f (0)=−1,故函数f (x )有三个不同的零点,可以转化为|2x −m |=1x 有 三个不同的非零实数根,即函数y =|2x −m |与y =1x(x >0)的图像有三个不 习题2.1 已知函数f (x )=൝−2x 2+mx −1, x <m 22x 2−mx −1, x ≥m 2,若函数f (x )有三个不 同的零点,则实数m 的取值范围为A. (2, +∞)B. (2ξ2,+∞)C. (4, +∞)D. (4ξ2,+∞)同的交点,作图,当x ≥m 2时,直线y =2x −m 与曲线y =1x(x >0),有且仅 有一个交点,当0<x <m 2时,直线y =2x +m 与曲线y =1x(x >0),必有两 个不同的交点,而当直线y =2x +m 与曲线y =1x (x >0)相切时,−1x 2=−2 解得x =ξ22,此时m =2ξ2,此时m =2ξ2结合图像可知:m >2ξ2。
浅谈高中数学零点问题
浅谈高中数学零点问题一、求函数的零点例1求函数y=x2-x<02x-1x的零点≥ 0解:令x2-1=0x<0,解得x=1,2x-1=0x≥ 0,解为x=。
所以原函数的零点为和-1和。
注释:找到函数FX的零点,将其转换为方程FX=0,并通过因子分解将方程转换为二次方程。
二、判断函数零点个数例2求fx=x-的零数。
解:函数的定义域-∞,0∪0,+∞。
设FX=0,即X-=0,解得:x=2或x=-2。
原来的函数有两个零。
点评:转化为方程直接求出函数零点,注意函数的定义域。
三、根据函数零点反算参数例3若方程ax-x-a=0有两个解,求a的取值范围。
分析:将方程ax-x-a=0转化为ax=x+a。
由题知,方程ax-x-a=0有两个不同的实数解,即函数y=ax与y=a+x有两个不同的交点,如图所示。
这种情况与问题的含义不符。
2a>1。
当y轴上直线y=x+A的截距大于1时,函数y=ax和函数y=A+x有两个不同的交点。
所以a<0与0 点评:采用分类讨论与用数形结合的思想。
四、零点的二分法近似解例4求函数fx=x3+x2-2x-2的一个正数零点精确到0.1。
解决方案:1。
第一步是确定零点所在的近似间隔a和B。
可以使用函数属性,也可以使用计算机。
但是,尝试采用端点为整数的间隔,并尽可能缩短间隔长度。
通常,可以确定长度为1的间隔。
2列表如下:零点所在区间内中点函数值的区间长度1,2f1.5>011,1.5f1。
25<00.51.25,1.5f1.375<00.251.375,1.5f1。
438>00.1251.375,1.438f1.4065>00.0625可以看出,区间1.375和1.438的长度小于0.1,因此1.4065可以作为1.375和1.438范围内函数FX正数零点的近似值。
点评:用二分法求函数零点近似值的过程中,首先依据函数性质确定函数零点存在的一个区间,此区间选取应尽量小,并且易于计算,再不断取区间中点,把区间的范围逐步缩小,使得在缩小的区间内存在一零点。
高考数学热点难点突破技巧第05讲函数的零点问题处理方法201802074159
第05讲:函数的零点问题处理方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数(,把使成立的实数叫做函数(的零点.函数的零点不是一个点的坐标,而是一个数,类似的数学概念有截距和极值点等.(2)函数零点的意义:函数的零点就是方程的实数根,亦即函数的图像与轴的交点的横坐标,即:方程有实数根函数的图像与轴有交点函数有零点.(3)零点存在性定理:如果函数在区间上的图像是一条连续不断的曲线,并且有,那么函数在区间内至少有一个零点,即存在使得,这个也就是方程的根.函数在区间上的图像是一条连续不断的曲线,并且有是函数在区间内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决.二、二分法(1)二分法及步骤对于在区间上连续不断,且满足的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法.(2)给定精确度,用二分法求函数的零点近似值的步骤如下:第一步:确定区间,验证,给定精确度.第二步:求区间的中点.第三步:计算:①若=0,则就是函数的零点;②若,则令(此时零点)③若,则令(此时零点)第四步:判断是否达到精确度即若,则得到零点值或,否则重复第二至第四步.三、一元二次方程的根的分布讨论一元二次方程的根的分布一般从以下个方面考虑列不等式组:(1)的符号;(2)对称轴的位置;(3)判别式的符号;(4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入.五、方法总结1、函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法.2、高考考查单调函数的零点时,一般要找到两个变量,并且要证明.这是一个难点,一般利用放缩法证明.【方法讲评】方法一方程法使用情景方程可以直接解出来.解题步骤先解方程,再求解.【例1 】已知函数区间内有零点,求实数的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的一元二次函数要比较敏感,看到它就要想到因式分解,如果不好因式分解,再考虑其它方法. 【反馈检测 1】函数 在区间 上的零点个数是()A .4B .5C .6D . 7方法二 图像法函数是一些简单的初等函数(反比例函数、一次函数、二次函数、指数使用情景 函数、对数函数、三角函数等)或单调性容易求出,比较容易画出函数 的图像.解题步骤 先求函数的单调性,再根据函数的单调性画出函数的图像分析.【例 2】(2016年北京高考文科)设函数 (1)求曲线 在点 处的切线方程;(2)设 ,若函数有三个不同零点,求 c 的取值范围; (3)求证:是有三个不同零点的必要而不充分条件.(2)当 时, ,所以 .令,得 ,解得 或 .与在区间上的情况如下:所以,当且时,存在,,,使得.由的单调性知,当且仅当时,函数有三个不同零点.(3)当时,,,此时函数在区间上单调递增,所以不可能有三个不同零点.当时,只有一个零点,记作.当时,,在区间上单调递增;当时,,在区间上单调递增.所以不可能有三个不同零点.【点评】(1)本题的第2问是用数形结合解答的,画图分析得只有满足极大值大于零且极小值小于零,则函数图像与轴会有三个不同的交点,函数有三个不同零点.(2)本题的第3问,,是一个二次函数,但是由于该二次函数与轴的交点的个数不确定,所以要就判别式分类讨论,分类讨论时结合数形结合比较直观地看到函数的单调性,从而得到零点的个数.【例3】(2017全国高考新课标I理科数学)已知函数.(1)讨论的单调性;(2)若有两个零点,求a的取值范围.(2) ①若由(1)知至多有一个零点.②若,由(1)知当时,取得最小值,.(i)当时,=0,故只有一个零点.(ii)当时,由于>0,即,故没有零点.(iii)当时,,即.故在只有一个零点.【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当时,要先判断的零点的个数,此时考查了函数的零点定理,,还必须在该区间找一个函数值为正的值,它就是要说明,这里利用了放缩法,丢掉了.(3) 当时,要判断上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是,再放缩证明>0. (4)由此题可以看出零点定理在高考中的重要性.【反馈检测2】已知函数,其中为实数,常数.(1) 若是函数的一个极值点,求的值;(2) 当时,求函数的单调区间;(3) 当取正实数时,若存在实数,使得关于的方程有三个实数根,求的取值范围.方法三方程图像法使用情景函数比较复杂,不方便解方程,也不容易求函数的单调性.先令,重新构造方程,再画函数的图解题步骤像分析解答.【例4】【2017江苏,14】设是定义在且周期为1的函数,在区间上,其中集合,则方程的解的个数是.因此,则,此时左边为整数,右边为非整数,矛盾,因此,因此不可能与每个周期内对应的部分相等,只需考虑与每个周期的部分的交点,画出函数图象,图中交点除外其他交点横坐标均为无理数,属于每个周期的部分,且处,则在附近仅有一个交点,因此方程的解的个数为8.【点评】直接求方程的解的个数比较困难,所以转化为方程的解的个数.所以要先化出函数和函数的图像,再分析它们的交点个数,即得到方程的解的个数.【例5】函数.(1)当时,若函数与的图象有且只有3个不同的交点,求实数的值的取值范围;(2)讨论的单调性.【解析】(1)当时,由题得,两式相减得,故.令,,故当时,;当时,;当时,;,.故.【点评】(1)由于函数与函数的图像不好画,即使能画出来,也不方便研究两个函数图像的交点个数,所以把交点转化成方程组的解来解答,再转化成方程的解来解答,再分离参数化成的形式,利用数形结合分析解答. (2)对于一个函数如果不方便解方程,也不方便画图,则可以尝试利用重新构造方程,再分别画出函数和函数的图像分析解答.【例6】函数的零点个数是个.当时,所以函数在上只有一个零点.综上所述,函数零点个数为2.【点评】(1)函数是一个分段函数,求出每一段的函数的零点个数再相加即可. (2)上面一段宜选用解方程的方法求零点,因为它可以整理成一个关于的一元二次方程. 下面的一段宜选用图像法求零点.因为它的单调性比较容易求得. (3)要想灵活选择,主要取决于熟练生巧.【反馈检测3】设函数.(1)求函数的单调区间;(2)当时,讨论函数与图象的交点个数.高考数学热点难点突破技巧第05讲:函数的零点问题处理方法参考答案【反馈检测1答案】【反馈检测2答案】(1);(2)的单调增区间是,;的单调减区间是,,;(3)的取值范围是.【反馈检测2详细解析】(1)因为是函数的一个极值点,所以,即.而当时,,可验证:是函数的一个极值点.因此.(2) 当时,令得,解得,而.所以当变化时,、的变化是极小极大值值因此的单调增区间是,;的单调减区间是,,;(3) 当取正实数时,,令得,当时,解得. 在和上单调递增,在上单调递减,但是函数值恒大于零,极大值,极小值,并且根据指数函数和二次函数的变化速度可知当时,,当时,.因此当时,关于的方程一定总有三个实数根,结论成立;当时,的单调增区间是,无论取何值,方程最多有一个实数根,结论不成立.因此所求的取值范围是.【反馈检测3答案】(1)单调递增区间是, 单调递减区间是;(2).【反馈检测3详细解析】(1)函数的定义域为.(2)令,问题等价于求函数的零点个数,,当时,,函数为减函数,注意到,所以有唯一零点;当时,或时,时,,所以函数在和上单调递减,在上单调递增,注意到,所以有唯一零点.综上,函数有唯一零点,即两函数图象总有一个交点.。
高中数学函数零点问题必考点梳理+真题精练(附答案)
第 7 页 共 19 页
由图可知:当
0
m
1 2
时,两图象有两个不同的交点,
在区间 1,1 上方程 f x mx m 0 有两个不同的实根,故选:B
例 5.(2020·江苏宝应中学高三三模)已知函数 f x 2ln x2 3x 3 ,其中x 表示不大于 x 的
最大整数(如1.6 1,2.1 3),则函数 f x 的零点个数是( )
对函数
y
ln x
1, x
0 求导得
y
1 x 1
,
设切点为
x0, ln x0 1
,则
ln x0 1
x0 1
2 3
1 x0 1
m ,解得
x0
1
1
e3
,m
1
e3
,
数形结合可知,当
m
2 3
1
,e 3
时,直线
y
mx
m
2 3
与函数
f
x
的图象有四个交点,即函数
g
x
有四个零点.故选:B.
第 6 页 共 19 页
f |
(x) x|
有
2
个不同交点,不满足题意;
当 k 0 时,如图 2,此时 y | kx 2 |与 h(x)
f |
(x) x|
恒有
3
个不同交点,满足题意;
当 k 0 时,如图 3,当 y kx 2 与 y = x2 相切时,联立方程得 x2 kx 2 0 ,
令 0 得 k2 8 0 ,解得 k 2 2 (负值舍去),所以 k 2 2 . 综上, k 的取值范围为 (,0) (2 2, ) ,故选 D.
图形特征,是数形结合的体现.通过图象可清楚的数出交点的个数(即零点,根的个数)或者
【高考数学】三角函数零点问题
函数零点是近年来高考既是热点,又是重点,更是高频考点内容,在全国各个省的高考题,及各市各套模拟试卷都屡见不鲜,尤其是三角函数的零点问题,常考常新,但解答题都是通过分类讨论研究零点,分离参数划归为曲线的交点,分离函数等研究零点问题,下面就解答题加以分析: 一.理论基础,解题原理对函数y=f(x), 使f(x)=0的实数x 叫做函数y=f(x)的零点。
1.函数零点定义:2. 等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x 轴有交点⇔曲线y=g(x)与y=h(x)的交点⇔函数y=f(x)有零点; 3.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b) 内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根。
二 例题枚举例1.(19课标1)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数. 证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.解(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭ ()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,1111,7n n a a +-=在1,2π⎛⎫- ⎪⎝⎭上单调递减 ()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减,又()0sin 0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++,00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '= 三角函数零点问题∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫⎪⎝⎭上单调递减则0x x =为()g x 唯一的极大值点,即()f x '在1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =, 0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在00,x 上单调递增,在0,2x π⎛⎫⎪⎝⎭上单调递减又()00f '= ()00f x '∴>()f x ∴在00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-<⎪++⎝⎭,10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1lnln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减,又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+<,即()02f f ππ⎛⎫⋅< ⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln 1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<,即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点【点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.例2(17山东)已知函数()22cos f x x x =+,()()cos sin 22xg x e x x x =-+-其中 2.71828e =L 是自然对数的底数. (Ⅰ)求曲线()y f x =在点()(),f ππ处的切线方程;(Ⅱ)令()()()()h x g x af x a R =-∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值.解:(Ⅰ)易求:222y x ππ=--(Ⅱ)由题意得 2()(c o ss i n 22)(2c o s )xh x e x x x a x x =-+--+,因为()()()()cos sin 22sin cos 222sin x xh x e x x x e x x a x x '=-+-+--+--()()2sin 2sin x e x x a x x =---()()2sin x e a x x =--,令()sin m x x x =-,则()1cos 0m x x '=-≥,所以()m x 在R 上单调递增. 因为(0)0,m =所以 当0x >时,()0,m x > 当0x <时,()0m x < (1)当0a ≤时,x e a -0>当0x <时,()0h x '<,()h x 单调递减,当0x >时,()0h x '>,()h x 单调递增, 所以 当0x =时()h x 取得极小值,极小值是 ()021h a =--;极大值为()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,当0x =时()h x 取到极小值,极小值是 ()021h a =--; ②当1a =时,ln 0a =,所以 当(),x ∈-∞+∞时,()0h x '≥,函数()h x 在(),-∞+∞上单调递增,无极值; ③当1a >时,ln 0a >所以 当(),0x ∈-∞时,ln 0x a e e -<,()()0,h x h x '>单调递增; 当()0,ln x a ∈时,ln 0x a e e -<,()()0,h x h x '<单调递减; 当()ln ,x a ∈+∞时,ln 0x a e e ->,()()0,h x h x '>单调递增; 所以 当0x =时()h x 取得极大值,极大值是()021h a =--; 当ln x a =时()h x 取得极小值.极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上递增,在()ln ,0a 上递减,函数()h x 有极大值,也有极小值,【点睛】 1.函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y −y 0=f ′(x 0)(x −x 0).注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同.2. 本题主要考查导数的几何意义、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道较难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.例3(19天津)设函数()e cos ,()x f x x g x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明:()()02f x g x x π⎛⎫+- ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242m m πππ⎛⎫++ ⎪⎝⎭内的零点,其中n N ∈,证明:20022sin cos n n n x x e x πππ-+-<-.解:(Ⅰ)由已知,有()()'e cos sin xf x x x =-.当()52,244x k k k Z ππππ⎛⎫∈++∈ ⎪⎝⎭时,有sin cos x x >,得()'0f x <,则()f x 递减; 当()32,244x k k k Z ππππ⎛⎫∈-+∈ ⎪⎝⎭时,有sin cos x x <,得()'0f x >,则()f x 递增. 所以()f x 的递增区间为()32,244k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, ()f x 的递减区间为()52,244k k k Z ππππ⎛⎫++∈ ⎪⎝⎭.(Ⅱ)记()()()2h x f x g x x π⎛⎫-= ⎝+⎪⎭.依题意及(Ⅰ)有:()()cos sin xg x e x x =-,从而'()2sin xg x e x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,()'0g x <,故'()'()'()()(1)()022h x f x g x x g x g x x ππ'⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上递减,进而()022h x h f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+- ⎪⎝⎭.(Ⅲ)依题意,()()10n n u x f x =-=,即e cos 1n xn x =.记2n n y x n π=-,则,42n y ππ⎛⎫∈ ⎪⎝⎭.且()e cos n y n n f y y ==()()22e cos 2e nx n n n x n n N πππ---∈=. 由()()20e1n n f y f y π-==及(Ⅰ)得0n y y . 由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()'0g x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫<= ⎪⎝⎭.又由(Ⅱ)知()()02n n n f y g y y π⎛⎫+- ⎪⎝⎭,故: ()()()2e 2n n nn n f y y g y g y ππ---=-()()022200000sin cos sin cos n n n y e e e g y e y y x x πππ---=<--. 所以200e 22sin cos n n n x x x πππ-+--<.【点睛】本题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力.。
专题02 函数零点问题-2020高考数学尖子生辅导专题
专题二 函数零点问题函数的零点作为函数、方程、图象的交汇点,充分体现了函数与方程的联系,蕴含了丰富的数形结合思想.诸如方程的根的问题、存在性问题、交点问题等最终都可以转化为函数零点问题进行处理,因此函数的零点问题成为了近年来高考新的生长点和热点,且形式逐渐多样化,备受青睐.模块1 整理方法 提升能力对于函数零点问题,其解题策略一般是转化为两个函数图象的交点.对于两个函数的选择,有3种情况:一平一曲,一斜一曲,两曲(凸性一般要相反).其中以一平一曲的情况最为常见.分离参数法是处理零点问题的常见方法,其本质是选择一平一曲两个函数;部分题目直接考虑函数()f x 的图象与x 轴的交点情况,其本质是选择一平一曲两个函数;部分题目利用零点存在性定理并结合函数的单调性处理零点,其本质是选择一平一曲两个函数.函数的凸性1.下凸函数定义设函数()f x 为定义在区间(),a b 上的函数,若对(),a b 上任意两点1x ,2x ,总有()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭,当且仅当12x x =时取等号,则称()f x 为(),a b 上的下凸函数. 2.上凸函数定义设函数()f x 为定义在区间(),a b 上的函数,若对(),a b 上任意两点1x ,2x ,总有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,当且仅当12x x =时取等号,则称()f x 为(),a b 上的上凸函数.3.下凸函数相关定理定理:设函数()f x 为区间(),a b 上的可导函数,则()f x 为(),a b 上的下凸函数⇔()f x '为(),a b 上的递增函数⇔()0f x ''≥且不在(),a b 的任一子区间上恒为零. 4.上凸函数相关定理定理:设函数()f x 为区间(),a b 上的可导函数,则()f x 为(),a b 上的上凸函数⇔()f x '为(),a b 上的递减函数⇔()0f x ''≤且不在(),a b 的任一子区间上恒为零.例1【解析】(1)()()()()22e 2e 12e 1e 1x x x x f x a a a '=+--=+-,2e 10x +>. ①当0a ≤时,e 10x a -<,所以()0f x '<,所以()f x 在R 上递减. ②当0a >时,由()0f x '>可得1lnx a >,由()0f x '<可得1ln x a<,所以()f x 在1,ln a ⎛⎫-∞ ⎪⎝⎭上递减,在1ln ,a ⎛⎫+∞ ⎪⎝⎭上递增.(2)法1:①当0a ≤时,由(1)可知,()f x 在R 上递减,不可能有两个零点.②当0a >时,()min 11ln 1ln f x f a a a ⎛⎫⎡⎤==-+ ⎪⎣⎦⎝⎭,令()()min g a f x =⎡⎤⎣⎦,则()2110g a a a'=+>,所以()g a 在()0,+∞上递增,而()10g =,所以当1a ≥时,()()min 0g a f x =⎡⎤≥⎣⎦,从而()f x 没有两个零点.当01a <<时,1ln 0f a ⎛⎫< ⎪⎝⎭,()22110e e e a a f -=++->,于是()f x 在11,ln a ⎛⎫- ⎪⎝⎭上有1个零点;因为()2333333ln 1121ln 11ln 10f a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+----=---> ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且31ln 1ln a a ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭,所以()f x 在1ln ,a ⎛⎫+∞ ⎪⎝⎭上有1个零点.综上所述,a 的取值范围为()0,1.法2:()2222e e 2e 0e e 2e e e x xxxxxx x x a a x a a x a ++--=⇔+=+⇔=+.令()22e e e x x xxg x +=+,则()()()()()()()()()2222222e 1e e 2e 2e e e 2e 1e 1eeeexx x x x x x x x xx xx x x g x ++-++++-'==-++,令()e 1x h x x =+-,则()e 10x h x '=+>,所以()h x 在R 上递增,而()00h =,所以当0x <时,()0h x <,当0x >时,()0h x >, 于是当0x <时,()0g x '>,当0x >时,()0g x '<,所以()g x 在(),0-∞上递增,在()0,+∞上递减.()01g =,当x →-∞时,()g x →-∞,当x →+∞时,()0g x +→.若()f x 有两个零点,则y a =与()g x 有两个交点,所以a 的取值范围是()0,1.法3:设e 0x t =>,则ln x t =,于是()22e 2e 02ln x x a a x at at t t +--=⇔+=+⇔22ln t t a t t +=+,令()22ln t t G t t t +=+,则()()()()()222122ln 21t t t t t t G t t t ⎛⎫++-++ ⎪⎝⎭'==+ ()()()22211ln t t t tt +-+-+,令()1ln H t t t =-+,则()110H t t'=+>,所以()H t 在()0,+∞上递增,而()10H =,所以当01t <<时,()0H t <,()0G t '>,当1t >时,()0H t >,()0G t '<,所以()G t 在()0,1上递增,在()1,+∞上递减.()11G =,当0t +→时,()G t →-∞,当t →+∞时,()0G t +→.若()f x 有两个零点,则y a =与()G t 有两个交点,所以a 的取值范围是()0,1.法4:设e 0x t =>,则ln x t =,于是()22e 2e 02ln 0x x a a x at at t t +--=⇔+--=⇔()ln 12t a t t +-=.令()()12k t a t =+-,()ln t t tϕ=,则()f x 有两个零点等价于()y k t =与()y t ϕ=有两个交点.因为()21ln tt tϕ-'=,由()0t ϕ'>可得0e t <<,由()0t ϕ'<可得e t >,所以()t ϕ在()0,e 上递增,在()e,+∞上递减,()1e e ϕ=,当x →+∞时,()0t ϕ+→.()y k t =是斜率为a ,过定点()1,2A --的直线.当()y k t =与()y t ϕ=相切的时候,设切点()00,P t y ,则有()000002ln 121ln t y t y a t ta t ⎧=⎪⎪⎪=+-⎨⎪-⎪=⎪⎩,消去a 和0y ,可得()000200ln 1ln 12t t t t t -=+-, 即()()00021ln 10t t t ++-=,即00ln 10t t +-=.令()ln 1p t t t =+-,显然()p t 是增函数,且()10p =,于是01t =,此时切点()1,0P ,斜率1a =.所以当()y k t =与()y t ϕ=有两个交点时,01a <<,所以a 的取值范围是()0,1.法5:()()20e e 2e x x x f x a x =⇔+=+,令()()2e e x x M x a =+,()2e e x x m x =+,()2e x n x x =+,则()f x 有两个零点⇔()M x 与()n x 的图象有两个不同交点.()()002m n ==,所以两个函数图象有一个交点()0,2.令()()()2e e x x T x m x n x x =-=--,则()()()22e e 12e 1e 1x x x x T x '=--=+-,由()0T x '>可得0x >,由()0T x '<可得0x <,于是()T x 在(),0-∞上递减,在()0,+∞上递增,而()00T =,所以()()m x n x ≥,因此()m x 与()n x相切于点()0,2,除切点外,()m x 的图象总在()n x 图象的上方.由(1)可知,0a >.当1a >时,将()m x 图象上每一点的横坐标固定不动,纵坐标变为原来的a 倍,就得到了()M x 的图象,此时()M x 与()n x 的图象没有交点.当1a =时,()m x 的图象就是()M x 的图象,此时()M x 与()n x 的图象只有1个交点.当01a <<时,将()m x 图象上每一点的横坐标固定不动,纵坐标变为原来的a 倍,就得到了()M x 的图象,此时()M x 与()n x 的图象有两个不同交点.综上所述,a 的取值范围是()0,1.法6:()()()20e e 2e e 12e x x x x xx f x a x a =⇔+=+⇔+-=,令()()e 12xp x a =+-,()e xxq x =,则()f x 有两个零点⇔()p x 与()q x 的图象有两个不同交点. ()1ex xq x -'=,由()0q x '>可得1x <,由()0q x '<可得1x >,所以()q x 在(),1-∞上递增,在()1,+∞上递减,当x →+∞时,()0q x +→.由(1)可知,0a >,所以()p x 是下凸函数,而()q x 是 上凸函数.当()p x 与()q x 相切时,设切点为()00,P x y ,则有()00000000e 12e 1e e xx x x y a x y x a ⎧=+-⎪⎪⎪=⎨⎪-⎪=⎪⎩,消去a ,0y 可得()0000021e 12e e x x x x x -+-=,即()()0002e 1e 10x x x ++-=,即00e 10x x +-=.令()e 1x W x x =+-,显然()W x 是增函数,而()00W =,于是00x =,此时切点()0,0P ,1a =.所以当()p x 与()q x 的图象有两个交点时,01a <<,所以a 的取值范围是()0,1.【点评】函数零点问题,其解题策略是转化为两个函数图象的交点,三种方式中(一平一曲、一斜一曲、两曲)最为常见的是一平一曲.法1是直接考虑函数()f x 的图象与x 轴的交点情况,法2是分离参数法,法3用了换元,3种方法的本质都是一平一曲,其中法3将指数换成了对数,虽然没有比法2简单,但是也提示我们某些函数或许可以通过换元,降低函数的解决难度.法4是一斜一曲情况,直线与曲线相切时的a 值是一个重要的分界值.法5和法6都是两曲的情况,但法6比法5要简单,其原因在于法5的两曲凸性相同而法6的两曲凸性相反.函数零点问题对函数图象说明的要求很高,如解法2当中的()g x 是先增后减且极大值()01g =,但x →-∞和x →+∞的状态会影响a 的取值范围,所以必须要说清楚两个趋势的情况,才能得到最终的答案.例2【解析】(1)因为()112n n f x x nx -'=+++,所以()121222n n f n -'=+⨯++⋅…①.由()2222222n n f n '=+⨯++⋅…②,①-②,得()21212222n n n f n -'-=++++-⋅=()12212112nn n n n --⋅=---,所以()()2121n n f n '=-+. 【证明】(2)因为()010f =-<,22213322211121202333913nn n f ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦=-=-≥-=> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-,由零点存在性定理可知()n f x 在20,3⎛⎫⎪⎝⎭内至少存在一个零点.又因为()1120n n f x x nx -'=+++>,所以()n f x 在20,3⎛⎫ ⎪⎝⎭内递增,因此()n f x 在20,3⎛⎫⎪⎝⎭内有且只有一个零点n a .由于()()111n n x x f x x-=--,所以()()1101n n n n n na a f a a -=-=-,由此可得11122n n n a a +=+,即11122n n na a +-=.因为203n a <<,所以111120223n n n a ++⎛⎫<< ⎪⎝⎭,所以1111212022333n nn na ++⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,所以1120233nn a ⎛⎫<-< ⎪⎝⎭.【点评】当函数()f x 满足两个条件:连续不断,()()0f a f b <,则可由零点存在性定理得到函数()f x 在(),a b 上至少有1个零点.零点存在性定理是高中阶段一个比较弱的定理,首先,该定理的两个条件缺一不可,其次,就算满足两个条件,也只能得到有零点的结论,究竟有多少个零点,也不确定.零点存在性定理常与单调性综合使用,这是处理函数零点问题的一种方法.例3【解析】(1)()1e xf x x m'=-+,由0x =是()f x 的极值点,可得()00f '=,解得1m =.于是()()e ln 1x f x x =-+,定义域为()1,-+∞,()1e 1xf x x '=-+,则()()21e 01x f x x ''=+>+,所以()f x '在()1,-+∞上递增,又因为()00f '=,所以当10x -<<时()0f x '<,当0x >时()0f x '>,所以()f x 在()1,0-上递减,在()0,+∞上递增.【证明】(2)法1:()f x 定义域为(),m -+∞,()1e xf x x m'=-+,()()21e 0xf x x m ''=+>+,于是()f x '在(),m -+∞上递增.又因为当x m +→-时,()f x '→-∞,当x →+∞时,()f x '→+∞,所以()0f x '=在(),m -+∞上有唯一的实根0x ,当0m x x -<<时,()0f x '<,当0x x >时,()0f x '>,所以()f x 在()0,m x -上递减,在()0,x +∞上递增,所以当0x x =时,()f x 取得最小值.由()00f x '=可得001e 0x x m-=+,即()00ln x m x +=-,于是()()000000011e ln 2xf x x m x x m m m x m x m=-+=+=++-≥-++.当2m <时,()00f x >;当2m =时,等号成立的条件是01x =-,但显然()11e 012--≠-+,所以等号不成立,即()00f x >.综上所述,当2m ≤时,()()00f x f x ≥>.法2:当2m ≤,(),x m ∈-+∞时,()()ln ln 2x m x +≤+,于是()()e ln 2x f x x ≥-+,所以只要证明()()e ln 20x x x ϕ=-+>,()2,x ∈-+∞,就能证明当2m ≤时,()0f x >.()1e 2x x x ϕ'=-+,()()21e 02x x x ϕ''=+>+,于是()x ϕ'在()2,-+∞上递增.又因为()1110eϕ'-=-<,()10102ϕ'=->,所以()0x ϕ'=在()2,-+∞上有唯一的实根0x ,且()01,0x ∈-.当02x x -<<时,()0x ϕ'<,当0x x >时,()0x ϕ'>,所以()x ϕ在()02,x -上递减,在()0,x +∞上递增,所以当0x x =时,()x ϕ取得最小值.由()00x ϕ'=可得001e 02x x -=+,即()00ln 2x x +=-.于是()()()0200000011e ln 2022x x x x x x x ϕ+=-+=+=>++,于是()()00x x ϕϕ≥>. 综上所述,当2m ≤时,()0f x >.法3:当2m ≤,(),x m ∈-+∞时,()()ln ln 2x m x +≤+,于是()()e ln 2x f x x ≥-+,所以只要证明()e ln 20x x -+>(2x >-),就能证明当2m ≤时,()0f x >.由ln 1x x ≤-(0x >)可得()ln 21x x +≤+(2x >-),又因为e 1x x ≥+(x ∈R ),且两个不等号不能同时成立,所以()e ln 2x x >+,即()e l n 20x x -+>(2x >-),所以当2m ≤时,()0f x >.数的公切线实现隔离放缩,事实上,1y x =+就是e x y =、()ln 2y x =+两个函数的公切线.(不等式证明问题详见专题四)模块2 练习巩固 整合提升练习1:设函数()2e ln x f x a x =-.(1)讨论()f x 的导函数()f x '的零点的个数; (2)证明:当0a >时,()22lnf x a a a≥+. 【解析】(1)()f x 的定义域为()0,+∞,()22e x af x x'=-. ()f x '的零点的个数⇔22e x x a =的根的个数⇔()22e x g x x =与y a =在()0,+∞上的交点的个数.因为()()2221e 0x g x x '=+>,所以()g x 在()0,+∞上递增,又因为()00g =,x →+∞时,()g x →+∞,所以当0a ≤时,()g x 与y a =没有交点,当0a >时,()g x 与y a =有一个交点.综上所述,当0a ≤时,()f x '的零点个数为0,当0a >时,()f x '的零点个数为1. 【证明】(2)由(1)可知,()f x '在()0,+∞上有唯一的零点0x ,当00x x <<时,()0f x '<,当0x x >时,()0f x '>,所以()f x 在()00,x 上递减,在()0,x +∞上递增,所以当0x x =时,()f x 取得最小值,且最小值为()0f x .因为0202e 0x a x -=,所以020e 2x a x =,00ln ln 22ax x =-,所以()020000002e ln ln 22ln 2ln 2222x a a aa f x a x a x ax a a a x x a ⎛⎫=-=--=+-≥+ ⎪⎝⎭. 练习2:设函数()2e 2ln x f x k x x x ⎛⎫=-+ ⎪⎝⎭(k 为常数,e 2.71828=⋅⋅⋅是自然对数的底数).(1)当0k ≤时,求函数()f x 的单调区间;(2)若函数()f x 在()0,2内存在两个极值点,求k 的取值范围.【解析】(1)函数()f x 的定义域为()0,+∞,()32e 2e 21x x x f x k x xx -⎛⎫'=--+= ⎪⎝⎭ ()()32e x x kx x--.当0k ≤时,e 0x kx ->,所以当02x <<时,()0f x '<,当2x >时,()0f x '>.所以()f x 的递减区间为()0,2,递增区间为()2,+∞.(2)函数()f x 在()0,2内存在两个极值点()0f x '⇔=在()0,2内有两个不同的根.法1:问题e 0x kx ⇔-=在()0,2内有两个不同的根.设()e x h x kx =-,则()e x h x k '=-.当1k ≤时,()0h x '>,所以()h x 在()0,2上递增,所以()h x 在()0,2内不存在两个不同的根.当1k >时,由()0h x '>可得ln x k >,由()0h x '<可得ln x k <,所以()h x 的最小值为()()ln 1ln h k k k =-.e 0xkx -=在()0,2内有两个不同的根()()()()20102e 20ln 1ln 00ln 2g g k g k k k k ⎧=>⎪=->⎪⇔⎨=-<⎪⎪<<⎩,解得2e e 2k <<.综上所述,k 的取值范围为2e e,2⎛⎫⎪⎝⎭.法2:问题e x k x ⇔=在()0,2内有两个不同的根y k ⇔=与()e xg x x=在()0,2内有两个不同的交点.()()221ee e xx x x x g x x x --'==,当01x <<时,()0g x '<,当1x >时,()0g x '>.()1e g =,()2e 22g =,当0x +→时,()g x →+∞.画出()g x 在()0,2内的图象,可知要使y k =与()g x 在()0,2内有两个不同的交点,k 的取值范围为2e e,2⎛⎫⎪⎝⎭.练习3:已知函数()e x f x =和()()ln g x x m =+,直线l :y kx b =+过点()1,0P -且与曲线()y f x =相切.(1)求切线l 的方程;专题二 函数零点问题原创精品资源学科网独家享有版权,侵权必究! 11 (2)若不等式()ln kx b x m +≥+恒成立,求m 的最大值;(3)设()()()F x f x g x =-,若函数()F x 有唯一零点0x ,求证:0112x -<<-.【解析】(1)设直线l 与函数()f x 相切于点()11,e x A x ,则切线方程为()111e e x x y x x -=-,即1111e e e x x x y x x =-+,因为切线过点()1,0P -,所以11110e e e x x x x =--+,解得10x =,所以切线l 的方程为1y x =+.(2)设()()1ln h x x x m =+-+,()1x m h x x m+-'=+.当(),1x m m ∈--时,()0h x '<,当()1,x m ∈-+∞时,()0h x '>,所以()h x 在1x m =-时取极小值,也是最小值.因此,要原不等式成立,则()120h m m -=-≥,所以m 的最大值是2.【证明】(3)由题设条件知,函数()1e x F x x m'=-+(x m >-),令()()H x F x '=,则()()21e 0x H x x m '=+>+,于是()H x 在(),m -+∞上单调递增.因为当x m +→-时,()F x '→-∞,当x →+∞时,()F x '→+∞,所以()0F x '=有唯一的实根,设为1x ,则当()1,x m x ∈-时,()0F x '<,当()1,x x ∈+∞时,()0F x '>,于是()F x 有唯一的极小值1x ,也是最小值.当x m +→-时,()F x →+∞,当x →+∞时,()F x →+∞.因此函数()F x 有唯一零点的充要条件是其最小值为0,即()00F x =(01x x =),所以()00e ln 0x x m -+=,又因为001e x x m=+,所以00e 0x x +=.设()e x x x ϕ=+,则()e 10x x ϕ'=+>,所以()x ϕ在(),m -+∞上单调递增,又因为1211e 022ϕ-⎛⎫-=-> ⎪⎝⎭,()1110e ϕ-=-<,由零点存在性定理可知0112x -<<-.。
高考压轴题:导数题型及解题方法归纳
高考压轴题:导数题型及解题方法一.切线问题题型1 求曲线)(x f y =在0x x =处的切线方程。
方法:)(0x f '为在0x x =处的切线的斜率。
题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。
方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。
例 已知函数f (x )=x 3﹣3x .(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。
将问题转化为关于m x ,0的方程有三个不同实数根问题。
(答案:m 的范围是()2,3--)练习 1. 已知曲线x x y 33-=(1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。
答案:(03=+y x 或027415=--y x )(2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。
2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1)题型3 求两个曲线)(x f y =、)(x g y =的公切线。
方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。
()(,22x f x );进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线2x y =与曲线x e y ln 2=的公切线方程。
(答案02=--e y x e )练习 1.求曲线2x y =与曲线2)1(--=x y 的公切线方程。
培优点三 第一讲“利用零点”,证明函数不等式(教师篇)
培优点三 第一讲 “利用零点”,证明函数不等式应用函数的零点证明不等式问题,从已知条件来看,有两类,一类是题目中并未提及函数零点,二类是题目中明确函数零点或零点个数;从要求证明的不等式看,也有两种类型,一类是求证不等式是函数值的范围或参数的范围,二类是求证不等式是零点或零点的函数值满足的不等关系.1.由于函数零点存在定理明确的是函数值满足的不等关系,所以,通过设出函数的零点,利用函数零点存在定理,可建立不等关系,向目标不等式靠近,如上述类型一;也可以利用不等式的性质,向目标不等式靠近,如上述类型二,这两类问题突出的一点是“设而不求”.2. 当求证不等式是零点或零点的函数值满足的不等关系时,则注意将零点代入函数式,构建方程(组),进一步确定零点之间的关系,然后在通过求导、分离参数、构造函数等手段.本专题围绕高考压轴题中已知零点(零点个数),证明函数不等式问题,例题说法,高效训练.【典型例题】类型一 设而不求,应用函数零点存在定理 例1.已知函数()ln x af x x e+=-.(1)若曲线()f x 在点(1)f (1,)处的切线与x 轴正半轴有公共点,求a 的取值范围;(2)求证:11a e>-时,()1f x e <--. 【解】(1)函数()ln x af x x e+=-的导数为()1x af x e x+'=-. 曲线()f x 在点(1)f (1,)处的切线斜率为11a e +-,切点为1a e +-(1,),可得切线方程为11(1)(1)a a y e e x +++=--,可令0y =可得111a x e +=-,由题意可得1101ae+>-, 可得11ae+<,解得1a <-;(2)证明:()1x a f x e x +'=-.设()1()x a g x f x e x +'==-.可得21()()x a g x e x+'=-+,当0x >时,()0g x '<,()g x 递减;由11a e >-,x a x e e +>.若1x e x >,1()0x g x e x<-<,当01x <<时,1x aa ee ++<.若11a e x+<,即1ax e --<,故当10a x e --<<时,()0g x >,即()()g x f x '=有零点0x ,当00x x <<时,()0f x '>,()f x 递增;当0x x >时,()0f x '<,()f x 递减,可得()()0f x f x ≤,又()000ln x af x x e+=-,又001x aex +=, 可得()0001ln f x x x =-,在00x >递增,又00001ln(ln )a x x x x =-=-+, 11a e >- ⇔00111(ln )1(ln )x x e e e -+>-=-+,所以0011ln ln x x e e+<+,由于00ln x x +递增,可得010x e <<,故()()01()1f x f x f e e≤<=--.类型二 设而不求,应用不等式性质 例2.已知函数()1ln xx a f x e a x x e--=+-(1a <,e 是自然对数的底) (1)讨论()f x 的单调性;(2)若01a <<,0x 是函数()f x 的零点,()f x '是()f x 的导函数,求证:()()0332f f f x ⎛⎫'''<< ⎪⎝⎭.【解】 (1)()1()1()() (0)x x e a e f x x a x a x e x e x '=-+-=-->, 设1() (0)x e g x x e x=->, 解法一:由x e y e =和1y x =-在(0,)+∞上单调递增,可知()g x 在(0,)+∞上单调递增,解法二:由0x >得21()0x e g x e x '=+>可知()g x 在(0,)+∞上单调递增,又(1)0g =, 所以当x (0,1)∈时,()0g x <,当x (1,)∈+∞时,()0g x >,①当0a ≤时,0x a ->,当x (0,1)∈时,()0f x '<;当x (1,)∈+∞时,()0f x '>.②当01a <<时,由()0f x '=得x a =或1x =,当x (0,)a ∈时,0x a -<,()0g x <,()0f x '>; 当x (,1)a ∈时,()0f x '<;当x (1,)∈+∞时,()0f x '>.综上所述:当0a ≤时,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增;当01a <<时,()f x 在(0,)a 单调递增,在(,1)a 上单调递减,在(1,)+∞上单调递增.(2)解法一(分析法):当01a <<时,由(1)知()f x 在(]0,1上的最大值为()f a ,可知()1ln 0a f a e a a a -=-+-<,所以()f x 在(]0,1上无零点. 若0x 是函数()f x 的零点,则01x >, ∵()1()() (1)x e f x x a x e x '=-->,解法一:由()y x a =-和1x e y e x =-在(1,)+∞上单调递增,且10x e e x->、0x a ->,可知()f x '在(1,)+∞上单调递增,解法二:设()()h x f x '=,则()211() +()() x x e e h x x a e x e x '=--+,由1x >得10x e e x->,21()() >0x e x a e x -+,所以()0h x '>, 可知()f x '在(1,)+∞上单调递增,要证()()0332f f f x ⎛⎫'''<<⎪⎝⎭,只需证0332x <<, 由(1)知()f x 在(1,)+∞上单调递增, 只需证()()0332f f x f ⎛⎫<<⎪⎝⎭,又()00f x =,只需证032f ⎛⎫<⎪⎝⎭且()03f >.13333(ln (ln 2222223f a a a ⎛⎫=--=+- ⎪⎝⎭,由3lnln 12e <=1>,得3ln 02<302-<,所以032f ⎛⎫< ⎪⎝⎭; ()2(2)ln333f a e a =-+-,由21a ->得()2ln 3330f e a >+->,综上所述,得证.类型三 代入零点,利用方程思想转化证明零点之间的关系 例3.已知函数()ln f x x kx =-,其中k R ∈为常数. (1)讨论函数()f x 的单调性;(2)若()f x 有两个相异零点1212,()x x x x <,求证:21ln 2ln x x >-. 【解】(1)()11(0)kxf x k x x x-'=-=>, ①当0k ≤时,()0f x '>,()f x 在区间(0,)+∞上单调递增;②当0k >时,由()0f x '>,得10x k <<,所以()f x 在区间1(0,)k 上单调递增,在区间1(,)k+∞上单调递减.(2)因为12,x x 是()f x 的两个零点,则22ln 0x kx -=,11ln 0x kx -=, 所以2121ln ln ()x x k x x -=-,2121ln ln ()x x k x x +=+.要证21ln 2ln x x >-,只要证21ln ln 2x x +>,即证21()2k x x +>, 即证212121ln ln ()2x x x x x x -+>-,即证212122()ln ln x x x x x x -->+,只要证221122()ln x x x x x x ->+.设21(1)x t t x =>,则只要证2(t 1)ln (1)1t t t ->>+. 设2(t 1)g(t)ln 1t t -=-+,则22(t 1)g (t)0(1)t t -'=>+,所以g(t)在(1,)+∞上单调递增. 所以()(1)0g t g >=,即2(t 1)ln 1t t ->+,所以21ln ln 2x x +>,即21ln 2ln x x >-. 类型四 利用零点性质,构造函数证明参数范围 例4.已知函数()212ln (1), 02f x x x ax a =-++->. (1)判断()f x 的单调性;(2)若()0f x ≥在(1,)+∞上恒成立,且()0f x =有唯一解,试证明1a <.【解】(1)函数的定义域是(0,)+∞,()222(0)x ax f x x a x x x --'=-+-=>,易知220x ax --=有两根,10x =<,2x =故()f x在递减,在)+∞递增; (2)∵0a >,∴12a +>,∴()f x '在(1,)+∞上有唯一零点02a x +=,又()2f x x a x'=-+-,∴0020x a x -+-=①,要使()0f x ≥在区间(1,)+∞恒成立,且()0f x =有唯一解,须()00f x =,即200012ln (1)02x x ax -++-=②,由①②得: 200000122ln (1)()02x x x x x -++--+=,故200152ln 022x x --+=,令200015()2ln 22g x x x =--+,显然0()g x 在(1,)+∞递减, ∵(1)20g =>,1(2)2ln 202g =-+<,∴012x <<,又∵002a x x =-+在(1,)+∞递增,故1a <.专题一【提升训练】1.设函数,(1)讨论的单调性;(2)若函数有两个零点、,求证:.【解】(1),设,①当时,,;②当时,由得或,记则,∵∴当时,,,当时,,,∴当时,在上单调递减;当时,在上单调递减,在上单调递增.(2)不妨设,由已知得,,即,,两式相减得,∴,要证,即要证,只需证,只需证,即要证,设,则,只需证,设,只需证,,在上单调递增,,得证.2.已知函数.(1)当时,求函数的单调区间;(2)当时,证明:(其中为自然对数的底数).【解】(1)由题意,函数的定义域为,当时,,则. 由解得或;由解得.所以的单调递增区间是,;单调递减区间是.(2)当时,由,只需证明.令,.设,则.当时,,单调递减;当时,,单调递增,∴当时,取得唯一的极小值,也是最小值.的最小值是成立.故成立.3.已知函数f(x)=lnx+a(x﹣1)2(a>0).(1)讨论f(x)的单调性;(2)若f(x)在区间(0,1)内有唯一的零点x0,证明:.【解】(1),①当0<a≤2时,f'(x)≥0,y=f(x)在(0,+∞)上单调递增,②当a>2时,设2ax2﹣2ax+1=0的两个根为,且,y=f(x)在(0,x1),(x2,+∞)单调递増,在(x1,x2)单调递减.(2)证明:依题可知f(1)=0,若f(x)在区间(0,1)内有唯一的零点x0,由(1)可知a>2,且.于是:①②由①②得,设,则,因此g(x)在上单调递减,又,根据零点存在定理,故.4. 已知函数f(x)=lnx﹣x+1,函数g(x)=ax•e x﹣4x,其中a为大于零的常数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2).【解】(Ⅰ)…………………………………(2分)x∈(0,1)时,f'(x)>0,y=f(x)单增;x∈(1,+∞)时,f'(x)<0,y=f(x)单减……………………….(4分)(Ⅱ)证明:令h(x)=axe x﹣4x﹣2lnx+2x﹣2=axe x﹣2x﹣2lnx﹣2(a>0,x>0)………………….(5分)故…………………………….(7分)令h'(x)=0即,两边求对数得:lna+x0=ln2﹣lnx0即 lnx0+x0=ln2﹣lna……………….(9分)∴,∴h(x)≥2lna﹣2ln2……………………………(12分)5.设(e为自然对数的底数),.(I)记,讨论函单调性;(II)令,若函数G(x)有两个零点.(i)求参数a的取值范围;(ii)设的两个零点,证明.【解】(Ⅰ),,所以当时,,单调递减;当时,,单调递增.(Ⅱ)由已知,,.①当时,,有唯一零点;②当时,,所以当时,,减;当时,,增.所以,因,所以当时,有唯一零点;当时,,则,所以,所以,因为,所以,,,且,当,时,使,取,则,从而可知当时,有唯一零点,即当时,函数有两个零点.③当时,,由,得,或.若,即时,,所以是单调减函数,至多有一个零点;若,即时,,注意到,都是增函数,所以当时,,是单调减函数;当时,,是单调增函数;当时,,是单调减函数.又因为,所以至多有一个零点;若,即时,同理可得当时,,是单调减函数;当时,,是单调增函数;当时,,是单调减函数.又因为,所以至多有一个零点.综上,若函数有两个零点,则参数的取值范围是.由知,函数有两个零点,则参数的取值范围是.,是的两个零点,则有,因,则,且,,,,,由(Ⅰ)知,当时,是减函数;当时,是增函数.令,,再令φ(m)e2m+1=e2m1,,,所以,又,所以时,恒成立,即恒成立,令,即,有,即,因为,所以,又,必有,又当时,是增函数,所以,即.。
2023年高考数学填选压轴题专题20 用数形结合法求解零点问题
专题20 用数形结合法求解零点问题【方法点拨】1.函数的零点的实质就是函数图象与x 轴交点的横坐标,解决实际问题时,往往需分离函数,将零点个数问题转化为两个函数图象交点个数问题,将零点所在区间问题,转化为交点的横坐标所在区间问题.2.分离函数的基本策略是:一静一动,一直一曲,动直线、静曲线,要把构造“好函数”作为第一要务.3.作图时要注意运用导数等相关知识分析函数的单调性、奇偶性、以及关键点线(如渐进线),以保证图像的准确.【典型题示例】例1 已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2g x f x kx x =-- (k R ∈)恰有4个零点,则k 的取值范围是( ) A. 1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B. 1,(0,22)2⎛⎫-∞- ⎪⎝⎭C. (,0)(0,22)-∞D. (,0)(22,)-∞+∞【答案】D【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案.【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得22k =(负值舍去),所以22k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.点评:本题是一道由函数零点个数求参数的取值范围的问题,其基本思路是运用图象,将零点个数问题转化为两函数图象交点个数,考查函数与方程的应用、数形结合思想、转化与化归思想、导数知识、一元二次方程、极值不等式、特值等进行分析求参数的范围.例2 已知函数()2e 143,13xx f x x x x ⎧≤⎪=⎨-+-<<⎪⎩,,若函数()()2g x f x k x =-+有三个零点,则实数k的取值范围是__________.【答案】151e 0,,15e 3⎛⎫⎛⎤⎪ ⎥ ⎪⎝⎦⎝⎭ 【解析】作()2e ,143,13xx f x x x x ⎧≤⎪=⎨-+-<<⎪⎩与2y k x =+图象,由243(2),0,2x x k x k x -+-=+>>-得2222(1)(44)430k x k x k ++-++=由2222(44)4(1)(43)0k k k ∆=--++=得2101515k k k =>∴=,对应图中分界线①; 由(2),0,2y k x k x =+>>-过点(1,)e 得3ek =,对应图中分界线②; 当(2),0,2y k x k x =+>>-与x y e =相切于00(,)x x e 时,因为e xy '=,所以0001(2)01,x k e k x k x k e==+>∴=-=,对应图中分界线③;因为函数()()2g x f x k x =-+有三个零点,所以实数k的取值范围是1e ,e 3⎛⎛⎤⎥ ⎝⎦⎝⎭ 故答案为:1e 0,,15e 3⎛⎛⎤⎥ ⎝⎦⎝⎭ 例3 已知函数与的零点分别为 和.若,则实数的取值范围是 .【答案】(),1-∞-【分析】将问题转化为函数y m =与函数1()1h x x x =--和1()ln 2e x x x =-交点的大小问题,作出函数图像,观察图像可得结果.【解析】由2()(1)10f x x m x =-+-=,得11m x x=--, 对于函数1()1h x x x=--,在()0,∞+上单调递增,在(),0-∞上单调递减, 由()ln 220g x x x m =--=,得1ln 2m x x =-,对于1()ln 2e x x x =-,'112122x y x x -=-=得1ln 2y x x =-在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,最大值为111ln 222-,其图像如图, 2()(1)1f x x m x =-+-()ln 22g x x x m =--12x x ,34x x ,1324x x x x <<<m令111ln 2x x x x --=-得(1,1)A -, 要1324x x x x <<<,则直线y m =要在A 点下方,1m ∴<-,∴实数的取值范围是(,1)-∞-.例4 已知函数22(1), 0()2, 0k x f x xx k x ⎧-<⎪=⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且仅有四个不同的零点,则实数k 的取值范围是 . 【答案】(27,+∞)【分析】由()()()g x f x f x =-+知,()()()g x f x f x =-+是偶函数,研究“一半”,问题转化为22(), 0k g x x k x x =+->有且仅有两个不同的零点,分离函数得()21210x x k x=-+>,两边均为基本初等函数,当曲线在一点相切时,两曲线只有一个交点,利用导数知识求出切点坐标,当抛物线开口变大,即函数值小于切点的纵坐标即可. 【解析】易知()()()g x f x f x =-+是偶函数,问题可转化为22(), 0kg x x k x x=+->有且仅有两个不同的零点. 分离函数得()21210x x k x=-+>,由图形易知k >0, 问题进一步转化为()21210y x y x k x==-+>、有两个交点问题.先考察两曲线相切时的“临界状态”,此时,两曲线只有一个交点m所以当21133k ⨯<时,即k >27时,上述两个函数图象有两个交点 综上所述,实数k 的取值范围是(27,+∞). 点评:1.本题解法较多,但利用“形”最简单,只要函数分离的恰当,这种题实现“分分钟”解决也是可及的.2.有关函数零点的问题解法灵活,综合考察函数的图象与性质、导数的几何意义、分离函数的意识、分离参数的意识等,综合性强,较难把握.3.利用“数学结合法”求解零点问题的要点有二.一是分离函数,基本策略是“一静一动、一直一曲,动直线、定曲线”,函数最好是基本初等函数;二是求解过程中的“临界状态”的确定,若是一直一曲,一般相切是“临界状态”,若是两曲,一般公切是“临界状态”(曲线的凸凹性相反,即曲线在公切线的两侧)例5 已知函数2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,,若函数()f x 有四个不同的零点,则实数m 的取值范围是 .【答案】2(,)4e -∞-【解析】2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,是偶函数,问题转化为2=0x e mx +,即2=x e mx -(0x >)有两个零点易知0m <,两边均为曲线,较难求解.两边取自然对数,()=ln 2ln x m x -+,即()ln 2ln x m x --= 问题即为:()()ln g x x m =--与()2ln h x x =有两个交点先考察直线y x b =+与()2ln h x x =相切,即只有一点交点的“临界状态” 设切点为00(,2ln )x x ,则002()1h x x '==,解得02x =,此时切点为(2,2ln 2)代入2ln22b =-再求()()ln g x x m =--与()2ln h x x =有两个交点时,m 的取值范围 由图象知,当()()ln g x x m =--在直线y x b =+下方时,满足题意 故()ln 2ln 22m b --<=-,解之得24e m <-,此时也符合0m <所以实数m 的取值范围是2(,)4e -∞-.点评:取对数的目的在于“化双曲为一直一曲”,简化了运算、难度,取对数不影响零点的个数. 例6 若函数3||()2x f x kx x =-+有三个不同的零点,则实数k 的取值范围为 . 【答案】 27(,)32-∞-⋃+∞(0,) 【分析】本题的难点是“分离函数”,函数分离的是否恰当、易于进一步解题,是分离时应综合考虑的重要因素,也是学生数学素养、能力的综合体现.本例中,可将已知变形为下列多种形式:3||2x kx x =+2||(2)x kx x x =+、3||(2)x k x x=+,31(2)x x k x +=,···,但利用31(2)x x k x +=较简单. 【解析】易知0是函数3||()2x f x kx x =-+一个的零点, 当x ≠0时,3||()02x f x kx x =-=+可化为31(2)x x k x +=,考虑1y k=与3(2)()x x g x x +=有且只有两个非的取值范围是 .【答案】()4ln 2,ln(e 1)2+-【分析】从结构上看,首先考虑“对化指”,方程24242ln(e1)2e1e0x x x a x a --+-+=+-⇔+-=,属于复合函数的零点问题,内函数是指数型,外函数是二次函数.设242()e 1ex x a h x -+-=+-,x R ∈,则()h x 为偶函数,研究 “一半”, 令2ex t -=,x >0,则关于t 的方程2e 10at t -+=在(2e -,+∞)内有两个不相等的实根,分离参数,利用“形”立得. 【解析】方程24242()()ln(e 1)2e1e0x x x a f x g x x a --+-=⇔+=+-⇔+-=令242()e1ex x a h x -+-=+-,x R ∈,则显然()h x 为偶函数,所以方程()()f x g x =有四个实根⇔函数242()e 1e x x a h x -+-=+-,x >0有两个零点,令2ex t -=,x >0,则关于t 的方程2e 10at t -+=,即1e at t=+在(2e -,+∞)内有两个不相等的实根,结合函数1y t t=+,2e t ->的图像,得222e e e a -<<+,即4ln 2ln(e 1)2a <<+-,则实数a 的取值范围是()4ln 2,ln(e 1)2+-.【巩固训练】1.已知函数22()(21)(31)(2)(2)xx f x a a e a x e x =---+++有四个零点,则实数a 的取值范围是__________.A. 1,12⎛⎫⎪⎝⎭ B. 11,2e +⎛⎫ ⎪⎝⎭C. 11,22e +⎛⎫⎪⎝⎭ D. 11,11,22e +⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭2.已知函数21,0()1,02x xx x x f x e e x x ⎧++≥⎪=⎨+<⎪⎩,()xg x me =(其中m 是非零实数),若函数()y f x =与函数()y g x =的图象有且仅有两个交点,则m 的取值范围为 .3.已知函数32ln ,0(),0e x xf x x x x >⎧=⎨+≤⎩,若函数2()()g x f x ax =-有三个不同的零点,则实数a 的取值范围是_____.4.已知e 为自然对数的底数,若方程|xlnx —ex +e |=mx 在区间[e1,e 2]上有三个不同实数根,则实数m 的取值范围是________. 5.已知关于x 的方程2x kx x =-有三个不同的实数解,则实数k 的取值范围是______6.已知关于x 的方程33kx x x =+有三个不同的实数解,则实数k 的取值范围是 .7. 若函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为____________.8. 若函数有两个零点,则实数的取值范围是 . 9.已知函数()2x f x e x a =-+有零点,则实数a 的取值范围是____________. 10. 已知函数()f x ax =,ln ()x g x x =,其中a 为实数.若关于x 的方程()()f x g x =在1,e e ⎡⎤⎢⎥⎣⎦上有两个实数解,则实数a 的取值范围为 .11. 已知函数32, 0(), 0ax x x f x x x ⎧++<⎪=⎨>⎪⎩,若函数()(1)(1)g x f x f x =-+-有且仅有四个不同的零点,则实数a 的取值范围是 . 12.已知函数3()f x x a a x=--+,,若关于的方程()2f x =有且仅有三个不同的实根,且它们成等差数列,则实数取值的集合为 .()(0a 1)xf x a x a a =--≠>),且a a R ∈x a【答案与提示】1.【答案】 D【提示】()(2)(21)(2)x xf x ae x a e x ⎡⎤⎡⎤=-+--+⎣⎦⎣⎦,根据对称性,只需考察1(2)x e x a=+有两个零点,得0a e <<,故有002121a e a e a a <<⎧⎪<-<⎨⎪≠-*⎩,前两者是保证两方程各自有两解,这里(*)易漏,它是保证两方程解不相同的.2.【答案】⎪⎭⎫⎢⎣⎡⋃⎪⎭⎫ ⎝⎛e 3,121,0【提示】转化为函数21,0()11,02xx x x e F x x x ⎧++≥⎪⎪=⎨⎪+<⎪⎩与函数()G x m =的图象有且仅有两个交点最简.3.【答案】(0,1){2}-【提示】易知0是其中一个零点,问题转化为y a =与函数22ln ,0()1,0e xx x k x x x⎧>⎪⎪=⎨⎪+<有两个不同的零点.4.【答案】1eln ex ex,问题转化为)yf 与m 的图象在区间[e1,e 2]上有三个交点.∵221(e x ef x xx x, ∴当1(,)xe e时,()0f x ,()f x 减;当2(,)x e e 时,()0f x ,()f x 增.故当x e 时,()f x 取得极小值,且20e .又(1)f 210e e ,21()20f e e e作出()y f x 的图象,由图象知实数m 的取值范围是:12,2ee e).5.【答案】102k <<【解析】1,021,02,0x x k x x R x ⎧>⎪-⎪⎪=-<⎨-⎪=⎪⎪⎩,画图得出k 的取值范围.6.【答案】0>k 或41-<k . 【提示】参见例6.思路二:(半分)32, 0t at t t -=-->12.【答案】95⎧⎪-⎨⎪⎪⎩⎭【提示】变形为3=+3x a a x -+转化为y x a a =-+与3=+3y x有且仅有三个不同的交点,而函数y x a a =-+的图象是定点在直线y x =上、开口向上的V 形折线.。
2025届高考数学一轮复习教案:导数-导数的函数零点问题
第2课时导数的函数零点问题【命题分析】函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查基本初等函数、三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现.【核心考点·分类突破】题型一利用导数探究函数的零点个数[例1]设函数f(x)=ln x+,m∈R,讨论函数g(x)=f'(x)-3零点的个数.【解析】由题意知g(x)=f'(x)-3=1-2-3(x>0),令g(x)=0,得m=-13x3+x(x>0).设φ(x)=-13x3+x(x>0),则φ'(x)=-x2+1=-(x-1)(x+1).当x∈(0,1)时,φ'(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ'(x)<0,φ(x)在(1,+∞)上单调递减.所以x=1是φ(x)的唯一极值点,且是极大值点,所以x=1也是φ(x)的最大值点,所以φ(x)的最大值为φ(1)=23.结合y=φ(x)的图象(如图)可知,①当m>23时,函数g(x)无零点;②当m=23时,函数g(x)有且只有一个零点;③当0<m<23时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>23时,函数g(x)无零点;当m=23或m≤0时,函数g(x)有且只有一个零点;当0<m<23时,函数g(x)有两个零点.【解题技法】利用导数确定函数零点或方程的根的个数的方法(1)构造函数:构建函数g(x)(要求g'(x)易求,g'(x)=0可解),转化为确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.(2)应用定理:利用零点存在定理,先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数.【对点训练】(2023·郑州质检)已知函数f(x)=e x-ax+2a,a∈R.(1)讨论函数f(x)的单调性;(2)求函数f(x)的零点个数.【解析】(1)f(x)=e x-ax+2a,定义域为R,且f'(x)=e x-a,当a≤0时,f'(x)>0,则f(x)在R上单调递增;当a>0时,令f'(x)=0,则x=ln a,当x<ln a时,f'(x)<0,f(x)单调递减;当x>ln a时,f'(x)>0,f(x)单调递增.综上所述,当a≤0时,f(x)在R上单调递增;当a>0时,f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(2)令f(x)=0,得e x=a(x-2),当a=0时,e x=a(x-2)无解,所以f(x)无零点,当a≠0时,1=-2e,令φ(x)=-2e,x∈R,所以φ'(x)=3-e,当x∈(-∞,3)时,φ'(x)>0;当x∈(3,+∞)时,φ'(x)<0,所以φ(x)在(-∞,3)上单调递增,在(3,+∞)上单调递减,且φ(x)max=φ(3)=1e3,又x→+∞时,φ(x)→0,x→-∞时,φ(x)→-∞,所以φ(x)的大致图象如图所示.当1>1e3,即0<a<e3时,f(x)无零点;当1=1e3,即a=e3时,f(x)有一个零点;当0<1<1e3,即a>e3时,f(x)有两个零点;当1<0,即a<0时,f(x)有一个零点.综上所述,当a∈(0,e3)时,f(x)无零点;当a∈(-∞,0)∪{e3}时,f(x)有一个零点;当a∈(e3,+∞)时,f(x)有两个零点.【加练备选】已知函数f(x)=x e x+e x.(1)求函数f(x)的单调区间和极值;(2)讨论函数g(x)=f(x)-a(a∈R)的零点的个数.【解析】(1)函数f(x)的定义域为R,且f'(x)=(x+2)e x,令f'(x)=0得x=-2,则f'(x),f(x)的变化情况如表所示:x(-∞,-2)-2(-2,+∞)f'(x)-0+f(x)单调递减-12单调递增所以f(x)的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞).当x=-2时,f(x)有极小值,为f(-2)=-1e2,无极大值.(2)令f(x)=0,得x=-1,当x<-1时,f(x)<0;当x>-1时,f(x)>0,且f(x)的图象经过点(-2,-1e2),(-1,0),(0,1).当x→-∞时,f(x)→0;当x→+∞时,f(x)→+∞,根据以上信息,画出f(x)大致图象如图所示.函数g(x)=f(x)-a(a∈R)的零点的个数为y=f(x)的图象与直线y=a的交点个数,所以关于函数g(x)=f(x)-a(a∈R)的零点个数有如下结论:当a<-1e2时,零点的个数为0;当a=-1e2或a≥0时,零点的个数为1;当-1e2<a<0时,零点的个数为2.题型二利用函数零点问题求参数范围[例2]已知函数f(x)=e x-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解析】(1)当a=1时,f(x)=e x-x-2,则f'(x)=e x-1.当x<0时,f'(x)<0;当x>0时,f'(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)f'(x)=e x-a.当a≤0时,f'(x)>0,所以f(x)在(-∞,+∞)上单调递增,故f(x)至多存在1个零点,不合题意;当a>0时,由f'(x)=0可得x=ln a.当x∈(-∞,ln a)时,f'(x)<0;当x∈(ln a,+∞)时,f'(x)>0.所以f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,故当x=ln a时,f(x)取得最小值,最小值为f(ln a)=-a(1+ln a).(i)若0<a≤1e,则f(ln a)≥0,f(x)在(-∞,+∞)上至多存在1个零点,不合题意; (ii)若a>1e,则f(ln a)<0.因为f(-2)=e-2>0,所以f(x)在(-∞,ln a)上存在唯一零点.易知,当x>2时,e x-x-2>0,所以当x>4且x>2ln(2a)时,f(x)=e2·e2-a(x+2)>e ln(2a)+2-a(x+2)=2a>0.故f(x)在(ln a,+∞)上存在唯一零点,从而f(x)在(-∞,+∞)上有两个零点.综上,a,+∞.【解题技法】由函数零点求参数范围的策略(1)涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.(2)解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.(3)含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x表示参数的函数,作出该函数图象,根据图象特征求参数的范围.【对点训练】(一题多法)(2020·全国Ⅰ卷)已知函数f(x)=e x-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解析】(1)当a=1时,f(x)=e x-(x+2),f'(x)=e x-1,令f'(x)<0,解得x<0,令f'(x)>0,解得x>0,所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)方法一:当a≤0时,f'(x)=e x-a>0恒成立,f(x)在(-∞,+∞)上单调递增,不符合题意;当a>0时,令f'(x)=0,解得x=ln a,当x∈(-∞,ln a)时,f'(x)<0,f(x)单调递减,当x∈(ln a,+∞)时,f'(x)>0,f(x)单调递增,所以f(x)的极小值也是最小值为f(ln a)=a-a(ln a+2)=-a(1+ln a).又当x→-∞时,f(x)→+∞,当x→+∞时,f(x)→+∞;所以要使f(x)有两个零点,只要f(ln a)<0即可,则1+ln a>0,可得a>1e.综上,若f(x)有两个零点,则a的取值范围是(1e,+∞).方法二:若f(x)有两个零点,即e x-a(x+2)=0有两个解,显然x=-2不成立,即a=e r2(x≠-2)有两个解,令h(x)=e r2(x≠-2),则有h'(x)=e(r2)-e(r2)2=e(r1)(r2)2,令h'(x)>0,解得x>-1,令h'(x)<0,解得x<-2或-2<x<-1,所以函数h(x)在(-∞,-2)和(-2,-1)上单调递减,在(-1,+∞)上单调递增,且当x<-2时,h(x)<0,而当x→(-2)+(从右侧趋近于-2)时,h(x)→+∞,当x→+∞时,h(x)→+∞,所以当a=e r2(x≠-2)有两个解时,有a>h(-1)=1e,所以满足条件的a的取值范围是(1e,+∞).【加练备选】已知函数f(x)=x ln x,g(x)=(-x2+ax-3)e x(a∈R).(1)当a=4时,求曲线y=g(x)在x=0处的切线方程;(2)如果关于x的方程g(x)=2e x f(x)在区间[1e上有两个不等实根,求实数a的取值范围.【解析】(1)当a=4时,g(x)=(-x2+4x-3)e x,g(0)=-3,g'(x)=(-x2+2x+1)e x,g'(0)=1,所以所求的切线方程为y+3=x-0,即y=x-3.(2)由g(x)=2e x f(x),可得2x ln x=-x2+ax-3,a=x+2ln x+3.设h(x)=x+2ln x+3(x>0),所以h'(x)=1+2-32=(r3)(-1)2,所以x在[1e,e]上变化时,h'(x),h(x)的变化如表:x[1,1)1(1,e]h'(x)-0+h(x)单调递减极小值(最小值)单调递增又h(1e)=1e+3e-2,h(1)=4,h(e)=3e+e+2,且h(e)-h(1e)=4-2e+2e<0,所以实数a的取值范围为(4,e+2+3e].题型三与函数零点有关的证明[例3](2022·新高考Ⅰ卷改编)已知函数f(x)=e x-x,g(x)=x-ln x.(1)判断直线y=b与曲线y=f(x)和y=g(x)的交点分别有几个;(2)证明:曲线y=f(x)和y=g(x)有且只有一个公共点;(3)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【解析】(1)设S(x)=e x-x-b,S'(x)=e x-1,当x<0时,S'(x)<0,当x>0时,S'(x)>0,故S(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以S(x)min=S(0)=1-b.当b<1时,S(x)min=1-b>0,S(x)无零点;当b=1时,S(x)min=1-b=0,S(x)有1个零点;当b>1时,S(x)min=1-b<0,而S(-b)=e->0,S(b)=e b-2b,设u(b)=e b-2b,其中b>1,则u'(b)=e b-2>0,故u(b)在(1,+∞)上单调递增,故u(b)>u(1)=e-2>0,故S(b)>0,故S(x)=e x-x-b有两个不同的零点.设T(x)=x-ln x-b,T'(x)=-1,当0<x<1时,T'(x)<0,当x>1时,T'(x)>0,故T(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以T(x)min=T(1)=1-b.当b<1时,T(x)min=1-b>0,T(x)无零点;当b=1时,T(x)min=1-b=0,T(x)有1个零点;当b>1时,T(x)min=1-b<0,而T(e-)=e->0,T(e b)=e b-2b>0,所以T(x)=x-ln x-b有两个不同的零点.综上可知,当b<1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是0;当b=1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是1;当b>1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是2.(2)由f(x)=g(x)得e x-x=x-ln x,即e x+ln x-2x=0,设h(x)=e x+ln x-2x,其中x>0,故h'(x)=e x+1-2.设s(x)=e x-x-1,x>0,则s'(x)=e x-1>0,故s(x)在(0,+∞)上单调递增,故s(x)>s(0)=0,即e x>x+1,所以h'(x)>x+1-1≥2-1>0,所以h(x)在(0,+∞)上单调递增,而h(1)=e-2>0,h(1e3)=e1e3-3-2e3<e-3-2e3<0,故h(x)在(0,+∞)上有且只有一个零点x0,且1e3<x0<1,当0<x<x0时,h(x)<0,即e x-x<x-ln x,即f(x)<g(x),当x>x0时,h(x)>0,即e x-x>x-ln x,即f(x)>g(x),所以曲线y=f(x)和y=g(x)有且只有一个公共点.(3)由(2)知,若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,则b=f(x0)=g(x0)>1,此时e x-x=b有两个不同的解x1,x0(x1<0<x0),x-ln x=b有两个不同的解x0,x2(0<x0<1<x2),故e1-x1=b,e0-x0=b,x2-ln x2-b=0,x0-ln x0-b=0,所以x2-b=ln x2,即e2-=x2,即e2--(x2-b)-b=0,故x2-b为方程e x-x=b的解,同理x0-b也为方程e x-x=b的解,所以{x1,x0}={x0-b,x2-b},而b>1,故0=2-,1=0-,即x1+x2=2x0.【解题技法】1.证明与零点有关的不等式,函数的零点本身就是一个条件,即零点对应的函数值为0;2.证明的思路一般对条件等价转化,构造合适的新函数,利用导数知识探讨该函数的性质(如单调性、极值情况等),再结合函数图象来解决.【对点训练】已知函数f(x)=ln x-x+2sin x,f'(x)为f(x)的导函数.(1)求证:f'(x)在(0,π)上存在唯一零点;(2)求证:f(x)有且仅有两个不同的零点.【证明】(1)设g(x)=f'(x)=1-1+2cos x,当x∈(0,π)时,g'(x)=-2sin x-12<0,所以g(x)在(0,π)上单调递减,又因为g(π3)=3π-1+1>0,g(π2)=2π-1<0,所以g(x)在(0,π)上有唯一的零点.(2)设f'(x)在(0,π)上的唯一零点为α,由(1)知π3<α<π2.①当x∈(0,α)时,f'(x)>0,f(x)单调递增;当x∈(α,π)时,f'(x)<0,f(x)单调递减;所以f(x)在(0,π)上存在唯一的极大值点α,所以f(α)>f(π2)=lnπ2-π2+2>2-π2>0,又因为f(1e2)=-2-1e2+2sin1e2<-2-1e2+2<0,所以f(x)在(0,α)上恰有一个零点.又因为f(π)=lnπ-π<2-π<0,所以f(x)在(α,π)上也恰有一个零点.②当x∈[π,2π)时,sin x≤0,f(x)≤ln x-x,设h(x)=ln x-x,h'(x)=1-1<0,所以h(x)在[π,2π)上单调递减,所以h(x)≤h(π)<0,所以当x∈[π,2π)时,f(x)≤h(x)≤h(π)<0恒成立,所以f(x)在[π,2π)上没有零点.③当x∈[2π,+∞)时,f(x)≤ln x-x+2.设φ(x)=ln x-x+2,φ'(x)=1-1<0,所以φ(x)在[2π,+∞)上单调递减,所以φ(x)≤φ(2π)<0,所以当x∈[2π,+∞)时,f(x)≤φ(x)≤φ(2π)<0恒成立,所以f(x)在[2π,+∞)上没有零点.综上,f(x)有且仅有两个不同的零点.。
2020高考数学之函数零点问题《04 “用好零点”,确定参数的最值或取值范围》(解析版)
高考数学函数零点问题专题四“用好零点”,确定参数的最值或取值范围函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数零点,确定参数的最值或取值范围问题,例题说法,高效训练.【典型例题】例1.【山东省淄博市2019届高三3月模拟】已知函数.(1)若是的极大值点,求的值;(2)若在上只有一个零点,求的取值范围.【答案】(1)(2)【解析】(1),因为是的极大值点,所以,解得,当时,,,令,解得,当时,,在上单调递减,又,所以当时,;当时,,故是的极大值点;(2)令,,在上只有一个零点即在上只有一个零点,当时,,单调递减;当时,,单调递增,所以.(Ⅰ)当,即时,时,在上只有一个零点,即在上只有一个零点.(Ⅱ)当,即时,取,,①若,即时,在和上各有一个零点,即在上有2个零点,不符合题意;②当即时,只有在上有一个零点,即在上只有一个零点,综上得,当时,在上只有一个零点.例2.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟】已知函数(为自然对数的底数),.(1)当时,求函数的极小值;(2)若当时,关于的方程有且只有一个实数解,求的取值范围.【答案】(1)0(2)【解析】(1)当时,,,令则列表如下:所以.(2)设,,设,,由得,,,在单调递增,即在单调递增,,①当,即时,时,,在单调递增,又,故当时,关于的方程有且只有一个实数解,符合题意.②当,即时,由(1)可知,所以,又故,当时,,单调递减,又,故当时,,在内,关于的方程有一个实数解1.又时,,单调递增,且,令,,,故在单调递增,又在单调递增,故,故,又,由零点存在定理可知,,故在内,关于的方程有一个实数解.又在内,关于的方程有一个实数解1,不合题意.综上,.例3. 已知函数()()ln 1axf x e x =+,其中a R ∈. (1)设()()axF x ef x -=',讨论()F x 的单调性;(2)若函数()()g x f x x =-在()0,+∞内存在零点,求a 的范围. 【答案】(1)见解析;(2)a 的取值范围是10,2⎛⎫ ⎪⎝⎭. 【解析】(i ) 当 0a <时,则 111x a=-<-,因此在()1,-+∞ 上恒有 ()'0F x < ,即 ()F x 在()1,-+∞ 上单调递减;(ii )当0a >时, 111x a =->-,因而在11,1a ⎛⎫-- ⎪⎝⎭上有()'0F x <,在11,a ⎛⎫-+∞ ⎪⎝⎭上有()'0F x > ;因此 ()F x 在 11,1a ⎛⎫-- ⎪⎝⎭上单调递减,在11,a ⎛⎫-+∞ ⎪⎝⎭单调递增. (2)设 ()()()()ln 1,0,axg x f x x e x x x =-=+-∈+∞,()()()()1''1ln 1111ax axg x f x e a x e F x x ⎛⎫=-=++-=- ⎪+⎝⎭,设()()()'1ax h x g x e F x ==-,则 ()()()()()22221''ln 11axaxax a h x e aF x F x e a x x ⎛⎫+- ⎪⎡⎤=+=++⎣⎦ ⎪+⎝⎭. 先证明一个命题:当0x >时, ()ln 1x x +<.令()()ln 1S x x x =+-, ()1'1011xS x x x-=-=<++,故()S x 在()0,+∞上是减函数,从而当0x >时, ()()00S x S <=,故命题成立.若0a ≤ ,由 0x >可知, 01ax e <≤.()()()ln 1110ax ax ax g x e x e x x x e ∴=+-<-=-≤,故()0g x <,对任意()0,x ∈+∞都成立,故 ()g x 在()0,+∞上无零点,因此0a >.(ii )当102a <<,考察函数 ()'h x ,由于 ()()1'0210,'0,'2h a h h x a ⎛⎫=-∴ ⎪⎝⎭在 ()0,+∞上必存在零点.设()'h x 在 ()0,+∞的第一个零点为0x ,则当()00,x x ∈时, ()'0h x <,故 ()h x 在 ()00,x 上为减函数,又 ()()000h x h <=,所以当 ()00,x x ∈时, ()'0g x <,从而 ()g x 在 ()00,x 上单调递减,故在 ()00,x 上恒有()()00g x g <=.即 ()00g x < ,注意到 ax e x ax >,因此()()()()()ln 1ln 11ln 11axg x e x x x ax x x a x =+->+-=+-,令1ax e =时,则有()0g x >,由零点存在定理可知函数 ()y g x =在 10,ax e ⎛⎫ ⎪⎝⎭上有零点,符合题意. 学科%网例4.【广东省广州市天河区2019届高三综合测试(一)】设函数.若函数在处的切线与直线垂直,求实数a的值;讨论函数的单调区间与极值;若函数有两个零点,求满足条件的最小整数a的值.【答案】(1);(2)见解析;(3)3【解析】,.,函数在处的切线与直线垂直,,解得.,时,,此时函数在内单调递增,无极值.时,可得函数在内单调递减,在内单调递增.可得时,函数取得极小值,.由可得:时,函数在内单调递增,不可能有两个零点,舍去.时,可得时,函数取得极小值,时,;时,.因此极小值.即.令函数,在上单调递增.,,,可得,满足条件的最小整数.【规律与方法】根据函数零点求参数取值,也是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.(4)如果导函数的解析式具有分式特征,且容易判断出分母是正数,此时往往将分子看成一个新的函数,进而对该函数进行研究从而得到相应的结论.(5)参变分离法、构造函数法、数形结合法等,均应灵活运用.【提升训练】1.【四川省高中2019届高三二诊】已知.求的极值;若有两个不同解,求实数的取值范围.【答案】(1)有极小值,为;无极大值;(2)【解析】的定义域是,,令,解得:,令,解得:,故在递减,在递增,故时,;记,,则,故可转化成,即:,令,,令,解得:,令,解得:,故在递增,在递减,且时,,时,故,由,,的性质有:,和有两个不同交点,,且,,各有一解,即有2个不同解,,和仅有1个交点,且,有2个不同的解,即有两个不同解,取其它值时,最多1个解,综上,的范围是2.【陕西省咸阳市2019年高考模拟(二)】已知函数. (1)当,求证;(2)若函数有两个零点,求实数的取值范围.【答案】(1)见证明;(2)【解析】(1)证明:当时,,得,知在递减,在递增,,综上知,当时,.(2)法1:,,即,令,则,知在递增,在递减,注意到,当时,;当时,,且,由函数有个零点,即直线与函数图像有两个交点,得.法2:由得,,当时,,知在上递减,不满足题意;当时,,知在递减,在递增.,的零点个数为,即,综上,若函数有两个零点,则.3.【湖南省怀化市2019届高三3月一模】设函数.(1)若是的极大值点,求的取值范围;(2)当,时,方程(其中)有唯一实数解,求的值. 【答案】(1)(2)【解析】(1)由题意,函数的定义域为,则导数为由,得,∴①若,由,得.当时,,此时单调递增;当时,,此时单调递减.所以是的极大值点②若,由,得,或.因为是的极大值点,所以,解得综合①②:的取值范围是(2)因为方程有唯一实数解,所以有唯一实数解设,则,令,即.因为,,所以(舍去),当时,,在上单调递减,当时,,在单调递增当时,,取最小值则,即,所以,因为,所以(*)设函数,因为当时,是增函数,所以至多有一解因为,所以方程(*)的解为,即,解得4.【安徽省马鞍山市2019届高三高考一模】已知函数在上是增函数.求实数的值;若函数有三个零点,求实数的取值范围.【答案】(1);(2)【解析】当时,是增函数,且,故当时,为增函数,即恒成立,当时,函数的导数恒成立,当时,,此时相应恒成立,即恒成立,即恒成立,当时,,此时相应恒成立,即恒成立,即恒成立,则,即.若,则在上是增函数,此时最多有一个零点,不可能有三个零点,则不满足条件.故,当时,有一个零点,当时,,故0也是故的一个零点,故当时,有且只有一个零点,即有且只有一个解,即,得,,则,在时有且只有一个根,即与函数,在时有且只有一个交点,,由得,即得,得,此时函数递增,由得,即得,得,此时函数递减,即当时,函数取得极小值,此时极小值为,,作出的图象如图,要使与函数,在时有且只有一个交点,则或,即实数的取值范围是.5.【吉林省长春市普通高中2019届高三监测(二)】已知函数.(1)讨论的单调性;(2)若方程有两个实数根,求实数的取值范围.【答案】(1)见解析;(2)【解析】(1)由题可得,当时,,在上单调递增;当时,,,在上单调递增;,,在上单调递减.(2)令,,易知单调递增且一定有大于0的零点,不妨设为,,即,,故若有有两个零点,需满足,即,令,,所以在上单调递减.,所以的解集为,由,所以.当时,,有,令,由于,所以,,故,所以,故,在上有唯一零点,另一方面,在上,当时,由增长速度大,所以有,综上,.6. 设函数()()()22ln 11f x x x =---. (1)求函数()f x 的单调递减区间;(2)若关于x 的方程()230f x x x a +--=在区间[]24,内恰有两个相异的实根,求实数a 的取值范围.【答案】(1) 函数()f x 的单调递增区间为()2,+∞;(2) a 的取值范围是[)2ln352ln24--,. 【解析】(1)函数()f x 的定义域为()1+∞, ∵()()()2212111x x f x x x x --⎡⎤=--=⎢⎥--⎣⎦'∵1x >,则使()0f x '<的x 的取值范围为()2,+∞, 故函数()f x 的单调递减区间为()2,+∞故()230f x x x a +--=在区间[]24,内恰有两个相异实根()()()20{30 40.g g g ≥⇔<≥,,即30{4220 5230a a ln a ln +≥+-<+-≥,解得: 2ln352ln24a -≤<-综上所述, a 的取值范围是[)2ln352ln24--,7. 已知函数()()21xf x e a x b =---,其中e 为自然对数的底数.(1)若函数()f x 在区间[]0,1上是单调函数,试求实数a 的取值范围;(2)已知函数()()211xg x e a x bx =----,且()10g =,若函数()g x 在区间[]0,1上恰有3个零点,求实数a 的取值范围. 【答案】(1) ][3,1,22e⎛⎫-∞⋃++∞ ⎪⎝⎭(2) ()1,2e - 【解析】(2)()()()'21xg x e a x b f x =---=.由()()010g g ==,知()g x 在区间()0,1内恰有一个零点, 设该零点为0x ,则()g x 在区间()00,x 内不单调, 所以()f x 在区间()00,x 内存在零点1x , 同理, ()f x 在区间()0,1x 内存在零点2x , 所以()f x 在区间()0,1内恰有两个零点. 由(1)知,当32a ≤时, ()f x 在区间[]0,1上单调递增,故()f x 在区间()0,1内至多有一个零点,不合题意. 当12ea ≥+时, ()f x 在区间[]0,1上单调递减, 故()f x 在()0,1内至多有一个零点,不合题意; 所以3122ea <<+.8.已知函数()()22ln R f x a x x ax a =-+∈.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当0a >时,若()f x 在()1,e 上有零点,求实数a 的取值范围.【答案】(Ⅰ)见解析(Ⅱ))1e 1,2⎛⎫⎪ ⎪⎝⎭【解析】(Ⅰ)函数()f x 的定义域为()0,+∞,()()()2222a x a x a ax x f x x x-++='-=.由()0f x '=得x a =或2ax =-. 当0a =时, ()0f x '<在()0,+∞上恒成立,所以()f x 的单调递减区间是()0,+∞,没有单调递增区间. 当0a >时, ()(),,x f x f x '的变化情况如下表:所以()f x 的单调递增区间是()0,a ,单调递减区间是(),a +∞. 当0a <时, ()(),,x f x f x '的变化情况如下表:所以()f x 的单调递增区间是0,2a ⎛⎫-⎪⎝⎭,单调递减区间是,2a ⎛⎫-+∞ ⎪⎝⎭.9.已知()()()3231ln ,2x f x x e e x g x x x a =--=-++.(1)讨论()f x 的单调性;(2)若存在()10,x ∈+∞及唯一正整数2x ,使得()()12f x g x =,求a 的取值范围.【答案】(1)()f x 的单调递减区间是()0,1,单调递增区间是()1,+∞;(2) a 的取值范围是1,22⎡⎫-⎪⎢⎣⎭. 【解析】(2)由(1)知当1x =时, ()f x 取得最小值, 又()10f =,所以()f x 在()0,+∞上的值域为[)0,+∞.因为存在()10,x ∈+∞及唯一正整数2x ,使得()()12f x g x =, 所以满足()0g x ≥的正整数解只有1个. 因为()3232g x x x a =-++, 所以()()23331g x x x x x =-+'=--,所以()g x 在()0,1上单调递增,在()1,+∞上单调递减,所以()()10{20g g ≥<,即1{ 220a a +≥-+<, 解得122a -≤<. 所以实数a 的取值范围是1,22⎡⎫-⎪⎢⎣⎭. 10.设函数()ln f x x =, ()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意()01,x ∈+∞和任意()0,3a ∈,总存在不相等的正实数12,x x ,使得()()()120g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于()11,,A x y ()2212,()B x y x x <两点.求证:122121x x x b x x x -<<-.【答案】(1)12{ 12a b ==-(2)3(3)见解析【解析】(2)当01x >时,则()00f x >,又3b a =-,设()0t f x =, 则题意可转化为方程3(0)aax c t t x-+-=>在()0,+∞上有相异两实根12,x x .即关于x 的方程()()230(0)ax c t x a t -++-=>在()0,+∞上有相异两实根12,x x .所以()()2121203430{ 030a c t a a c t x x a a x x a<<∆=+-->++=>-=>,得()()203{43 0a c t a a c t <<+>-+>, 所以c t >对()()0,,0,3t a ∈+∞∈恒成立.因为03a <<,所以(当且仅当32a =时取等号), 又0t -<,所以的取值范围是(),3-∞,所以3c …. 故c 的最小值为3. (3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222{b lnx xc x b lnx x c x =+-=+-,两式相减,得211221ln ln 1x x b x x x x ⎛⎫-=- ⎪-⎝⎭. 要证明122121x x x b x x x -<<-,即证211221212121ln ln 1x x x x x x x x x x x x ⎛⎫--<-<- ⎪-⎝⎭,即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x x x x x -<<-. 令21x t x =,则1t >,此时即证11ln 1t t t-<<-. 令()1ln 1t t tϕ=+-,所以()221110t t t t t ϕ'-=-=>,所以当1t >时,函数()t ϕ单调递增. 又()10ϕ=,所以()1ln 10t t t ϕ=+->,即11ln t t-<成立;再令()ln 1m t t t =-+,所以()1110tm t t t-=-=<',所以当1t >时,函数()m t 单调递减,又()10m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立. 综上所述, 实数12,x x 满足122121x x x b x x x -<<-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“用好零点”,证明函数不等式
类型一设而不求,应用函数零点存在定理
例1.【四川省泸州市2019届高三二诊】已知函数.
(1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围;
(2)求证:时,.
类型二设而不求,应用不等式性质
例2.【广东省揭阳市2019届高三一模】已知函数(,e是自然对数的底,)
(1)讨论的单调性;
(2)若,是函数的零点,是的导函数,求证:.
类型三代入零点,利用方程思想转化证明零点之间的关系
例3.【湖南师大附中2019届高三月考试题(七)】已知函数,其中为常数.
(1)讨论函数的单调性;
(2)若有两个相异零点,求证:.
类型四利用零点性质,构造函数证明参数范围
例4.【山东省临沂市2019届高三2月检测】已知函数.
(1)判断的单调性;
(2)若在(1,+∞)上恒成立,且=0有唯一解,试证明a<1.
1.【广东省揭阳市2019届高三一模】设函数,
(1)讨论的单调性;
(2)若函数有两个零点、,求证:.
2.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】已知函数有两个零点.
求实数a的取值范围;
若函数的两个零点分别为,,求证:.
3.【宁夏银川市2019年高三下学期检测】已知函数.
(1)当时,求函数的单调区间;
(2)当
时,证明:
(其中为自然对数的底数).
4.已知函数f (x )=lnx+a (x ﹣1)2
(a >0). (1)讨论f (x )的单调性;
(2)若f (x )在区间(0,1)内有唯一的零点x 0,证明:.
5. 已知函数f (x )=3e x
+x 2
,g (x )=9x ﹣1. (1)求函数φ(x )=xe x +4x ﹣f (x )的单调区间; (2)比较f (x )与g (x )的大小,并加以证明.
6. 已知函数f (x )=lnx ﹣x+1,函数g (x )=ax•e x
﹣4x ,其中a 为大于零的常数. (Ⅰ)求函数f (x )的单调区间;
(Ⅱ)求证:g (x )﹣2f (x )≥2(lna ﹣ln2). 7.【山东省济南市2019届高三3月模拟】已知函数,其导函数
的最大值
为.
(1)求实数的值; (2)若
,证明:
.
8.【山东省日照市2017届高三下学期一模】设(e 为自然对数的底数),
.
(I)记,讨论函单调性;
(II)令
,若函数G(x )有两个零点.
(i)求参数a 的取值范围; (ii)设
的两个零点,证明
.
9.已知函数()()()2
ln 10f x x a x a =+->.
(1)讨论()f x 的单调性;
(2)若()f x 在区间()0,1内有唯一的零点0x ,证明: 3
12
0e
x e -
-<<.
10.已知函数()1x
f x e ax =--,其中e 为自然对数的底数, a R ∈
(I )若a e =,函数()()2g x e x =- ①求函数()()()h x f x g x =-的单调区间 ②若函数()()(),{
,f x x m
F x g x x m
≤=>的值域为R ,求实数m 的取值范围
(II )若存在实数[]12,0,2x x ∈,使得()()12f x f x =,且121x x -≥,求证: 21e a e e -≤≤-。